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Abstract: Short-pitch corrugation (30–80 mm in wavelength) in railways, despite being well
known since the early days of the railways because of its criticality in producing damage, ‘roaring
rail’ or ‘howling wheel’ noise, and indirectly rolling contact fatigue, is considered an enigmatic
phenomenon. In fact, most available data seem to show a non-linearly increasing wavelength
with speed, and an almost fixed wavelength, while most models based on system resonances
predict a fixed frequency. More enigmatic still, many data points fall in a range of frequencies
where there is no evident resonance in the wheel–railtrack system (the large gap between the
low frequencies resonances from 50 to 300 Hz and the very high pinned–pinned mode reso-
nant frequencies which correspond generally to 850–1100 Hz in railways. Yet the most common
classifications of corrugation continue to associate corrugation to frequency-fixing mechanisms.

Johnson’s early studies on the Hertz normal spring resonance suggest that plasticity-based
repeats impact mechanism, or differential wear mechanism both seemed to be not appropriate
to explain short-pitch corrugation. In particular, longitudinal creepage (obviously associated
with braking or acceleration very common on uphill grades, near stations, but also in curves
where profiles provide insufficient steering capability) seemed to act to suppress corrugation,
rather than promoting it, as suggested in the model of Grassie and Johnson. Only a few, very
comprehensive models that include all the relevant receptances consider the effect of wheel
inertia: indeed, these models indicate many possible corrugation regimes and, in particular,
point at lateral creepage mechanisms at the pinned–pinned resonant frequency as giving much
larger growth than longitudinal creepage, so the possibility of a corrugation regime independent
of wheelset or railtrack resonances has largely remained hidden, despite it being present in some
results.

In this paper, a simple model that returns to a pure longitudinal creepage mechanism is
suggested, showing that it is essential to include the rotational dynamics of the wheel in the
system, similar to Grassie and Johnson’s model. In particular, a simple full-stick Winkler-contact
mechanics model can estimate the effect of transient contact mechanics. For typical inertias,
the conditions are closer to the constant tangential load (which is the correct limit at zero speed
anyway) and seem to explain the basic features of wear-induced instability in the existing exper-
imental data. For larger inertias, which may also be possible for heavy wheelsets, the model
predicts results closer to Grassie and Johnson’s assumption of constant creepage, i.e. only a lim-
ited range of possible short-pitch corrugation. The model also suggests that although the growth
of corrugation depends strongly on the amplification of the normal load, the wavelength of this
mode of corrugation depends very little on the vertical resonances of the systems, so that it would
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persist even in a model with no resonance altogether. It is possible that the exact frequency of this
regime depends on the details of the contact geometry, here simplified using the Winkler model.

Finally, a reason why this mechanism of longitudinal creepage corrugation, despite perhaps
giving 10–20 times apparently lower growth than lateral creepage, may indeed be the correct
mechanism to interpret the classical data, is that longitudinal creepage can be 10 times higher
than lateral (5 per cent instead of 0.5 per cent), and as corrugation growth is proportional to
square of creepage, there is a factor 100 that largely compensates for this. There is still some
progress to be made to obtain a reliable model to compare the various regimes, but clearly this
regime should be considered when devising remedies to corrugation.

Keywords: corrugation, transient non-linear dynamic, perturbation, railways

1 INTRODUCTION

The application motivating this investigation is the
study of ‘corrugations’ on the running surface caused
by the action of the railways wheels, a phenomenon
that has been observed throughout railway history,
but not fully understood [1], particularly for short-
pitch rail corrugation (‘roaring rails’) in the range of
20–80 mm wavelength, which seems to show a con-
stant wavelength or a non-proportional increase of
corrugation wavelength with increasing train speed.
This common belief comes from the large amounts
of data available in BR reports of 1911, in David
Harrison’s thesis [2], a figure from which is reproduced
in the well-known paper by Grassie and Kalousek [1],
and in the more recent paper by Bhaskar et al. [3],
adapted here in Fig. 1.

In Harrison’s data are particularly surprising
because they seem to suggest an almost ‘fixed wave-
length’, whereas the other results are linear in the given
range, and do not start from the origin, suggesting
perhaps some non-linear effect, or a threshold.

An important study was that of Grassie and Johnson
[4], which despite using a simplified two-dimensional
formulation and a ‘Winkler’ model for the contact
problem, contained quite a few features and hence
would be expected to give qualitatively reasonable pre-
dictions. However, unfortunately, one assumption was
made that the authors of the current paper believe was
critically incorrect: that longitudinal creepage would
be constant, perhaps based on the more reasonable
assumption that the large mass of the vehicle would
make its speed constant. Grassie and Johnson found
no mechanism for corrugation in the range of interest
of Fig. 1 and actually suggested that this could be a
mechanism for suppression of corrugation.

In many later studies, the models introduced many
detailed improvements, although those modifying the
assumption of constant longitudinal creepage gener-
ally include so many other effects that it is difficult
to distinguish the relative roles of each, and the
investigations are generally relative only to a special
system under a certain range of conditions, so that the

simplicity of the original Grassie and Johnson model
to identify the main relevant features was lost.

For example, Frederick [5] introduced an elegant
perturbation analysis via complex transfer functions,
which makes it simple to check if the phase of the
maximum dissipation would produce amplification
of the original corrugation in the frequency range
of interest. He studies both lateral and longitudinal
creepage assuming for the wheel receptance the same
concentrated mass model, similar to what is done
in this paper, so the main difference between lat-
eral and longitudinal creepage is the receptance of
the rail (a pure damper longitudinally and a quite
flexible structure laterally). The results show a dom-
inant lateral creepage mechanism at pinned–pinned
resonance, but also other possible regimes, includ-
ing one with longitudinal creepage not corresponding
to a resonance (at about 750 Hz) and only active
above sleepers. It must be said that Frederick’s model
assumes a wear parameter that is not energy dissi-
pation but more simply the Clayton creep-force one,
and that it shows results only for a quite high veloc-
ity (40 or 60 m/s) and restricted to frequencies above
300 Hz, whereas here the entire range of velocities
and frequencies is investigated. Also, the assump-
tions of saturated creep changes the relative effects
of fluctuation of creepage and tangential force with
respect to the more general condition at small creep-
age in the linear regime. A similar assumption is made
here.

It must be also said that while many authors con-
sider the wheelset resonances very narrow, perhaps
removing them from the analysis, they are less cau-
tious when dealing with the pinned–pinned reso-
nance, which is also quite delicate to deal with – an
error in the damping factor may easily change the
amplitude response, and also the different pattern
of corrugation along the sleeper bay is not always
observed. Also, despite that the presence of the peri-
odic structure does seem to trigger the corrugation
mechanism [5], the pinned–pinned resonance fre-
quency is not as frequently observed as the data in
Fig. 1 suggest.
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Fig. 1 Experimentally observed variation of corruga-
tion wavelength with speed – adapted from
Bhaskar et al [3]. Superposed are the constant fre-
quencies of 300, 1100, and 1700 Hz, which some
authors indicate as the resonances of the system
which should justify corrugation

Tassilly and Vincents [6, 7] further developed
Frederick’s model, applying it to the Paris metro
system, and also adding the low-frequency resonances
including the wheelset ones experimentally measured.
In this case, there are few possibilities to attribute
corrugation to one of these resonance frequencies,
but ultimately they found predominantly transver-
sal wear on the leading wheelset corresponding to
its first bending mode (a lateral mechanism), and
longitudinal wear on the rear one, related to the first
torsional mode of the wheelset. Tassilly and Vincent’s
‘case 3, corrugation on a concrete track’, however, does
show a possible regime of corrugation independent
of resonances. Elkins et al. [8] found that the 300 Hz
(second) torsional resonance for the wheelset may be
responsible for some types of corrugation.

The effect of discrete sleepers is also included by
Hempelmann [9] (see also reference [10]), who use
a linearization over the full non-linear model for
creepage law, and return to the energy dissipation
parameter. They also include sophisticated numerical
treatments developed to deal with transient contact
effects by Gross–Thebing [11]. Unfortunately, they
neglect longitudinal creepage, so have receptances
only in the lateral direction. Similarly to Frederick,
they find corrugation growth in almost the entire
range from 0 to 2000 Hz (except at the pinned–pinned
resonance) at midspan, whereas above sleepers they
found a regime around the 350 Hz (which was
500–600 Hz in Frederick’s study) and more impor-
tantly at the pinned–pinned resonance frequencies
and higher where the magnitude is much higher
than the other regime. Only the presence of the
pinned–pinned regime has generally been considered

as Hempelmann’s results∗, and not the underlying
mechanism for growth clearly not associated to res-
onances of the system – which may perhaps be the
only left in a system with continuously laid track, or
when longitudinal creepage is considered instead of
lateral, especially as longitudinal creepage is gener-
ally much larger than the lateral (see in particular
the illuminating discussion which is a part of the
Hempelmann and Knothe 1996 paper by Frederick).
Moreover, even if is assumed that growth initiates at
the sleepers, probably the process continues through
a continuous range of wavelengths depending on posi-
tion. The large collection of data in Fig. 1 could not be
explained by the pinned–pinned range which for prac-
tical speeds is concentrated in the 20–30 mm range,
but could also be the result of some averaging. How-
ever, it is very likely that longitudinal creepage plays
a role; for example, Vancouver SkyTrain’s short-pitch
corrugation was largely unaffected by sleeper spacing
[3]. So why could Grassie and Johnson’s model not find
such a mechanism?

In principle, Muller [12, 13] extends the
Hempelmann model. However, he omits the dynamic
motion of wheel and tends to find agreement with
Hempelmann’s results, suggesting mainly pinned–
pinned resonance corrugation, with perhaps other
secondary regimes at 300 and 1700 Hz, as indicated
in Fig. 1 with the three lines clearly not sufficient to
explain the experimental values.

The conclusion of Grassie and Johnson [4] that
longitudinal creepage would more likely suppress cor-
rugation than promote it in the short-pitch range
was never really reassessed, as Hempelmann had
neglected longitudinal creepage, and although some
authors do include wheelset receptances (Frederick,
Tassilly and Vincents, etc.) and seem to indicate lon-
gitudinal creepage mechanisms, it is a little unclear if
these are necessarily to be associated to resonances of
the system or not.

Bhaskar et al. [3] also looked at the problem, but
from a different perspective of spin-creepage corruga-
tions as a result of closely conformal wheel and rail
profiles. They quite honestly do not seem happy with
the prediction of their model, which however neglects
wheelset receptances (and hence all inertia effects)
and otherwise could have been compared with that of
Hempelmann [9], and Hempelmann and Knothe [10].

In the present paper, returning to the simple case
of longitudinal-creepage and reconsidering the anal-
ysis of Grassie and Johnson [4], the assumption of

∗A second regime is suggested by Hempelmann and Knothe between

200 and 450 Hz regime for systems with high pad-stiffness. This

must be the regime considered in Hempelmann’s original thesis [9]

whose chapter 7 rather points at corrugation being highest in the

regimes of 400 and 1450 Hz.
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constant longitudinal creepage is substituted by, the
rotational inertia of the wheel. It is demonstrated that
this simple modification is sufficient to make predic-
tions that are quite close to experimental observations.
The attempts of more sophisticated models should
therefore perhaps introduce longitudinal creepage,
unless there is clear evidence of its absence, and con-
sequently of wheel inertia and rotational dynamics.

2 THE MODEL

A simple model very close to that of Grassie and
Johnson [4] is attempted here, but including wheel
inertia and using a linear perturbation approach.
The Winkler or wire-brush model assumes that
the tangential tractions are proportional to the
displacements

q = kqux (1)

where kq is a Winkler modulus which must be chosen
by some best-fit criterion. This leads to a consider-
able simplification, since all coupling effects leading
to integral equations are eliminated. All other aspects
of the model are simplified as much as possible,
since the paper seeks merely to demonstrate that the
effect of wheel inertia is critical to the generation
of a regime of corrugation – which has so far has
escaped attention – and which here is found only with
qualitatively realistic predictions. In particular, atten-
tion is restricted to two dimensions and the model
used, taken from the literature and representative
only of an intercity track, describes the rail dynam-
ics. Clearly these approximations are very restrictive
and exclude many effects, such as the pinned–pinned
resonance due to sleeper spacing, interaction of adj-
acent wheelsets, three-dimensional (lateral) effects: all
these effects may be more able to generate alterna-
tive regimes of corrugations. A quantitatively accurate
model which could assess the relative importance of
all these modes has so far not been produced. Hence,
the present model is introduced to produce evidence
of the regime of corrugation which depends on only
a few geometrical and one loading parameter (mean
normal load), making the qualitative effect of these
parameters easy to assess.

It is assumed that the vehicle is moving to the
left at constant speed V , so that the wheel is rotat-
ing counter-clockwise at some speed �. A rigid-body
velocity V is superposed to the right, bringing the cen-
tre of the wheel to rest, and causing the rail to move
at speed V to the right. Assuming that the vehicle is
braking, the friction force on the wheel opposes the
direction of motion V and hence is to the right, and
the braking torque B opposes the direction of rota-
tion, as shown in Fig. 2. This figure also shows the

Fig. 2 The wheel-rail contact point and coordinate
system

sign convention for the coordinate x and for the elastic
displacement ux of a point on the wheel in the contact
zone.

If there was no elastic deformation, the velocity of
a point on the wheel in the contact region in the
x-direction would be �R. However, the steady-state
tensile strain ∂ux/∂x and the elastic displacement vari-
ation in time add so that the rightward velocity of a
point on the wheel is

vx =
(

1 + ∂ux

∂x

)
�R + ∂ux

∂t
(2)

All the elastic deformation in concentrated in the
wheel, which means that an equivalent modulus for
the wheel is used treating the rail (or the surface) as
rigid. In that case, points on the rail move at constant
speed V and a slip velocity

ṡx = V − �R − V
∂ux

∂x
− ∂ux

∂t
(3)

can be defined in the direction that points on the rail,
slipping to the right relative to the wheel. Further, sup-
pose that the coefficient of friction is sufficiently high
to prevent slip occuring anywhere: ṡx = 0 and hence

V
∂ux

∂x
+ ∂ux

∂t
= V − �(t)R (4)

The wheel may not spin at a constant rate due to rota-
tional dynamics and it is assumed that �(t) is a known
function and, in fact, it will typically have the form

�(t) = �0 + �1 exp(ıωt) (5)

The general solution of equation (4) is

ux(x, t) = f (x − Vt) + Vt − �0Rt + ı�1R
ω

exp(ıωt)

(6)

where f is any arbitrary function of (x − Vt). This func-
tion is determined in practice by the conditions at the
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leading edge of the contact, where the instantaneous
state of the surface is ‘locked-in’ to a state of stick.

For the boundary condition, it is assumed that
the shear traction at the leading edge is zero, i.e.
qx(−a) = 0, and hence in view of the Winkler founda-
tion

ux(−a, t) = 0 (7)

at all times t .
Notice that in a full three-dimensional elasticity

solution, there will be tensile strains ahead of the con-
tact and hence the elastic displacement at the leading
edge will be non-zero. However, the Winkler assump-
tion is the basis of the ‘simplified’ theory of Kalker [14]
and also of his numerical algorithm‘FASTSIM’ [15] and
has been shown to agree quite well with the more exact
theory in other respects.

In the steady state, there is no dependence on t and
�1 = 0. Then

f (−a − Vt) + Vt − �0Rt = 0 (8)

Writing η = −(a + Vt); t = −(a + η)/V , then f (η) =
(V − �0R)(a + η)/V , and for the displacement ux , the
linearly varying term from zero is recovered at the
leading edge of the Carter [16] classical solution

ux = (V − �0R)(a + x − Vt)
V

+ Vt − �0Rt

= ξ0(a + x) (9)

see Barber [17], where a steady-state creepage ratio is
introduced

ξ0 =
(

1 − �0R
V

)
(10)

Since the equations are linear, the oscillatory solu-
tion can be written as the sum of the steady-state
solution and an oscillatory term which has to satisfy
the equation

uω
x = f ω(x − Vt) + ı�1R

ω
exp(ıωt) (11)

with boundary condition uω
x (−a, t) = 0 at all times t .

Applying the boundary condition, the complete tran-
sient solution is then

ux = ξ0(a + x) + ı�1R
ω

exp(ıωt)

×
[

exp
(

− ıω(a + x)

V

)
− 1

]
(12)

It is easily verified that this expression satisfies the
original governing equation (4) and the boundary con-
dition (7) at all times t . The displacement must of

course be a real quantity, and so the real part of this has
to be extracted to describe the physics of the problem.

The time-varying tangential force Q(t) is given by

Q(t) =
∫ a

−a
qx(x)dx = kq

∫ a

−a
ux(x)dx (13)

from equation (1) and substituting for ux from
equation (12) and performing the integration, Q(t) =
Q0 + Q1 exp(ıωt), where

Q0 = 2kqξ0a2 ; Q1 = 2kq�1Ra

ω

{
V

2ωa

×
[

1 − exp
(

−2ıωa
V

)]
− ı

}
(14)

2.1 Effect of varying normal force

So far, only oscillations in tangential load and angular
velocity have been considered, but the driving term
of the present problem is an oscillation of the normal
force in time, due to some existing corrugation

� exp(ıωt)

where ω = 2πf = 2πV /λ and λ is the wavelength of
the corrugation. In fact, the objective of the analysis is
to determine which if any wavelengths lead to oscilla-
tions such that the resulting wear occurs at the troughs
of the corrugation and hence amplification of an initial
perturbation.

The corresponding oscillation in the normal contact
force P(t) will cause the semi-length of the contact a
to oscillate, so

a(t) = a0 + a1 exp(ıωt) (15)

Equation (6) remains unchanged when a is non-
constant, but the boundary condition (7) becomes

ux(−a(t), t) = 0 (16)

giving

f (−a0 − a1 exp(ıωt) − Vt) + Vt

− �0Rt + ı�1R
ω

exp(ıωt) = 0 (17)

Since a1 � a0, the first term is expanded as

f (−a0 − a1 exp(ıωt) − Vt)

= f (−a0 − Vt) − f ′(−a0 − Vt)a1 exp(ıωt) (18)

and the complete function as the form f (η) = f0(η) +
f1(η), where f1 � f0, and f0(η) = (1 − �0R/V )(a0 + η),
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and f ′ can be replaced by f
′

0 = (1 − �0R/V ). Then,
writing η = −(a0 + Vt); t = −(a0 + η)/V

f (η) − a1f ′(η) exp(ıωt)

−
(

1 − �0R
V

)
(a0 + η) + ı�1R

ω
exp(ıωt) = 0 (19)

and hence

f1(η) = a1

(
1 − �0R

V

)
exp

(
− ıω(a0 + η)

V

)

− ı�1R
ω

exp
(

− ıω(a0 + η)

V

)
(20)

The displacement ux is then recovered from equation
(6) as

ux =
(

1 − �0R
V

)
(a0 + x) + ı�1R

ω

×
[

1 − exp
(

− ıω(a0 + x)

V

)]
exp(ıωt)

+ a1

(
1 − �0R

V

)
exp

(
− ıω(a0 + x)

V

)
exp(ıωt)

(21)

2.2 Tangential load and dissipation

To obtain the tangential load for the general case just
solved of varying angular speed and normal load, the
following has to be calculated

∫ a

−a
ux(x)dx ≈

∫ (a0+a1 exp(ıωt)

−(a0+a1 exp(ıωt)

(
1 − �0R

V

)
(a0 + x) dx

+ exp(ıωt)
∫ a0

−a0

[
ı�1R

ω

[
1 − exp

(
− ıω(a0 + x)

V

)]

+ a1

(
1 − �0R

V

)
exp

(
− ıω(a0 + x)

V

)]
dx

where only first-order terms in the perturbation have
been included. The first integral is trivial, and the term
involving �1 is identical with that for constant a and
contributes a term

2�1Ra0

ω

{
V

2ωa0

[
1 − exp

(
−2ıωa0

V

)]
− ı

}
exp(ıωt)

from equation (14). Finally, for the term involving a1

∫ a0

−a0

exp
(
− ıω(a0 + x)

V

)
dx = − V

ıω

[
exp

(
−2ıωa0

V

)
− 1

]
(22)

The dissipation rate under full stick conditions, is
given by the release of the energy at the trailing edge,

which can be found from

D(t) = 1
2

Vkq[ux(a(t))]2 = 1
2

Vkq[ux(a0 + a1 exp(ιωt))]2

where, substituting equation (15) into equation (21)
and dropping second-order terms gives

ux(a(t)) = 2ξ0a0 + ξ0a1 exp(ιωt)

+
[
ι�1R

ω
+

(
ξ0a1 − ι�1R

ω

)
exp

(
−2ιωa0

V

×
(

1 + a1

2a0
exp ιωt

))]
exp (ιωt) (23)

The dissipation rate can therefore be written as
D(t) = D0 + D1 exp(ıωt), and collecting results for Q
and D

Q0 = 2kqξ0a2
0 D0 = V ξ0Q0 (24)

and

Q1 = 2ξ0kqa0a1

{
1 − ı

ζ

(
1 − exp(−ıζ )

)}

− �1
4a2

0Rkq

V
1
ζ

{
1
ζ

(
1 − exp(−ıζ )

) − ı

}
(25)

D1 = 4kqV ξ 2
0 a0a1

(
1 + exp (−ıζ )

)
2

+ 4kqV ξ0a2
0

2i�1R
V

(
1 − exp(−ıζ )

)
2ζ

(26)

where the parameter is defined as

ζ = 2ωa0

V
= 4πa0

λ
(27)

which represents the extent of the initial corrugation
(in radians) present in the contact area at any given
time.

The term a1 can be related to the perturbation in
normal load P. Using the Hertzian relation

a = 2

√
PR
πE∗ (28)

and perturbing about the mean load P0, the following
is obtained

a1 = ∂a
∂P

P1 = P1

√
R

πP0E∗ = P1a0

2P0
(29)

3 OBSERVATION AND ‘TUNING’ OF THE
SOLUTION

Equations (25) and (29) define the dynamic rela-
tionship between the perturbations Q1, P1, and �1
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in tangential force, normal force, and rotational
speed, respectively, and hence define the frequency-
dependent receptance of the contact process under
the Winkler spring assumption for tangential contact.
Most authors (except those using the Gross-Thebing
numerical technique) obtain an expression for this
receptance by either assuming arbitrary simplifica-
tion of the contact with elastic springs, or by simply
perturbing the appropriate steady-state creep relation
about the mean state, which is equivalent to assum-
ing that the steady-state relation applies even under
transient conditions. This assumption is reasonable in
the low frequency limit (ζ → 0) and indeed might be
expected to give reasonable results for moderate val-
ues of ζ , since Kalker showed that transient effects in
rolling contact become essentially negligible after a
rolling distance equal to the contact width, but unfor-
tunately, short-pitch corrugation does not fall into the
range of ‘moderate values of ζ ’. Appropriate values of
the parameters are λ = 20–80 mm and a0 = 3–5 mm,
giving values of ζ in the range 0.4 < ζ < 3! Since the
zeroth-order approximation is equivalent (in terms of
tangential load) to a dashpot, some authors (e.g. [3])
have attempted to improve this zeroth-order approx-
imation by adding a contact spring in series with a
dashpot with parameters obtained from a combina-
tion of the Carter and Mindlin solutions. However, this
technique only fits the tangential load, and nothing is
said about the energy dissipation – the coefficients are
not trivially obtained from those of tangential load, as
it will be clearer in the following.

Since the perturbed Carter theory is exact in the limit
ζ → 0, it is convenient to choose the value for the tan-
gential stiffness kq in the present Winkler model such
that the two theories agree in the limit. The Carter
solution gives the relation

ξ = 1 − �R
V

= fa
R

(
1 −

√
1 − Q

fP

)
(30)

and in the ‘full stick’ limit as f → ∞, this reduces to

Q = √
PRπE∗

(
1 − �R

V

)
(31)

where equation(28) to substitutes for the contact semi-
width a. Perturbing this expression with respect to �

gives

Q1 = −�1R
V

√
P0RπE∗ (32)

This is compared with the second of equation (14),
which in the limit ω → 0 tends to

Q1 = −8kqP0R2

πE∗V
(33)

from which it is deduced that the two models will
predict the same tangential receptance in the low

frequency limit if

kq = πE∗

8

√
πE∗

P0R
= πE∗

4a0
(34)

Using this result, equations (25) and (26) can be
written in the form

Q1 = CPP1 + C��1, D1 = DPP1 + D��1 (35)

where

CP(ζ ) = ξ0

2

√
πE∗R

P0

[
1 − ı

ζ

[
1 − exp (−ıζ )

]]
(36)

C�(ζ ) = − 2
V ζ

√
πE∗P0R3

{
1
ζ

[
1 − exp (−ıζ )

] − ı

}
(37)

DP(ζ ) = V ξ 2
0

2

√
πE∗R

P0

(
1 + exp (−ıζ )

)
(38)

D�(ζ ) = 2ıξ0

√
πE∗P0R3

(
1 − exp (−ıζ )

)
ζ

(39)

4 COUPLING WITH THE DYNAMICS

To complete the analysis, the rotational equation of
motion is written for the wheelset, which is simplified
by omitting stiffness and damping, giving

Iw
d�

dt
= (Q − Q0) R (40)

where Iw is the inertia of the wheel. It follows that the
oscillatory terms are related by the equation

iωIw�1 = Q1R (41)

and substituting for �1 from equation (41) into the first
equation (35) gives

Q1 = CP(ζ )P1 + C�(ζ )
Q1R
iωI

(42)

Solving for Q1, and using ζ = 2ωa0/V , the tangential
load oscillatory term can be written in the perturba-
tion as a function of the oscillatory term in normal load
only

Q1 = CP(ζ )

1 − (C�(ζ )/ζ )(2Ra0/iIwV )
P1 (43)

For dissipation, substituting �1 from equation (41)
into the second equation (35) gives

D1 = DP(ζ )P1 + D�(ζ )
Q1R
iωIw

(44)

which can be expressed in terms of P1 using
equation (43).
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Fig. 3 The vertical receptance adapted from Bhaskar
et al. [3]. The dotted lines are from a richer
model including the pinned–pinned resonance,
not used in the present study

The limit of constant creepage assumed by Grassie
and Johnson [4] corresponds to the case where the
wheel inertia is very large, or more precisely where the
dimensionless parameter

I ≡ IwV 2

P0R3
→ ∞

At the other extreme, the assumption of constant
tangential load, as in Grassie and Edwards [18] and
Meehan et al. [19], corresponds to the case I → 0.

For the normal dynamics (i.e. the relation between
the complex amplitude of the perturbation in normal
force P1 and the initial corrugation �), the rail vertical
receptance of Bhaskar et al. [3] is used, which repre-
sents a typical BR rail with an equivalent continuous
support (results from discrete support from Ripke’s
calculations for Intercity track having similar param-
eters are shown for comparison mid-way between
sleepers (dashed lines) and at a sleeper (dotted lines).

5 RESULTS

The complex dissipation D1, depends on only two
parameters: (i) the inertia of the wheel and (ii) the
steady normal load P0. For the latter, P0 = 50 kN is used

Table 1 The data of Nielsen et al. [[20]]

Munspr R polarI 1/2 M Axle load
Train (kg) (m)(kg m2) Rˆ2 β (tonnes)

X2 powered
wheelset 1915 0.55 250 290 0.86 18.5

X2 trailer
wheelset 1390 0.44 70 134 0.52 12.5

and for the inertia

I = β

2
MwR2

where β is a factor ranging in general from 0.5 to 0.8,
since the mass of the wheelset is concentrated near the
centre. Nielsen et al. [20] for example report the data in
Table 1. Considering that for a single wheel one half of
the inertia values in the the polar inertia of the entire
wheelset is taken, the values seem to range from 35 to
125 kg m2, whereas most systems may have somewhat
lower values with mass of the wheel around 350 kg and
hence inertia in the range 18–30 kg m2.

For completeness and simplicity, consider β = 0.75
and two cases:

(a) the mass of the wheel 350 kg, with a normal load
of 50 kN, as a realistic value for a standard systems
(where most data on Fig. 1 would likely fall), and
compared with the limit case;

(b) the powered X2 wheelset using 1000 kg of mass as
representative of a heavy loaded case with higher
values P0 = 90 kN.

To model the dynamic normal load, the rail recep-
tance (from Bhaskar’s model – see Fig. 3), the wheel
receptance, and that of the Hertzian contact spring
have to be added. Finally, the correction on the phase
of dissipation resulting from the fact that the high-
est dissipation occurs at the rear of the contact, and
not at its centrepoint, is added. Results for steady-
state longitudinal creepage are shown, but the value
of the creepage, as well as the friction coefficient and
other parameters (like the vertical load) only affect the
rate of growth of the corrugation, not the preferred
(most rapidly growing) wavelength. Hence, the beauty
of the qualitative model proposed here is that all these
parameters need not to be fixed.

The dominant wavelength is expected to be that
for which the predicted wear rate at the troughs is
a maximum and this corresponds to the case where
the dissipation function D1 has the maximum negative
real part. The following figures show 10 equally spaced
contour levels from zero to the maximum negative real
part of dissipation function, as a function of speed and
wavelength of corrugation. Coloured lines show con-
stant frequency 300, 1000, and 1700 Hz for reference,
also equal to the lines in Fig. 1, and the experimental
data points from Fig. 1 are also included. The bold lines
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show the wavelengths corresponding to the maximum
negative real part of D1 as a function of speed V .

Figure 4 shows the result of the standard case A,
showing considerable agreement with experiments.
Most of the experimental data points fall in a region of
the possible growth (where the real part of D1 is nega-
tive), and most data also seem to concentrate around
the bold line of the maxima, which at low speeds does
some zigzaging because the dissipation function is
first relatively flat, then follows almost a constant fre-
quency (around 400 Hz), and then jumps to another
regime (of high speed and high frequency, crossing the
1700 Hz line).

Figure 5, by contrast, shows no significant evidence
of agreement between predictions and experimental
data.

5.1 Wheel inertia and the two limit assumptions

To compare with the previous theories of Grassie and
Johnson [4], Grassie and Edwards [18] and Meehan
et al. [19], the limiting cases for constant tangential
load (Fig. 6) and constant creep rate (Fig. 7) are pre-
sented by choosing the dimensionless wheel inertia I
to be either very small or very large.

The predictions differ substantially from the exper-
imental data in both cases. The results for constant
tangential load show some modest qualitative agree-
ment, although corrugation is predicted at much
higher apparent frequency, whereas no substantive
agreement with data is seen for large inertia, as was
already apparent from Fig. 5.

Fig. 4 The results for case A problem in this paper

Fig. 5 The results for case B – high inertia

Fig. 6 The results for case A under the assumption of
constant tangential load

6 DISCUSSION

The results in the current paper cannot pretend to
answer all the questions raised by corrugation mecha-
nisms and experimental data around, including dif-
ferent railways and metro systems. The Vancouver
Skytrain of which the data on the vertical receptance
was used was continuously supported on a concrete
base with a 25 mm continuous rubber pad under
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the rail. Periodic clips held the rails in place. Here,
pinned–pinned resonance could not be even sug-
gested as a mechanism, yet the data in Fig. 1 are
surprisingly ‘similar’ to the data on BR 1911 report
with probably wooden sleepers, so again pinned–
pinned resonance had to be of marginal importance
here. The results suggest that a possible mechanism
is longitudinal creepage. That Grassie and Johnson
[4] found no mechanism for short-pitch corrugation
using longitudinal creepage was as shown here, due
to the assumption of infinite wheel inertia. This erro-
neous conclusion, however, did not stop Frederick
from making an excellent contribution just 1 year
later (1986), which included the wheel inertia in both
lateral and longitudinal directions. However, the fact
that he found a longitudinal creepage mechanism
very similar to what has been found here has largely
remained obscure, since his regime (at 750 Hz) showed
a growth factor 20 times lower than the lateral creepage
mechanism, it was only explained for above sleepers,
whereas for midsleepers there was again no mecha-
nism (notice also that no pinned–pinned resonance
regime was found for longitudinal creepage neither at
above sleepers nor midspan by Frederick). There are
many details of Frederick model which do not per-
mit a rapid evaluation, but clearly this factor 20 could
largely be outweighed by the fact that in the linear
regime, growth is proportional to the square of creep-
age, and longitudinal creepage can be perhaps be 10
times higher than lateral (5 per cent instead of 0.5
per cent). Therefore, here there is a factor 100 which
largely compensates, and suggests again longitudinal
creepage associated with no resonance may be indeed

Fig. 7 The results for for case A under the assumption of
constant longitudinal creepage

the correct mechanism to interpret the classical data,
as first impressions from the comparison seems to
indicate.

Later studies by the Berlin group improved many
aspects of the Frederick model, but in one respect
they took a step backwards, in that they did not gen-
erally include longitudinal dynamics – whether this is
because of the original Grassie and Johnson [4] find-
ing, or the Frederick result, or neither, is a matter of
speculation. Hempelmann [9] finds highest growth for
lateral creepage at sleepers at pinned–pinned reso-
nance, but no growth midspan at this frequency where
he finds much lesser growth at ‘no-characteristic’
frequency.

BR was very active in this area of research and did
many surveys after 1911, which left the impression
that corrugation on BR was insignificant until the
introduction of continously welded rail and concrete
sleepers in 1966. The reason for this is still unclear.
More investigation is still required to solve this difficult
problem.

7 CONCLUSIONS

A simple two-dimensional model has been developed
using a full-stick Winkler (wire brush) approximation
for the tangential contact problem with a modu-
lus chosen to fit the classical Carter solution in the
steady state. Starting from a given small sinusoidal
corrugation profile and realistic values for the verti-
cal receptance of the rail, the tangential dynamics of
the problem were modelled, including the effect of
finite wheelset rotational inertia. Corrugation is pre-
dicted to grow when the rate of energy dissipation is
positive at the troughs of the original corrugation and
the preferred wavelength is predicted to be that whose
dissipation rate at this location is a maximum.

Corrugation from longitudinal creepage is found
to be qualitatively explained in the range of realistic
parameter values and the predicted wavelengths are
reasonably close to those observed experimentally as
a function of train speed. By considering the limits of
large and small wheelset inertia, it was demonstrated
that the constant creep rate assumption of Grassie and
Johnson [4] or Bhaskar et al. [3] could not explain cor-
rugation; reasons for more recent successful attempts
assuming constant tangential load have also been
given.

It can be concluded that it is critical to include
the rotational dynamics of the wheelset in anal-
yses of corrugation, and this confirms results
found but neglected in previous models (Frederick,
Hempelmann, Tassilly and Vincent), which include
the wheel inertia, in that a regime not driven by a
resonance of the system (neither of the track or the
wheelset) is found possible. Despite that longitudinal
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creepage seems to show less growth than lateral
creepage mechanism, the much larger values for lon-
gitudinal creepage could largely compensate for this
effect, and the much better agreement with the exper-
imental data of the longitudinal creepage mechanism
indicated here than to the ‘pinned–pinned’ resonance
lateral mechanism is a strong indication that some
conclusions in the literature should be revised. A more
accurate quantitative model would require a more
realistic contact model, including the effects of partial
slip, and this is the subject of an ongoing investigation.

Additionally, the conclusions about pinned–pinned
resonances coming only from numerical models may
partly be erroneous due to difficulties of modelling
of the resonances themselves (particularly, damp-
ing factors, strongly influencing amplitude response),
parametric resonance effects, and perhaps the most
urgent requirement is for more precise experimen-
tal data to complete, compare and distinguish the
collection of Fig. 1.
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