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1. Introduction

Fretting fatigue is the phenomenon of accelerated nucleation of
fatigue cracks by differential slip between contacting surfaces. The
first quantitative studies were conducted by O’Connor and co-
workers [1–4] with a series of students in the late 1960s and early
1970s. One of the most far-reaching was a set of tests conducted by
Bramhall [3], and which appeared only in his D.Phil. thesis, in
which very carefully controlled fatigue tests were carried out with
cylindrical pads pressed onto the surface, and subject to a shearing
force varying harmonically and synchronously with the tension in
the specimen. These tests exploit the well-known Cattaneo–Mind-
lin [5,6] solution for partial slip to give a defined slip regime where
the shearing tractions and magnitude of the relative slip displace-
ment are known explicitly at all points. One notable outcome of
those tests was a pronounced ‘size effect’. It was noted that if a
small contact were subject to a particular contact traction regime,
and then a second experiment conducted with the same tractions
and slip, but extending over a larger region, the latter would invari-
ably give a shorter life. These tests were repeated and extended by
Nowell [7], who found exactly the same property.

There have been several possible explanations for this effect put
forward (see e.g. [8]), but one can argue that none has been dem-
onstrated to be totally convincing. The intention in this paper is not
to provide a further candidate, but to describe the environment in
ll rights reserved.
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which the crack nucleates by an asymptotic form [9–11], and then
to display this as a suitable correlator of fatigue life [9,12]. Con-
cepts of threshold stress intensity are well known in plain fatigue
and one question which is explicitly addressed here is whether the
same, or a modified value, is appropriate for fretting nucleated fa-
tigue. If the threshold for plain and fretting fatigue is the same, this
provides evidence that fretting causes no additional damage to the
material through the action of rubbing; if the life is reduced then it
would follow that there would be no alternative, if threshold con-
ditions were to be found, to carrying out laboratory experiments in
the presence of slip.

2. Adhered asymptotes and their calibration

The central idea, here, is to specify the complete local state of
stress and slip displacement present at the edge of a contact by
two asymptotic forms; one for contact pressure, and one for shear.
Only incomplete contacts will be considered and, indeed, we shall
restrict ourselves to those which are sufficiently non-conformal for
each body to be capable of idealisation by a half-plane. The bodies
are also assumed to be elastically similar so that the effects of nor-
mal and shear loading are uncoupled; a normal load induces only
contact pressure and a shearing force or the application of bulk
tension, Fig. 1, induces only shearing tractions. We now ‘zoom in’
our field of view so that only the very edge of the contact, in the
neighbourhood where cracks nucleate, is within view. The local
contact pressure, p(t), can then always [9] be written in the form

pðtÞ ¼ KN

ffiffi
t
p
; ð1Þ
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Nomenclature

a contact semi-width
a0 critical length
c crack depth
C,C0 constants
d slip zone size
E Young’s modulus
f coefficient of friction
gij eigenfunction related to the spatial distribution of stres-

ses (in asymptotic form) induced by the normal load,
with i, j = x,y,z

hij eigenfunction related to the spatial distribution of stres-
ses (in asymptotic form) induced by the shearing load,
with i, j = x,y,z

i complex operator
J2 second stress deviatoric invariant
k yield stress in pure shear
KN generalised stress intensity factor for the normal trac-

tion distribution
KT,DKT generalised stress intensity factor and generalised stress

intensity factor range for the shear traction distribution
KQ

T generalised stress intensity factor for the shear traction
distribution due to the application of the shearing force

Kr
T generalised stress intensity factor for the shear traction

distribution due to the application of the remote bulk
tension

KI,DKI mode I stress intensity factor and stress intensity factor
range

KII,DKII mode II stress intensity factor and stress intensity factor
range

DKth threshold stress intensity factor
DKI,th mode I threshold stress intensity factor
DKII,th mode II threshold stress intensity factor
p contact pressure
po peak contact pressure

q shear traction
Q shearing force
R load ratio
r̂ r/d – normalised radial coordinate centred at the contact

edge
s spatial variable for frictional energy integration
t horizontal coordinate centred at the contact edge
tcycle time variable
t̂ t/d – normalised horizontal coordinate centred at the

contact edge
W maximum frictional energy
ŵ t/d + i y/d – normalised complex coordinate
x horizontal coordinate with origin at the centre of the

contact
y vertical coordinate with origin at the centre of the con-

tact
ŷ y/d – normalised vertical coordinate with origin at the

centre of the contact
d slip displacement
rN Muskhelishvili potential for the asymptotic form of the

normal tractions
rT Muskhelishvili potential for the asymptotic form of the

shear tractions
m Poisson’s ratio
h angular coordinate centred at the contact edge and

measured from the contact interface (positive anticlock-
wise)

ro bulk tension at the interface
r1 bulk tension applied to body 1
r2 bulk tension applied to body 2
rfl fatigue limit
rij direct stress components, with i, j = x,y,z
sij shear stress components, with i, j = x,y,z
n integration variable
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where t is measured inwards from the contact edge, zoomed-in in-
set to Fig. 1, and the constant KN is a geometry-dependent quantity
which may be found from the solution to the whole contact prob-
lem, Fig. 1, by shifting the origin and taking the lead term in an
expansion. For example, for a Hertzian contact of half width a,
and having a peak pressure po the contact pressure is semi-elliptical
in form

pðxÞ ¼ po

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=aÞ2

q
; ð2Þ

and the corresponding value of KN is

KN ¼ po

ffiffiffi
2
a

r
: ð3Þ

Suppose, for the time being, that the coefficient of friction, f, be-
tween the contacting bodies is sufficiently high to inhibit all slip.
It follows that, at the edge of contact, the shearing traction, q(t),
must be square root singular, and can therefore be represented in
the form

qðtÞ ¼ KTffiffi
t
p : ð4Þ

The calibration for the multiplicative constant does not, here, de-
pend on the contact geometry. If the half-width is a the application
of a shearing force, Q, generates a shearing traction, q(x), of the form

qðxÞ ¼ Q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p ; ð5Þ
and hence, at the trailing edge of the contact

KQ
T ¼

Q

p
ffiffiffiffiffiffi
2a
p : ð6Þ

If, instead, each body is subject to a bulk tension acting parallel with
the free surface, and the difference between the tensions,
ro = r2 � r1, the integral equation ensuring that the surface strains
are matched within the contact isZ a

�a

qðnÞdn
x� n

¼ pro

4
; ð7Þ

and this is readily inverted to give

qðxÞ ¼ rox

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p ; ð8Þ

so that

Kr
T ¼

ro

4

ffiffiffi
a
2

r
: ð9Þ

Again, this result is independent of the profile of the contact. A com-
ment on the sign of these quantities is appropriate: at the trailing
edge the shearing force acts to the right in body 1 – both it and a
dominant tension in body 2 produce a positive contribution to KT.
At the leading edge the same shearing force produces a negative
contribution to KT whilst the tension still produces a positive
contribution. Very close to the ends of the contact, both forms of
loading – a shear force and a difference in bulk tension – excite
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Fig. 1. Schematic of the fretting fatigue related contact problem and asymptotic characterisation (zoomed-in view of the trailing edge of the contact).
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the same response in terms of the local traction distribution and
therefore, over a length scale within which the tractions are appro-
priately represented by these asymptotic forms, so are the complete
stress fields.
3. Effect of finite friction

We now relax the requirement that the coefficient of fiction be
infinitely large, so that a small region of slip develops at the contact
edge. Providing that the coefficient of friction is not too small, or,
more exactly, the following inequality is satisfied:

KT

fKN
� a; ð10Þ

which ensures that the slip zone is very small compared with the
overall size of the contact, the asymptotic representations of the
tractions remain valid, and the slip zone size, d, is given by [10]:

KT

fKN
¼ d

2
; ð11Þ

whilst the shearing traction, q(t), is now

qðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
fKNKT

p ¼ 2½
ffiffî
t

p
�

ffiffiffiffiffiffiffiffiffiffiffi
t̂ � 1

p
�; ð12Þ

where t̂ ¼ t=d, and this shear traction distribution is also included in
the zoomed-in view of the trailing edge in Fig. 1, shown by the chain
line.
4. Process zone size

We define the ‘‘process zone’’ as the region in which non-linear
behaviour occurs, leading to plastic exhaustion, material damage
and, eventually, the nucleation of a crack. Precise details of the
irreversibilities are unknown and, at this scale, there is likely to
be significant localisation of stress by anisotropy of the grains. As
a first approximation, we take the process zone to be simply the re-
gion in which a classical bulk yield criterion is violated. It will
clearly be helpful to quantify the range of loads where the process
zone falls well within the slip region, and when it envelops it. To
this end, we note that we already have the Muskhelishvili poten-
tials for the problem. The contact pressure gives rise to a stress
field whose Muskhelishvili potential is

UNðŵÞ ¼
KN

ffiffiffi
d
p

2

ffiffiffiffî
w
p

; ð13Þ

where ŵ ¼ ðt=dþ iy=dÞ. We turn, now, to the shear traction, and
note that, for a shearing traction distribution given by equation
[12], the Muskhelishvili potential is given by

UTðŵÞ ¼ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fKNKT

q
½
ffiffiffiffî
w
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ� 1
p

�: ð14Þ

Using these definitions, we can develop an expression for the state
of stress in the following form:

rij ð̂t; ŷÞ ¼ KN

ffiffiffî
r
p

gijðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fKNKT

q
hijð̂t; ŷÞ; ð15Þ

where gijðhÞ; hijðt̂; ŷÞ are found from the Muskhelishvili potentials
and r̂2 ¼ t̂2 þ ŷ2. We may write this in a dimensionless form as
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rijð̂t; ŷÞ
KN

ffiffiffi
d
p ¼

ffiffiffî
r
p

gijðhÞ þ
fffiffiffi
2
p hijð̂t; ŷÞ: ð16Þ

It would clearly be possible to re-write the normalising magnitude
KN

ffiffiffi
d
p

in any number of different ways by using the identity for d.
The second deviatoric invariant for a plane problem may be written
down as

J2 ¼ r2
xx þ r2

yy þ r2
zz � ðrxxryy þ ryyrzz þ rzzrxxÞ þ 3s2

xy; ð17Þ

and, with this scaling, von Mises’ yield condition arises when

3k2 ¼ J2; ð18Þ

where k is the yield stress in pure shear. We will assume that a
state of plane strain exists and that Poisson’s ratio is 0.3. Level
lines of the normalised deviatoric invariant

ffiffiffiffi
J2

p
=KN

ffiffiffi
d
p

may easily
be found in the ð̂t; ŷÞ plane, and the only independent parameter is
the coefficient of friction, f. Fig. 2 gives contours of

ffiffiffiffi
J2

p
=KN

ffiffiffi
d
p

for
two coefficients of friction, f = 0.7,0.4. One particular noteworthy
result is that the normalised deviatoric invariant (and therefore
the yield parameter) at the surface is very nearly constant across
the slip region, as shown in more detail in Fig. 3, for a sensible
range of coefficients of friction. By replacing

ffiffiffiffi
J2

p
by

ffiffiffi
3
p

k and
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Fig. 2. Contours of the normalised deviatoric invariant,

ffiffiffiffi
J2

p
=K
inverting, these contours represent an estimate of the location of
the plastic front, for particular values of KN

ffiffiffi
d
p

=k, again for various
values of the coefficient of friction. Note that we expect the sever-
est state of stress to lie at the contact (trailing) edge only if the
coefficient of friction exceeds a certain critical value. For a Hertz-
ian contact this is about 0.26. In most fretting fatigue experiments,
although the initial coefficient of friction may be relatively low, at
about this threshold value, it invariably quickly rises and is usually
about 0.5–0.7 (at any rate well above the value where the severest
state of stress migrates to the surface), in the steady state.

This means that the value of the load at which the contact
starts to go plastic (elastic limit) is only very slightly less than
that at which the whole slip region yields (at least for moderate
and large values of the coefficient of friction) as shown in Fig. 4;
it follows that, if the load is sufficiently severe to cause local
yielding the plastic region almost certainly envelops the slipping
region, and the contact edge experiences a strain field controlled
by a square root singular mode II asymptote, and hence be quite
similar to a mode II loaded crack in nature. The same figure in-
cludes ‘spots’ which show where various sets of experiments
conducted lie with respect to the yielding condition, and these
will be discussed in detail in Section 5.
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Turning to the fitting of the asymptotic (near-edge) solution de-
scribed to particular example geometries, we require to scale the
generalised stress intensity factors. For the shear traction this is
geometry independent, and is given by

KQ
T

k
¼ Q

2ak

ffiffiffiffiffiffi
2a
p

p
þ ro

k

ffiffiffiffiffiffi
a

32

r
; ð19Þ

and, for the particular case of a Hertzian contact, the calibration for
the contact pressure solution is given by

KN

k
¼ po

k

ffiffiffi
2
a

r
¼ P

pak

ffiffiffi
8
a

r
; ð20Þ

and these were employed in determining the locations of the ‘spots’
included in Fig. 4, together with a calibration for a ‘flat and rounded
edge contact’ (denoted FR in the figure), which is rather more com-
plicated in form and described in Appendix A. We now set out the
three candidate quantities for correlating fatigue crack nucleation
under incomplete contacts, but before doing so we will list the
sources of the experimental data used.
5. Experimental data

The correlations to be presented have used most of the known
publicly available experimental results for fretting fatigue
strength. We are particularly grateful to our colleagues – Prof Far-
ris, Dr. Murthy, Dr. Szolwinski – who were at the time, working at
the University of Purdue, for making available to us the data they
have published on the fretting fatigue strength of an aluminium
and titanium alloy, viz., [13–15], and single crystals of nickel
[16]. This supplements data from our own laboratory on alumin-
ium alloy HE15TF found by Nowell [7] and Titanium–6Al–4V [9],
and some data obtained by the US Air Force Research Laboratory
at Wright Patterson [17,18]. Although many data sets are obtained
using the classical Hertzian configuration, part of the database



Table 1
Material properties obtained from Refs. [7,9,13–20] for the analysed database of fretting fatigue experiments.

Material Young’s modulus E (GPa) Poisson’s ratio, m DKth (MPa
p

m) rfl (MPa) k (MPa) f Refs.

Al alloys 74 0.3 2.1 124 270 0.65–0.75 [7,13]
Ti6Al4V 115 0.3 4.5 500 550–650 0.5–0.65 [9,14,15,17,18]
Nickel 200 0.31 7.9 450–500 600 0.2 [16,19,20]
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comprises data from experiments performed using ‘flat and
rounded’ pads, and the calibration for KN for this geometry is given
in Appendix A (as stated). The independently measured material
properties – stiffness, plain fatigue strength and thresholds – as-
sumed for these materials and used in the subsequent analysis
are reported in Table 1 [7,9,13–16,18–20], where DKth is the
threshold stress intensity factor and rfl is the fatigue limit.

Fig. 4 displays the normalised magnitude of the load employed
in the sets of tests just cited. The plot includes two contours derived
from the calculation described earlier to find the load at the onset of
plasticity – the elastic limit, and also the load at which the plastic
region envelops the slip zone. We remind the reader that the
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difference between these loads is significant only at small values
of the coefficient of friction. One of the features of the tests which
surprised us is that, in many cases, the loads employed were rela-
tively high. In particular, many of Murthy’s tests were conducted
at loads well above those where some plasticity might be antici-
pated, and any process zone involved in these experiments is likely
to be large. We have therefore not included Murthy’s results (and
some other highly loaded cases) in our subsequent analysis, as it
would not be reasonable to expect that a solution procedure which
hinges on the process zone being small compared with the domain
of validity of the asymptote, itself a small fraction of the contact
width, to display the sequence of nesting required in these cases.
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)
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We now describe three possible quantities each of which may be
a candidate for controlling the nucleation of fretting fatigue cracks.

6. Classical stress-controlled fatigue

The simplest way to portray fatigue data is using the classical
‘S–N’ approach first developed by Wöhler about 130 years ago. This
works well in plain fatigue and has been successfully applied as a
design tool in its original form by many engineers to solve prob-
lems characterised by weak or no size effects and in the absence
of large stress gradients. Here, we interpret ‘S’ as the stress at the
trailing edge of the contact, and, within the context of the asymp-
tote, note that rxxð0;0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fKNKT

p
. Fig. 5 shows plots of the fati-

gue life correlated in this way. Not surprisingly, there is a very
considerable spread of results, because all size information is ab-
sent from this analysis, and this is known to be of great impor-
tance. A more detailed commentary on the quality of correlation
will be provided later.

One simple way of using essentially the same information, but
incorporating a simple length scale derived not from the experiment
but principally from intrinsic material properties, is to use the ‘go-no-
go’ criterion for crack nucleation developed by Kitagawa and
Takahashi (K–T) [21], which provides a means of predicting
whether a very short crack will develop and eventually propagate
(see Fig. 6, red1 curve). The original paper should be consulted for
details, but the essential idea is that nucleation is assumed to end,
and long crack propagation starts, when the embryonic ‘crack’
reaches a critical length, a0, and, therefore, short crack arrest takes
place if the DKI trajectory as a function of the crack length falls be-
low the threshold (see shaded area in Fig. 6). It has been applied to
fretting fatigue problems by Nowell and others [22–24], but princi-
pally in the context of a Cattaneo–Mindlin contacts. The first step in
implementing within the asymptote is to determine the crack-tip
stress intensity factor for a crack, of depth c, normal to the surface,
and which we will assume forms at the contact edge, Fig. 1. Most
cracks are observed to start either precisely at the edge of the
contact, or slightly within the slip zone. Also, cracks may start in
‘Stage I’ (as Forsyth called it), and therefore be angled [25], but, in or-
1 For interpretation of colour in Figs. 2–10, the reader is referred to the web version
of this article.
der to reduce the number of independent variables, we will assume
that the crack grows normal to the free surface. The crack tip stress
intensity factor may readily be found using the distributed disloca-
tion method [26,27]. Note that, instead of using a description of
the stress field appropriate to finite contacts, we shall assume that
the critical distance is comparable with the slip region length
(d � a0), and so the surface tractions driving nucleation are ade-
quately described by the asymptotic form. This restricts the cases
which may be covered but, at the same time, it also means that
the results obtained may then be applied to any incomplete contact.
It also means that the solution is dependent on the coefficient of fric-
tion, f, and the ratio c/d only. Typical results of the trajectories
describing the evolution of DKI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KNKTd

p
with the normalised crack

length are displayed in Fig. 6 (black curves).2 We are now in a
an R = �1 and an extra dependent variable would need to be considered to account
r the lack of symmetry of the loading history. However, detailed calculations show
at there is only a weak dependence on the evolution of the threshold trajectories
ith R.
ca
lo
th
fo
th
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position to determine the boundary between long crack propagation
and short crack arrest (which we deem to be safe in terms of design
against fatigue failures). In the K–T procedure, the critical length ao is
the point at which the threshold stress intensity, DKth, is achieved
when the driving stress is given by the fatigue limit, rfl, i.e.

DKth ¼ rfl
ffiffiffiffiffiffiffiffi
pao
p

: ð21Þ

Looking at the critical trajectory in Fig. 6, the boundary between
long crack propagation and crack self-arrest is achieved when the
trajectory passes through point A. We therefore set DKI = DKth,
and c = ao and, after some manipulation, we obtain the fatigue
threshold implied by the application of the K–T procedure using
the asymptotic description. This is shown in Fig. 7 for different val-
ues of the coefficient of friction, which becomes the only variable
governing the curves in DKT/DKth vs. DKthKN=pr2

fl space. These are
valid for any incomplete contact whose stress and displacement
fields can be captured by the asymptotic description proposed by
the authors. The thresholds have been re-plotted in Fig. 8 (a–c)
using the friction values for the experimental data reported in Ta-
ble 1; the graphs now include ‘spots’ which show the condition
present in the various experiments being used; a triangle is used
when the specimen did not fail and circle and squares when failure
occurred before 106 cycles. It may be seen that the short crack
growth procedure satisfactorily predicts this boundary, but this is
not surprising as the same result was found for the Cattaneo–Mind-
lin problem for both fully reversing loads [22] and arbitrary load ra-
tios [9]. The advantage of the current form of the solution is that
Fig. 7 is completely general and may be applied to any geometry
– indeed some of the experiments here employed the ‘flat and
rounded’ type of pad, and these have been satisfactorily correlated
with the Hertz case.
7. Threshold based on a mode II crack-tip field

The form of the results displayed above clearly shows the
inadequacy of the state of stress alone as a predictor of the fretting
fatigue performance. The hybrid K–T method satisfactorily gives
the finite/infinite life boundary, but cannot help us to predict the
component life when it is finite (unless something is assumed
about finite life thresholds or they are experimentally determined).
This observation was one of the principal prompts for developing
the asymptotic forms, which include size (or equivalently, stress-
gradient) information. Clearly, both the normal and shear tractions
have an influence on the local state of stress, but the contact pres-
sure contribution is (a) constant in time and (b) has a negligible
influence at the contact edge itself. The shear traction, on the other
hand, reverses in sign and has an influence even at the contact
edge. The form of the traction distribution depends also on both f
and KN, unless the process zone is so large that it envelops the en-
tire slip region, and we know that this is not, in some of the exper-
iments conducted, so. It is therefore an approximation to suggest
that the range of stresses experienced at the contact edge is con-
trolled by the range of KT, but it is worthwhile at least to consider
DKT as a possible correlator of fatigue lives, and we would expect
this approximation to be best when the process zone is relatively
large, so as to exceed the slip region in extent, although not, of
course, so large that small scale yielding conditions do not apply.

In Fig. 9 a life correlation based on DKT is shown, for the
different materials and with all the data we have available. The
characteristic curves clearly shows a lot less spread than using
the stress range, and the runout condition is also properly por-
trayed. It will be recalled that our original definition of KT was
for an adhered contact, so that the contact edge displays an implied
square root singularity in stress. This is, of course, of the same or-
der as the crack tip stress field, and with a similar local field. It fol-
lows that the stress field at the contact edge, at any rate under
conditions of near adhesion, are very similar to those at the tip
of a crack subjected to mode II loading. It further follows that the
threshold for growth of a mode II crack might actually apply to
nucleation conditions at the contact edge, and we now explore this.
With this in mind, in Fig. 9 we have also included a line showing
the mode II crack threshold, estimated as DKth

II ¼ 0:8� DKth
I (see

e.g. [28,29]); this value is obviously not universal but helps provid-
ing a direct comparison between the threshold identified using DKT

as a correlator for fretting fatigue lives and more conventional
mode II crack thresholds for plain fatigue. The aim of this compar-
ison is to check if DKth

I can be used as a threshold for DKT; being
able to do so would enable design against fretting to be obtained
using only plain fatigue data. One of the difficulties we have had
in carrying out these correlations is in ensuring that the basic
materials data we have used is correct – in many cases we could
not find, in the open literature, the precise values we needed for
a particular material. One of the biggest problems is in obtaining
a threshold (plain) fatigue crack stress intensity which has been
measured at the same R-ratio as that present in the fretting test.
For example, the experimental results reported in Dini [9] have
been performed using an initial tensile bulk stress that offsets
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the equivalent load ratio to R = 0.5–0.6. The R ratio at which the
threshold was measured quoted in the table was �1, and this sug-
gests that a reduced DKth

II should be applied to Dini’s results. This is
displayed in Fig. 9c as a ‘reduced DKII

th’, and illustrates the difficulty
in carrying out these correlations with an incomplete set of data.

8. Frictional energy expenditure density

The principal objection to the above correlation is that the influ-
ence of both f and KN were ignored: of course, in the experiments
the contact pressure, and hence KN were kept constant, so that they
relate to a static stress field, and hence one which does not, in it-
self, produce damage, because it should be recalled that the
asymptote was developed under conditions of, as a first estimate,
full adhesion (and this is a necessary step so that the effects of a
shearing force and bulk tension can be consistently treated), so
that the coefficient of friction might be regarded as a further con-
trolling parameter, unless the process zone bridged the slip region.3

An alternative quantity which might sensibly be used to correlate
nucleation life is the magnitude of the density of irreversible fric-
tional energy expended within the slip region. Note that this is a
pointwise quantity and has a maximum value towards the centre
of the slip region [30]. For a monotonically increasing shearing force
(and hence KT), the maximum frictional energy expended per unit
area at the steady-state can be expressed as:

W ¼ C
Kmax 2

T

KN

ffiffiffi
d
p ¼ C

Kmax 2
T

KN

ffiffiffiffiffiffiffiffiffi
2KT

fKN

s
¼ C0

Kmax 5=2
T

fK3=2
N

; ð22Þ

where C0 can be found by performing the following integration as
described in [30]: W ¼

R
cycle qðs; tcycleÞddðs; tcycleÞ, where d is the slip

displacement at every point in space, s, and time, tcycle, during the
loading cycle. Analytical (as done for an example case in [30]) or
numerical integration can also be performed to obtain the evolution
of the slip displacements during the entire cycle for different load-
ing scenarios. This allows closed form analytical or equivalent
numerical solutions to be determined for all experimental cases;
we have therefore extended the range of the previous solution,
and now give the calibration constant, C0, for all conditions. A plot
of correlated lives using this quantity is shown in Fig. 10.

The results of this correlation differ in character from those ear-
lier, because in each of the other possible criteria there is, existing,
some threshold information obtained by independent experiment
– rfl for the S–N curve, rfl and DKth for the K–T procedure, and DKth

alone for the ‘mode II crack’ method – whereas here we have no
pre-existing materials data available. We are therefore free to
choose the threshold condition for infinite life, and have inserted
what seems to be the best choice in Fig. 10a for the aluminium al-
loy, (b) for the titanium alloy cylindrical pads and (c) for the tita-
nium alloy flat and rounded ends pads. This correlation has met
with mixed success; in each case, the tests are correctly ranked
with little spread and few outliers; and, the cut-off threshold is
very distinct. What is difficult to explain is why the two sets of re-
sults for the titanium tests do not compare better with each other.
The whole thesis of using an asymptotic form to capture the
threshold condition is that such form should be capable of colloca-
tion into a wide range of possible geometries, and it is disappoint-
ing that the two sets of tests on titanium apparently give markedly
differing thresholds. One possible explanation for this could be that
the length scale inherent in the asymptote does not, here, figure in
the final quantity being employed, viz. the maximum frictional en-
ergy expenditure per unit area, which arises only at a spot. All
3 Note that a process zone in a monolitic material and an equivalent zone bridging
a slipping interface differ in that in the latter there is a line (the interface) along which
frictional as well as plastic slip may occur.
information concerning size effects is, in this sense, lost again here;
however, if the calculation is extended to find the total frictional
energy dissipated per loading cycle (which contains information
about the extent of slip and therefore includes the asymptotic
length scale), the results show the same trends seen in Fig. 10
but not included here. It is argued that, although larger values of
energy dissipation at the contact interface might help promote
crack nucleation [31], the frictional energy expenditure is in reality
more directly linked to the tendency of the surfaces to wear [32]
rather than to initiation of the fatigue process. This in turn seems
to be controlled (at least in the cases analysed here, which are
characterised by very low wear) by the stress and strain fields in
the proximity of the contact edge, which the asymptotic descrip-
tion correctly captures, as shown in the previous sections. It is
envisaged that the frictional energy dissipation density will indeed
provide a good correlator for fretting wear tests as already sug-
gested by others working in the field (see e.g. [32]). The use of
the asymptotic approach proposed by the authors provides a rapid
tool to characterise this in closed form and its potential application
to fretting wear tests will be explored in future contributions.
9. Discussion and conclusions

This paper has considered in detail the nature of the contact
edge stress field for incomplete contacts capable of description
by half-plane theory, and how it might affect crack nucleation life
under fretting conditions. We have taken as our starting point the
work on asymptotic representations of the local field already dis-
covered, and added further properties relevant to the nucleation
process. These results have been used to form four potential corre-
lators of fretting fatigue crack nucleation lives: the first is the obvi-
ous one of stress range at the critical point. This is the most obvious
choice based on classical S–N (Wöhler) principles. It is clearly poor,
because all size effect information is neglected. The K–T approach
to determining the threshold for crack nucleation, and which
bridges classical fatigue and fracture mechanics principles was also
used, and this was shown satisfactorily to predict the boundary be-
tween finite and infinite life. This results is a generalisation of that
already found for a Hertz contact, and provides, in the form dis-
played in Fig. 7, a usable design tool for the avoidance of fretting
failures.

Two further correlators of nucleation lives were then intro-
duced, based solely on the multipliers of the asymptotic solutions:
the first is simply an approximate correlation of the reversing
stress field due to shear loading, and seems very satisfactorily to
collapse the experimental data; it also captures size information
inherent in the experimental contact very well. The second is based
on the quantity controlling nucleation being the maximum density
of irreversible frictional energy expenditure.

It is worth emphasising that the procedures described involve
no ‘fitting parameters’ or volume averages. In all cases the possible
controlling variable correlates at least reasonably well with the
number of cycles to failure, and provides some kind of trend, of
varying quality. In the case of all but the energy correlation, there
is also some pre-existing materials data with which the quantity
may be compared – and obtained from plain fatigue theory. This
prompts the obvious question ‘Does fretting exacerbate or amelio-
rate nucleation conditions compared with a plain problem?’ Prima
facie, it would seem that both the K–T and DKT methods suggest
that the effect is quite neutral. This might be due to the fact that
most of the experimental results collated and used in the present
contribution were designed to study partial slip fretting configura-
tions where only a very limited amount of wear takes place and the
fatigue phenomenon is almost entirely controlled by the stress
concentration and the stress and strain gradients at the contact



74 D.A. Hills et al. / International Journal of Fatigue 43 (2012) 62–75
edges [33]; it also explains the partial success that conventional
multiaxial fatigue approaches have met in predicting fretting lives
in most of the work carried out by different groups around the
world (see e.g. [34,16,35]). A further characteristic of the asymp-
totic correlators used here is that, whereas the asymptotes used
in the K–T and DKT methods incorporate stress gradient or size
information (particularly in the latter approach), they do not func-
tion in this way in the energy density approach. It should be also
highlighted that since the accumulated frictional energy dissipated
at the contact interface plays a fundamental role in assessing fret-
ting wear damage, the closed form solutions developed by the
authors can be easily implemented to study the interplay between
wear and fatigue damage and, therefore, can be used to develop
predictive tools for scenarios where these two mechanisms cannot
be decoupled and only semi-empirical parameters are available to
provide estimate of damage [31,36].

Finally, it should be pointed out that the asymptotic descrip-
tions formulated can also potentially be incorporated in numerical
tools (as super-elements in FEM or BEM formulations) and/or be
used for fast assessment of fretting fatigue life using conventional
multiaxial criteria. Furthermore, the asymptotic formulation could
also be used as the starting point to incorporate other properties
relevant to the nucleation process that have been neglected in
the present contribution, e.g. material microstructure and localised
plasticity at individual grain level [37]. It is envisaged that by add-
ing microstructural details [39] and considering plasticity and
damage at the microscale (see e.g. [38]) would help shedding light
on important issues, such as microstructural sensitivity [40] and
the importance of material-inherent length scales. The first step
to be performed in this direction is the direct comparison between
the region of validity of the asymptotic solution an the character-
istic grain sizes of the materials tested. The lack of microstructural
data for the majority of the test series considered in this article
does not allow this comparison to be performed; however, the sys-
tematic study of the role of microstructural features in the assess-
ment of fretting fatigue performance within the asymptotic
framework will constitute the object of future investigations.
Appendix A. Calibration for asymptote KN for rounded edge
contact

The contact pressure for a radiused semi-infinite flat and
rounded punch characterised by the edge radius R, can be written
as [41]:

pðxÞ ¼ 3KN

4
ffiffiffiffiffiffiffiffiffiffiffiffi
a3

round

q 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xaround
p

þ ½x� around� ln
ffiffiffiffiffiffiffiffiffiffiffiffi
around
p �

ffiffiffi
x
p

ffiffiffiffiffiffiffiffiffiffiffiffi
around
p þ

ffiffiffi
x
p

����
����

� �
; ð23Þ

where around is the radiused portion of the contact and can be found
from [42], E⁄ = E/[2(1 � m2)] for elastically similar materials, and KN

can be defined as:

KN ¼
�2E�

ffiffiffiffiffiffiffiffiffiffiffiffi
a3

round

q
3pR

: ð24Þ

If t/around� 1, the pressure varies in the forum pðtÞ ¼ KNffiffi
t
p . If the

observation point is very close to the edge of the contact, 0 < t/
around� 1, the pressure varies in the form:

pðtÞ ¼ 3KN

ffiffi
t
p

around
: ð25Þ
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