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Abstract

Persson’s theory for the elastic contact of rough surfaces is modified to
include the compliance associated with an interface force law such as the
Lennard-Jones law. We determine the effect of adding a small packet of waves
on the probability distribution function [PDF] of the local interfacial gap (in-
cluding the effect of elastic deformation). This procedure is then used itera-
tively to develop an algorithm for determining the PDF for a rough surface
with a prescribed power spectral density. The results show that for untrun-
cated quasi-fractal surfaces, the PDF then converges at large wavenumber,
in contrast to the result when only elastic deformation is taken into account.

If the roughness is restricted to wavenumbers greater than a certain criti-
cal value, the algorithm predicts a converged relation between nominal trac-
tion and mean gap that can be regarded as a modified interfacial force law
describing the influence of just the fine-scale roughness on the contact. In
particular, the area under the resulting curve can be interpreted as a measure
of interface energy as reduced by this roughness. The remaining macroscopic
features of the surface can then be described using the JKR methodology in
combination with this modified interface energy.
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1. Introduction

Surfaces are rarely atomically smooth and numerous authors have at-
tempted to predict the effect of surface roughness on the contact of nominally
plane surfaces. Many of these theories are based on models of the roughness
as a set of non-interacting microscopic asperities, following the seminal con-
tribution of Greenwood and Williamson [1]. These theories have enjoyed
considerable success in explaining the physical observation that [for exam-
ple] electrical contact conductance and the frictional forces during sliding are
approximately proportional to the applied normal force.

An alternative approach due to Persson [2] [see also [3, 4]] defines the
function Φ(p) representing the probability that an arbitrary point on the
interface should be in contact at a given pressure p, for a surface whose
power spectral density [PSD] PS(k) is truncated at some upper cutoff k.
An expression is then developed for the incremental change in Φ(p) due to
the inclusion of an additional increment ∆k of the PSD, and the effect of
the entire PSD is obtained by iteration or integration. This theory is also
very successful at predicting important features of the contact problem (for
example, as observed in molecular and finite element simulations of particular
cases [5]).

Aficionados of either theory tend to be dismissive of the claims of the
other, but despite their differing approaches, the two theories often lead
to surprisingly similar predictions. For example, Bush [6] used predictions
of asperity heights and curvatures from profile measurements to determine
parameters for an asperity model and showed that at sufficiently low nominal
pressures pnom, the proportion of the nominal area Anom in actual contact is
approximated by

A

Anom

≈ pnom

E∗
√

π

m2

, (1)

where E
∗
is the composite elastic modulus defined by

1

E∗ =
(1− ν1)

2

E1

+
(1− ν2)

2

E2

, (2)

and m2 is the mean square slope of the profile given by

m2 =

∫

∞

−∞

k2PP (k)dk = π

∫

∞

0

k3PS(k)dk , (3)
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where the profile PSD PP (k) is related to the surface PSD by

PP (k) = 2

∫

∞

k

sPS(s)ds√
s2 − k2

(4)

[7]. The corresponding prediction from Persson’s theory is

A

Anom

=

∫

∞

0

Φ(p)dp ≈ 2pnom

E∗√πm2

, (5)

which has the same parametric dependence as (1), but a numerical multiplier
differing by a factor of 2/π. However, qualitative differences between the two
approaches are predicted when the nominal pressure is sufficient to ensure
that a significant proportion of the nominal surface is in actual contact.

1.1. Fine-scale roughness

Real surfaces often exhibit fractal character at large k, with surface PSDs
of the form

PS(k) = Ck2D−8 , (6)

where C is a constant and D is the fractal dimension of the surface and
lies in the range 2 < D < 3. However, if an expression of this form is
substituted into (3), the result is unbounded, so both theories predict a
vanishing proportion of the nominal area in actual contact and a theoretically
infinite mean contact pressure. In asperity model theories, this problem is
reflected in the difficult of deciding at what scale the ‘asperities’ should be
defined [8, 9]. Similar effects are seen in numerical studies with progressive
mesh refinement [10]. Of course, fine-scale effects must ultimately be limited
by plastic deformation or other failure modes of the material [11], and the
continuum theory itself becomes inappropriate at length scales comparable
with interatomic distances, but these arguments do not give a clear indication
of the point at which PS(k) should be truncated.

1.2. Contact, separation and adhesive tractions

The difficulty with both approaches arises principally from the sharp
distinction between contact and separation assumed in conventional contact
mechanics. If this is relaxed through the use [say] of the Lennard-Jones
traction law for contact interactions, it seems clear that the high frequency,
low amplitude components of the PSD (6) will have decreasing influence on
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the probability distribution function [PDF] for pressure Φ(p). By contrast,
if these waves are forced into contact at zero gap, the incremental variance
of contact pressure required increases without limit in proportion with the
mean surface slope.

The Lennard-Jones law involves regions of tensile as well as compressive
tractions and hence opens the vexed question of the influence of surface
roughness on the maximum nominal tensile traction [the ‘pull-off traction’]
that can be supported by an interface between two otherwise plane surfaces.
Fuller and Tabor [12] extended Greenwood and Williamson’s model by using
the ‘JKR’ solution [13] for each pair of interacting asperities, but the JKR
theory also depends upon there being a sharp distinction between regions
of contact and separation. This implies a singularity in tensile tractions at
the edge of the contact region, and hence the occurrence of a finite region in
which the assumed tractions exceed the theoretical strength of the materials.
Tabor [14] has shown that this is an acceptable approximation for the contact
of spheres only when the Tabor parameter

µ =

(

R(∆γ)2

E∗2ǫ3

)1/3

≫ 1 , (7)

where R is the radius of the sphere, ∆γ is the interface energy, and ǫ is a
measure of the range of interatomic forces. Clearly this criterion will fail
when asperities are defined at a sufficiently fine scale.

Persson and Scaraggi [15] investigated the effect of surface roughness us-
ing the so-called ‘DMT’ approach, in which the adhesive tractions in the
separation region are estimated based on the gap that would occur in the
absence of such tractions (found in this case using Persson’s theory). Green-
wood [16] argues that the DMT approach is not a true asymptotic solution
for µ ≪ 1 and offers an alternative ‘semi-rigid’ theory in which the gap is first
estimated assuming the bodies to be rigid [17], but the tractions associated
with this gap are then allowed to deform the body elastically. However, this
approach fails for a Gaussian rough surface, since there is then a small but fi-
nite probability of an asperity or a region of the surface having an arbitrarily
large height, so two statistically rough rigid bodies could theoretically never
be made to approach each other.

In this paper, we shall attempt to resolve these difficulties by develop-
ing a theory modelled on Persson’s approach, but including the modulation
between contact and separation associated with the Lennard-Jones law. In
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particular, we shall introduce the effect of each small increment in the surface
PSD using a linearized solution for the combined effect of elastic deformation
and Lennard-Jones gap-dependent tractions. With this approach, we shall
show that the probability distribution tends to a limit at large k, so no trun-
cation of the PSD is necessary. The same method also allows the influence
of the infinite ‘tail’ of the PSD on the relation between mean traction and
mean gap to be estimated, suggesting a procedure for extending the JKR
approach to surfaces with quasi-fractal roughness.

2. Theoretical model

We assume that the tractions σ [tensile positive] between two atomically
plane surfaces are defined by the integrated Lennard-Jones law

σ(g) =
8∆γ

3ǫ

(

ǫ3

g3
− ǫ9

g9

)

(8)

[obtained through the application of the Derjaguin approach], where g is the
local value of the gap (separation) between the surfaces, ∆γ is the interface
energy and ǫ is the separation at which two unloaded bodies with plane
surfaces would be in equilibrium. This relation is illustrated in Fig. 1, where
σ is normalized by the maximum tensile traction [the theoretical strength]

σ0 =
16∆γ

9
√
3ǫ

, (9)

which occurs at B, where g = 31/6ǫ ≈ 1.201ǫ. The relation between ǫ and
crystal lattice parameters is discussed by Yu and Polycarpou [18].

Fig. 1: The Lennard-Jones force law.
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2.1. Contact problem for a single sine wave

We first consider the simpler problem in which the gap g contains a single
sinusoidal wave of amplitude g1 and wavenumber k, so that

g(x) = gave + g1 cos(kx) , (10)

where gave is the mean separation.
Equation (8) and Fig. 1 define a non-linear relation, so the resulting

contact pressure p(x) will not be sinusoidal. However, if g1/ǫ ≪ 1, we can
linearize equation (8) about the mean value gave, obtaining

p(x) = −σ (g(x)) ≈ p̄+ p1 cos(kx) , (11)

where

p̄ = −σ (gave) ; p1 = −g1

(

∂σ

∂g

)

g=gave

. (12)

The sinusoidal component will produce normal elastic displacements

u(x) = u1 cos(kx) where u1 =
2p1

E∗k
(13)

(Johnson, 1985) and these increase the final gap g(x), so we conclude that the
original undeformed surface must have contained a sinusoidal perturbation
of amplitude h1 = g1 − u1. Using (8) to evaluate the derivative in (12), we
obtain

g1 = f(g̃, k̃)h1 where f(g̃, k̃) =

[

1 +
1

k̃

(

9

g̃10
− 3

g̃4

)]

−1

(14)

and we have introduced the dimensionless parameters

g̃ =
g

ǫ
; k̃ =

3ǫ2E
∗
k

16∆γ
≡ χk ; P̃S(k̃) =

PS(k)

ǫ2χ2
. (15)

Notice that the dimensionless wavenumber has obvious similarities to the
Tabor parameter of equation (7) and we could define an equivalent Tabor
parameter using the radius of the peaks of the sine wave for R. It is also
worth remarking that for the contact of similar materials, the slope of the
Lennard-Jones relation (8) at the equilibrium point A in Fig. 1 is related
to the elastic modulus E [19]. For this case, if ν = 0, the dimensionless
wavenumber k̃ ≈ 3kǫ.
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2.2. A ‘small’ packet of uncorrelated sine waves

We next consider the case where the surfaces are nominally plane with
constant separation g̃0, and we add an isotropic packet of uncorrelated sine
waves whose wavenumbers lie in a band (k̃, k̃ + ∆k̃). If the total energy in
this band is sufficiently small, the PDF of the resulting gap g̃ will have the
Gaussian form

Φ(g̃, g̃0, k̃,∆k̃) =
1√
2πV

exp

(

−(g̃ − g̃0)
2

2V

)

(16)

[20], with variance

V (g̃0, k̃,∆k̃) = 2π

∫ k̃+∆k̃

k̃

sP̃S(s)f(g̃0, s)
2ds . (17)

This argument depends on V being sufficiently small for f(g̃, k̃) to be consid-
ered constant in the range where Φ(g̃) is not negligible [e.g. in g̃0 − 5

√
V <

g̃ < g̃0+5
√
V ]. Intuitively, the resulting error should tend to zero as ∆k̃ → 0,

and we shall show in Section 3.1.1 that a corresponding numerical iterative
solution for a given P̃S(k̃) converges on a unique result in this limit.

2.3. Integration over an extended PSD

We interpret equation (16) as defining the conditional probability Φ(g̃|g̃0)
of a point at separation g̃0 being at g̃ after the addition of the wave packet
∆k̃. This involves the assumption that the conditional probability depends
only on the local value of g̃0 and hence is the same as would be obtained if
the entire surface were at g̃0. However, this is not very different from the
assumption in Persson’s theory [2, 4] that the conditional probability Φ(p|p0)
for contact pressure is given by the full contact solution, since this implies
that it is uninfluenced by the possible [and indeed likely] nearness of regions
of separation.

If the PDF of g̃ for the case where the surface PSD is truncated at k̃ is
denoted by Φ(g̃, k̃), we can determine the corresponding expression after the
addition of the wave packet ∆k̃ as

Φ(g̃, k̃ +∆k̃) =

∫

∞

0

Φ(g̃0, k̃)Φ(g̃|g̃0)dg̃0 =
∫

∞

0

Φ(g̃0, k̃)√
2πV

exp

(

−(g̃ − g̃0)
2

2V

)

dg̃0 .

(18)
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This relation can then be applied iteratively to determine Φ(g̃) due to an
extended PSD.

Notice that the theory developed here differs from that of Persson [2] in
that from the beginning we track the evolution of the probability distribution
Φ(g̃) of the gap g̃, rather than that of the contact pressure p. We make
this choice because the Lennard-Jones traction σ = −p, illustrated in Fig.
1, is a single-valued function of g, whereas for 0 < σ < σ0, g is a multi-
valued function of p, so the probability Φ(p) entails some ambiguity as to
which branch is in question. Almqvist et al. [21] developed expressions for
Φ(g), but these were derived from Φ(p) using a strain energy argument, and
assumed a sharp transition from contact to separation without traction.

2.4. Negative stiffness and instability

The function f(g̃, k̃) of equation (14) is negative for

k̃ <
3

g̃4
− 9

g̃10
, (19)

implying that a single sine wave of infinitesimal amplitude in the original
profile would result in a sinusoidal gap that is 180 deg out of phase. In effect,
the system exhibits negative stiffness in this range and the resulting solution
would clearly be unstable. Instead we should anticipate a jump to one of
two stable states that are not within an infinitesimal neighbourhood of the
original perturbation.

In fact, if two plane surfaces of (say) square planform of side 2π/k are
brought to a mean separation g̃ in the range defined by (19), it is energetically
favourable for a sinusoidal perturbation to form spontaneously. However,
the maximum value of the right-hand side of (19) occurs at g̃ = 6

√

15/2 and

is k̃0 = 3

√

324/3125 ≈ 0.470, so this instability is precluded if we restrict

attention to roughness spectra in the ‘fine-scale’ range k̃ > k̃0.
To place this value in perspective, we note that the (dimensional) peak

radius of the sinusoid h sin(k0x) of amplitude h is R = 1/hk2
0. If this value

is used in the definition of the Tabor number (7), we obtain

µ ≈ 0.542 3

√

ǫ

h
. (20)

Thus, k0 can also be interpreted as the wavenumber above which the JKR
methodology would be inappropriate for a single sine wave of amplitude
h ∼ ǫ.
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3. Results

We first consider the case where the PSD has the quasi-fractal form of
equation (6) with lower and upper cutoff frequencies k1, k2 respectively. We
start from the condition where the surface is plane so that the separation is
everywhere constant and equal to gave, and hence Φ(g̃) = δ(g̃ − g̃ave), where
δ(·) is the Dirac delta function. We then add wave packets ∆k̃ sequentially
using equations (18, 17) until the entire PSD has been added.

3.1. Convergence tests

3.1.1. Choice of ∆k̃

We argued in Section 2.2 that equation (16) is strictly correct only when
V is ‘sufficiently small’, which here places a restriction on the value of ∆k̃.
For a given value of ∆k̃, V (g̃, k̃,∆k̃) is a function of g̃ with the maximum
value occurring at g̃0 = 6

√

15/2. We therefore anticipate that numerical
convergence will be approximately characterized by the parameter Vmax =
V (g̃0, k̃,∆k̃)

0.7 0.8 0.9 1 1.1 1.2 1.3g̃

2

4

6

Φ
(g̃
,5
)

0.88 0.9 0.92

5.5

6

6.5

7

1/10

1/20

1/40
Vmax < 1/400

Fig. 2: Effect of maximum wave packet variance Vmax on the convergence
of the process.

Fig. 2 presents numerical calculations for the resulting PDF obtained
with various values of this parameter, for the case where g̃ave = 0.98, k̃1 =
1, k̃2 = 5 and the PSD is given by the dimensionless equivalent of equation
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(6) with D = 2.5 and a multiplying constant C = 1/π. The results show that
the PDF does indeed converge as ∆k̃ is reduced, and the curves for values
below Vmax = 1/400 are virtually indistinguishable, suggesting that this is
an acceptable degree of discretization.

3.1.2. Convergence at large k̃2
Fig. 3 shows results obtained for the same PSD and mean gap g̃ave,

but different values of the upper cutoff frequency k̃2. Notice that there is
significant evolution of the PDF as k̃2 is increased, but the curves become
almost identical beyond k̃2 = 580, showing that the process converges as
surmised in the Introduction. It follows that with this strategy, it is not
necessary to impose an arbitrary truncation on the PSD.

0.6 0.7 0.8 0.9 1 1.1 1.2g̃
0

2

4

6

8

Φ
(g̃
,k̃

2
)

580

∞

110

20

k̃2 = 5

Fig. 3: Effect of upper cutoff frequency k̃2 on Φ(g̃).

4. Relation between mean gap and nominal traction

Once the probability distribution function Φ(g̃) has been determined, the
nominal (mean) traction σ̄ can be obtained as

σ̄ =

∫

∞

0

Φ(g̃)σ(g̃)dg̃ , (21)

where σ(g̃) is the Lennard-Jones traction (8).
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Fig. 4 shows the resulting nominal traction, normalized by the maximum
Lennard-Jones tensile traction σ0, as a function of the mean gap g̃ave, for the
PSD (6) with k̃1 = 1, C = 1/π,D = 2.5 and k̃2 → ∞. Notice that the result-
ing figure is qualitatively similar to that of the original L-J law of Fig. 1, but
with two notable differences: (i) the maximum tensile value is significantly
lower than unity, and (ii) the equilibrium point [where σ̄ = 0] is shifted to a
value g̃ave > 1. This shift is a consequence of the high stiffness of the surface
to high frequency waves. At modest nominal compressive tractions, only the
peaks of the distribution come within range of L-J tractions and hence the
mean planes are more separated relative to similar loading of two plane sur-
faces. For a given (dimensional) PSD, this mean-plane shift increases with

E
∗
and of course would be theoretically infinite in the rigid-body (Bradley)

limit [22], since the rough surface has no highest point. The modified force
law of Fig. 4 preserves the g̃−3

ave behaviour of the L-J law at large g̃ave, but is
not of power law form in the compressive range.

2.5 3 3.5 4 4.5 5
g̃ave

-0.2

-0.1

0

0.1

σ̄

σ0

Fig. 4: Relation between mean traction σ̄ and mean gap g̃ave for k̃1 = 1, C =
1/π,D = 2.5 and k̃2 → ∞.

The shaded area in Fig. 4 is proportional to the work that must be done
per unit nominal area in order to separate the contacting rough surfaces from
the equilibrium position. Thus it can be seen as a measure of interface energy
∆γ, as modified [reduced] by the presence of fine-scale roughness k̃ > k̃1. Fig.
5 shows the magnitude ∆γeff of this modified interface energy and also the
maximum pull-off traction σ̄max as a function of the dimensionless variance
of the fine-scale roughness m̃0 = m0/ǫ

2, where

m0 = 2

∫

∞

0

PP (k)dk = 2π

∫

∞

k1

kPS(k)dk . (22)
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Notice that the more usual RMS roughness measure is equal to
√
m0. Both

∆γeff and σ̄max are normalized by the plane surface values and hence tend to
unity for m0 = 0.

10−1 100 101

m̃0

0

0.5

1
σ̄max

σ0
∆γeff

∆γ

2.5

D=2.05

Fig. 5: Effect of fine-scale roughness on the effective interface energy ∆γeff
and pull-off traction σ̄max. Here D = 2.05, 2.5, k̃1 = 0.5 and the height
variance m0 is changed through the constant C in (6).

Persson and Scaraggi [15] define the related quantity γeff(σ̄) as the work
done per unit area in separating two surfaces currently loaded by a mean
traction σ̄. They estimated it using the ‘DMT’ approach, in which the gap
[or in this case Φ(g)] is estimated based on a classical ‘hard-contact’ elastic
model without adhesive tractions. The van der Waals’ tractions associated
with this gap are then summed and added to the total compressive force
in the contact region to obtain the total contact force. The quantity ∆γeff
plotted in our Fig. 5 is essentially γeff(0). In other words, it is the work done
in separating the bodies from the equilibrium position, where σ̄ = 0.

The results in Fig. 5 show that adhesive tractions fall off more rapidly
with increasing m0 when the fractal dimension D is larger. This is consistent
with results for conventional truncated PSDs, since an increase of D at con-
stant m0 would then imply an increase in the surface slope variance m2, as
reported [for example] by Pastewka and Robbins [5]. Notice however that for
an untruncated fractal PSD m2 is theoretically infinite, so a criterion based
on surface slopes [rather than fractal dimension] is critically dependent on
the upper cutoff k2.
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5. Comparison with a discrete numerical model

In order to assess the effect of the approximations inherent in the solu-
tion, we compared the results in particular cases with the numerical model
described in the Appendix of [15]. A square domain is discretized using a
uniform square mesh and the tractions at each grid point are defined by the
Lennard-Jones law of equation (8). The corresponding elastic deformations
due to these tractions are determined by inversion of the elastic solution in
Fourier space, which therefore implies periodic boundary conditions on the
modelled domain. The combined [elastic + L-J] displacements at each point
are required to satisfy the contact condition appropriate to a realization of
the isotropic PSD (6). The resulting set of non-linear equations is satisfied
using a damped molecular dynamic algorithm. For more details, the reader
is referred to [15].

Since the numerical solution is based on a particular realization of equa-
tion (6), different results are obtained depending on the initial random num-
ber seed. In particular, the resulting force-displacement curve analogous to
Fig. 4 is quite sensitive to the actual maximum height in the realization.
This variability would of course be reduced if computational considerations
allowed a larger region of the surface to be modelled. In Fig. 6, we com-
pare the predictions of the present statistical algorithm with the average of
four numerical realizations for the normalized mean traction σ̄/σ0, for three
values of the height variance and D = 2.2, k̃1 = 1, k̃2 = 8.

1 1.5 2 2.5 3
g̃ave

0

0.5

1

σ̄

σ0

Statistical model
Numerical model0.218

m̃0 = 0.1

0.3

Fig. 6: Comparison of the predicted mean traction σ̄ as a function of mean
gap g̃ave using the present statistical method and the numerical method of
[15]. Results are presented for k̃1 = 1, k̃2 = 8, D = 2.2 and three values of
the dimensionless height variance m̃0 = m0/ǫ

2.
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6. A hybrid JKR theory

Many treatments of adhesive contact problems make use of the JKR for-
malism [12, 23, 24], since it is amenable to analytical solution, whereas a
solution using the full Lennard-Jones traction law almost invariably requires
numerical solution and even then the resulting problem can be quite chal-
lenging.

The present method opens up the possibility of decoupling the effect
of fine-scale roughness [where the effective Tabor number is too small for
the JKR approach to be reasonable], from coarse scale features. We first
determine the reduced interfacial energy due to the fine-scale roughness k >
k1 using the methodology of Section 2. The rest of the profile, comprising
roughness in the range k < k1 and any macroscopic features of the contacting
bodies can then be used to define a contact problem using the JKR formalism,
but with ∆γ replaced by ∆γeff .

7. Conclusions

We have described a procedure based on Persson’s theory of rough surface
contact for determining the effect of adding a small increment of the trun-
cated PSD on the resulting probability distribution for the gap g, including
contributions from elastic deformation and from the Lennard-Jones interfa-
cial traction law. The L-J law is used throughout the compressive and tensile
range and hence this theory does not include regions of ‘hard’ compressive
contact where further variation of gap is impossible. As a result, the solution
converges at large wavenumbers, in contrast to hard contact theories which
generally require the PSD to be somewhat arbitrarily truncated.

Using this method, we are able to determine the effective reduction in
interfacial energy and mean pull-off traction due to the fine scale [i.e. high
wavenumber] components in the PSD. These results can then be used in
problems formulated using the JKR formalism.
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