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Abstract

We review recent developments in the response to periodic loading of elastic systems with frictional
interfaces. The steady state can involve shakedown (no slip at any point), cyclic microslip leading
to energy dissipation and possible fretting damage, or ratchetting (relative rigid-body motion
accumulating during each cycle). Shakedown theorems can be established for systems in which the
normal and tangential problems are uncoupled, but for coupled systems, the steady state depends
on the initial conditions. In such cases the system ‘memory’ resides in the slip displacements at
permanently stuck nodes. Analytical and asymptotic (continuum) methods for solving cyclic slip
problems are also discussed.
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1. Introduction

Suppose two elastic bodies are pressed together by a normal force P and then subjected to
a gradually increasing tangential force @), as shown in Figure 1. This process was described in
classical papers by Cattaneo (1938) and Mindlin (1949) for the case of Hertzian contact between
bodies with quadratic surfaces. They found that as ) increases at constant P, regions of relative
tangential displacement or microslip develop at the edges of the contact area.

P
Figure 1: The Cattaneo-Mindlin problem.
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1.1. Microslip and gross slip

The microslip regions grow as the tangential force increases, until the entire contact area is
slipping, at which point the bodies will slide over each other, if they posess an appropriate rigid-
body degree of freedom. We shall refer to this latter state as gross slip. There are many important
differences between gross slip and microslip. For example, the relative tangential displacements in
a microslip region can be determined by integrating the relative tangential strains from the slip-
stick boundary, and hence they are necessarily very small in most practical cases. By contrast,
once gross slip commences, arbitrarily large relative displacements can occur. Also, the microslip
surfaces remain permanently in contact, so any resulting wear particles may remain trapped
at the interface and hence influence the contact problem. An important consequence of these
observations is that friction laws determined experimentally under sliding conditions may not be
appropriate to problems involving microslip.

1.2. Periodic loading, vibration, and fretting

Many engineering systems comprise nominally static contacting bodies subjected to forces
that include a periodic component. This may be due to mechanical vibration, or to diurnal
temperature variations, or to repetitive machine operating cycles. Typical applications include
bolted joints and shrink fit assemblies, but other examples can be found ranging from tectonic
plate contact to nanoscale systems. In the steady state, such systems will typically experience
cyclic microslip, which implies that some energy is dissipated during each cycle. In a dynamic
analysis, this will be reflected as (typically) hysteretic damping, which will influence the overall
dynamic behaviour of the system. Indeed, it has been estimated that in many machines, the
frictional energy dissipation at nominally static bolted joints is larger than that due to internal
material damping. This energy dissipation also implies the occurrence of irreversible process in
the microslip region, typically involving cyclic plasticity on the microscale or below. This in turn
will eventually lead to the exhaustion of the material ductility, resulting in the detachment of
wear particles (Goriacheva et al., 2001), and the initiation and propagation of fretting fatigue
cracks (Nowell et al., 2006). Fretting fatigue in particular is of critical importance in the design
of gas turbines with replaceable blades.

2. The Coulomb friction law

In this paper, we shall mostly restrict attention to the case where the contacting bodies are
linearly elastic and microslip is governed by the classical friction law associated with the names
of Amontons and Coulomb. Each point in the potential contact area is assumed to be in one of
three states: stick, slip, or separation, in which the governing equations and inequalities are

Stick: w=0; v=0; p>0; |g</fp (1)
Slip: w=0; |9|>0; p>0; z—ﬁzr (2)
Separation: w>0; p=0; ¢q=0, (3)

where f is the coefficient of friction, p is the contact pressure, g is the frictional (tangential)
traction, w is the normal separation (gap), v is the relative tangential displacement (the slip
displacement), and the dot indicates a time derivative.



2.1. The rate problem

With these conditions, we seek to determine the evolution of the displacement field w(z, y, 2, t)
in the elastic bodies in response to given initial conditions u(z, y, z,0) and a known loading history
F(t). This in turn can be solved in principle if we can solve the so-called rate problem in which the
displacement rate @(x,y, z,t) is determined as a function of the instantaneous state w(z,y, 2, t)
and the time derivative of the loading F'(t). Mathematically, this problem is very challenging, since
in general it is not possible to prove that it has a unique solution. More progress has been made
with the corresponding discrete problem in which contact is restricted to a finite set of nodes at
which conditions (1-3) are imposed on the corresponding nodal values. In this case, existence and
uniqueness can be established for the rate problem provided f < f.,, where the critical coefficient
of friction f.,; can be determined from Klarbring’s P-matrix condition (Klarbring, 1996).

From an engineering perspective, discrete models, notably those generated from the finite
element method, are routinely assumed to give an acceptable approximation to the corresponding
continuum problem, so one might expect that Klarbring’s result will give us some insight into
the physical behaviour of continuous systems. His criterion is very computationally intensive
when there are large numbers of nodes, but estimates of f., from a relatively coarse model of
the same system might be acceptable in many cases. For coefficients of friction f > f.,, various
kinds of behaviour have been documented, including wedging (Hassani et al., 2003, Hild, 2004),
dynamically unstable solution branches (Ahn, 2010), and times at which the quasi-static solution
requires a sudden jump to a new state (Martins et al., 1992). In this paper, we shall restrict
attention to problems for which f < f,.

Broadly speaking, f. varies inversely with the degree of coupling between normal tractions
and tangential displacements or wvice versa. We shall discuss other consequences of this coupling
in the following sections. Also we anticipate that f., will be related to the coefficient of friction
needed to allow the system to become wedged — i.e. to remain in a state of stress under the
influence of contact tractions, but with no external loads. However, no formal relation between the
wedging problem and the rate problem has been established, except in particular cases (Barber
and Hild, 2006).

2.2. The contact stiffness matriz

Consider a linear finite element discretization of a frictional contact problem in which there
are M nodes in total, of which N are contact nodes. For a three-dimensional problem, the full
model will have 3M degrees of freedom corresponding to the nodal displacement components, but
the resulting equations for the (M — N) non-contact nodes can be solved for the corresponding
displacements, leaving a 3N x 3N contact stiffness matrixz connecting the contact displacements
and the corresponding contact forces. This procedure is known as static reduction and methods
for applying it are discussed by Thaitirarot et al., (2014). The resulting model has the same form
as that for a system of N blocks connected by springs and sliding against a corresponding set of
obstacles. A simple two-node, two-dimensional system of this kind is illustrated in Figure 2.



Figure 2: A two-node frictional elastic system.

We choose to make a further partition of the reduced stiffness matrix into components normal
and tangential to the local interface, obtaining the elastic relation

w(t A BT
q | _ qw( ) + v 7 (4)
p p(t) B C w
where pl(t), q¥(t) are the contact (nodal) forces that would be produced by the external loads
if the nodes were all welded in contact at v = w = 0. Notice that in the three-dimensional
problem, the tangential nodal force g; is itself a 2-vector, since slip can occur in any direction in

the contact plane, whereas in two dimensions both p; and ¢; are scalars. Most of the rest of this
paper will be discussed in terms of the discrete model of equation (4).

2.3. Loading cycles

We consider the case where the external loading takes the form

Ui = 00 ”

where gy, py are time-independent mean loads, g’ (¢), py’ (t) are normalized periodic loads with
zero mean value, and A is a scalar load factor.

2.4. Analogies with plasticity

The Coulomb friction law has many similarities with plasticity in the absence of strain harden-
ing. In the latter case, each point in the material remains elastic until a certain critical condition
is reached [the failure surface] after which irreversible plastic strains accumulate while the stress
state remains on the failure surface. Unloading is initially elastic, but the plastic strains remain
and will generally lead to a state of residual stress after complete unloading. In the frictional
problem, all nodes remain stuck until the inequality in (I) is violated, after which relative tan-
gential displacements (slips) v; accumulate whilst remaining on the ‘failure surface’ |q;| = fp;.
As in the plasticity problem, these slips will generally contribute to a state of residual stress.



2.5. Shakedown

In both cases, residual stresses are generally ‘favourable’ in the sense that they tend to reduce
the liability for further plastic strain or frictional slip during subsequent periodic loading cycles.
In some cases, a state of residual stress is developed sufficient to prevent all plastic deformation
during subsequent cycles and this condition is known as shakedown. For elastic-plastic systems,
Melan’s theorem (Melan, 1936) states that if any distribution of residual strain can be found
sufficient to ensure shakedown, then the system will in fact shake down, though not necessarily
to the state with the defined state of residual strain. In other words, ‘the system will shake down
if it can’. For many years, tribologists assumed that a similar theorem applies to frictional slip
(Churchman et al., 2006), but Klarbring et al. (2007) showed that it applies if and only if the
normal tractions have no effect on the tangential displacements, implying that the matrix B in
equation (4) is null. Counter-examples, comprising loading scenarios in which shakedown depends
on the initial conditions can always be found if B # 0. Klarbring’s proof was extended to the
corresponding continuum problem by Barber et al. (2008).

2.6. Uncoupled systems

Systems in which B = 0 are known as uncoupled. In this case Klarbring’s P-matrix condition
is satisfied for arbitrarily large friction coefficients, so the rate problem is always well posed (see
§2.1).

The most important continuum problems in which the normal and tangential problems are
uncoupled are (i) if the contact interface is a symmetry plane for the system, or (ii) if the two
contacting bodies can be approximated as elastic half spaces making contact along a common
plane interface, and Dundurs’ bimaterial constant 5 = 0 (Dundurs, 1969), or equivalently

(1—14) _ (1 —1s) 7 (©)

M1 H2

where v, g, k = 1,2 are Poisson’s ratio and the shear modulus respectively for the materials of
bodies 1,2. Finite element discretizations of these problems will lead to a system with B = 0,
provided the meshing near the contact plane is symmetric with respect to this plane.

2.7. Cyclic slip

If the system does not shake down under periodic loading, we anticipate that it will eventually
tend to a steady periodic state. We can then identify a subset 7 of contact nodes such that for
i € 7, node i does not slip or separate at any time during the steady state. If the discrete system
results from a finite element discretization of a continuum problem, the set 7 would define the
permanent stick zone. Andersson et al (2014) have shown that for uncoupled discrete systems, 7°
is independent of the initial conditions v(0), as are

e the status of any given node 7 (stick, slip or separation) at any time ¢;
e the frictional tractions g,(t) for all nodes i # 7T
e the nodal slip velocities ©(t);

e the total frictional energy dissipation per cycle.



As in the shakedown case, the final steady state is not unique, since the nodal displacements
v;(t) are defined only to within a time-independent vector for all ¢ and the tractions g,(¢) are not
uniquely determined for i € 7.

These results have important consequences for practical systems. For example, the effective
damping of an uncoupled assembled structure will be independent of the assembly protocol, as
will the pattern of fretting damage and the number of cycles to failure. The frictional Melan’s
theorem (Klarbring et al., 2007) can be regarded as the special case of Andersson’s theorem, in
which all contact nodes belong to 7 and the frictional dissipation is zero.

3. Coupled systems

When the system is coupled (B # 0) we must anticipate a possible dependence of the steady
state on the initial conditions v(0). This implies that the system posesses some form of ‘memory’
and it is instructive to enquire where this memory might reside. Referring to equations (1-3)), we
notice that in each state we have one scalar and one vector equation for each node, but one of
the equations for the ‘stick’ state defines only the time derivative ©;(t), which leaves a degree of
uncertainty in the actual value v;(t). It is clear that if node ¢ never slipped during the loading
history, the value of v;(t) would be equal to the initial value v;(0), so in a sense, this node
‘remembers’ its initial value. More generally, this argument implies that the system memory
resides in the slip displacements v;(t) at nodes that are stuck at time ¢.

8.1. Ahn’s diagram

Ahn et al (2008) showed how considerable insight into the behaviour of coupled systems can
be obtained by tracking the motion of the point P{v;,vs,vs, ..., v} in v-space. For the simple
two-node system of Figure 2 (above), we have only two degrees of freedom vy, vo and the progress
of the system towards the steady state can be presented graphically.

If the two nodes are both in contact (w; = wg = 0), there are now four frictional inequalities

(A11 — fBi)vr + (A2 — fBig)va < fpP(t) —qi’(t) 1 (01 <0)
(A11 + fBii)vr + (Aia + fBio)vs > —fp'(t) —¢’(t) II (01 >0) (7)
(A21 — fBao1)v1 + (Agg — fBag)va < fpy(t) — gz’ (t) I (d2 <0)
(A21 + fBar1)vr + (A2e + fBa2)va > —fpy(t) —gy'(t) IV (v2>0)

governing incipient slip in each direction at the two nodes. The direction of incipient slip for each
constraint is given in parentheses.

Fach of these constraints excludes the region on one side of a straight line in v-space, as
illustrated in Figure 3, where P might instantaneously occupy any point in the central white
quadrilateral. As the external loads p™(t),q™(t) vary [for example, as in equation (5)], the
constraint lines move, whilst preserving the same slope. Thus, for example, if the constraint
IV in Figure 3 moves so as to exclude more space, it will ‘push’ P in the positive vo-direction,
representing ‘forward’ slip at node 2. More generally, the point P will only move when there
is slip at one or both nodes, and in this state, P must lie on the appropriate boundary line(s).
Notice that motion of P must be either horizontal or vertical [i.e. only one node slips at a time]
unless two constraints are simultaneously active.
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Figure 3: Evolution of the slip-displacement diagram. If constraint IV advances, it will push P
in the direction vy > 0, which represents forward slip at node 2.

During each period of loading, the constraints I,I1,I11,IV will move through the same
sequence and we can define the corresponding extreme constraints I¥, IIP, etc. as the positions
during the cycle that exclude the maximum amount of v-space. In Figure 4, each constraint
moves through the corresponding dark shaded region during each cycle, but there remains a ‘safe
shakedown region’ which is never excluded by any of the constraints.

saf e shakedown
region v E

Figure 4: The extreme constraints I¥, II¥, III¥, IVE, for a system exhibiting a safe shakedown
region.

Ahn et al. (2008) showed that the two-node system will always shake down if the safe shake-
down region is a quadrilateral, as shown in Figure 4, but shakedown will depend on initial condi-
tions if it is triangular. The position of the extreme constarints for this latter case is illustrated
in Figure 5. If the initial value of vy lies to the left of the safe triangle, the steady state of the
system will involve oscillation between P; and P, as constraints III and IV advance and retreat
(at different times during the cycle). Notice that the only constraint in (7) that can increase vy
is II, and its extreme postion II¥ in Figure 5 is too far to the left to allow P to reach the safe



triangle. However, if the initial value of vy lies to the right of the shaded triangle, the final state
is always shakedown.

Vi

Figure 5: The white triangle defines a safe shakedown region, but whether it is reached depends
on the initial value of v;.

Notice that if B = 0, the two lines defined by (7) for any given node are parallel, so the safe
shakedown region is a parallelogram and hence always quadrilateral, confirming the results of the
frictional Melan’s theorem.

3.2. Multinode systems

Ahn’s criterion can be extended to two-dimensional systems with any number of nodes, in
which case the safe shakedown region is always reached if and only if all the 2N extreme constraints
are active in defining this region. In the simple example of Figure 5, constraint II® is not active
in defining the shakedown region. More generally, if a particular extreme constraint is not active,
we can identify points in the safe region for this constraint that lie outside all the active extreme
constraints. If such a point is used as an initial condition, it follows that P will never reach the
safe shakedown region.

3.8. Critical load factors

With the loading of equation (5]), there will exist two critical load factors A; < Ag, such that
for A < A1, the system shakes down from all initial conditions, whereas for A > A, it cannot shake
down. In the intermediate range A\; < A < A2, whether shakedown occurs depends on the initial
conditions. For A < \; the safe shakedown space comprises a hypervolume with 2N hyperplane
facets, one corresponding to each extreme constraint, all of which are active. As A = Ay is
approached, one of these facets shrinks to a point, implying that the hyperplane corresponding
to the constraint passes through an apex defined by the intersection of N other hyperplanes, one
for each node. This is most easily visualized for the two node system, of Figure 5, where \; is
defined by the condition that the line II® pass through the intersection of III¥ and IVE.

For N nodes, intersections of this kind can be found by choosing any one of the two constraints
for each of the N nodes, and then one further constraint [so that both constraints are included
for this one node], replacing the inequalities by equalities, and solving the resulting set of N + 1
linear equations for the N displacements v; and A. There are 2V~ x N ways of choosing these



equations, so we shall obtain a corresponding number of values of A, the lowest of which defines \;.
As with Klarbring’s P-matrix criterion for the critical coefficient of friction, the problem becomes
computationally prohibitive for large N, but we note that in a finite element discretization of
a continuum problem, we might expect to get a reasonable estimate of A\; by using a relatively
coarse model.

One of the remaining values of A defined by this procedure will be A, the value at which the
safe shakedown region shrinks to a point. However, a more efficient approach to determining Ao
is to define the maximum A permitting permanent stick at all nodes as a function \(v;) of the slip
displacements v;, and then choose the v; to maximize A (Bjorkman and Klarbring, 1987, Flicek
et al., 2015a).

3.4. Cyclic slip of coupled systems

If A > X, the steady state must be one of cyclic slip, but if the system is coupled, we anticipate
that this state (and hence, for example, the steady-state frictional dissipation and damage) will
depend on the initial conditions, at least as long as 7 # (. We define the range in which this
condition is satisfied as A < Ag, but notice that we must leave open the possibility that the set 7°
is itself dependent on initial conditions.

For A > A3, the permanent stick zone 7 = (, so all nodes slip at least once during each
cycle in the steady state. Recalling that the system memory is stored in the slip displacements
at nodes that are instantaneously stuck, this implies the ‘exchange’ of memory between nodes
during each cycle. We might expect this to lead to a gradual degradation of memory and hence
to an asymptotic approach to a steady state.
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Figure 6: Convergence of the trajectory on a unique steady state.

We illustrate this process for the two-node system in Figure 6, where the initial condition is
defined by point A. The external loads are defined such that the constraints advance and then
recede in the sequence II-IV—I—III—II.... The extreme positions of these constraints are shown



in the figure, from which we see that the point P(v1,v2) will converge quite rapidly on a unique
steady state, indicated by the dashed rectangle.

The evolution equations can be interpreted as defining an iterative algorithm to determine
the state P"*!(v) as a function of the corresponding state P™(v) exactly one period earlier. In
the complete periodic loading scenario, this iteration is performed repeatedly and trajectories
such as the dashed rectangle in Figure 6 can then be seen as attractors for the iteration (Milnor,
1985). Andersson et al. (2013) have shown that with larger coefficients of friction and strong
coupling, multiple attractors can be identified, and also some repellors — i.e. trajectories which
strictly satisfy the steady-state iterative condition P"*1(v) = P"(v), but for which an arbitrarily
small perturbation is sufficient to cause the system to diverge from the steady state, ultimately
to be attracted by another steady state. Generally this behaviour requires larger coefficients of
friction and strong coupling, but examples can be found without violating Klarbring’s P-matrix
condition.

3.5. Status of nodes in the permanent stick zone T

If a particular node i slips during the steady state, it must experience periods of slip in both
directions, since otherwise an unbounded slip would accumulate. However, during the transient
approach to the steady state, we typically encounter nodes that slip only in a single direction
during each cycle. In this case, the slips decrease with each successive cycle, generally approaching
a summable geometric sequence at later stages of the process (Ahn and Barber, 2008). In the
steady state, such nodes will experience ‘incipient slip’ at some point during each cycle in the
steady state. In other words, the frictional inequality just reaches equality, but no slip actually
occurs.

More generally, both cyclic slip and shakedown states usually involve a subset of nodes in the
permanent stick zone 7 experiencing incipient slip at some point during the cycle. Pratt et al.
(2010) have conjectured that the number of such nodes is reduced if the system experiences a
transient (typically dynamic) overload condition. This is of relevance to nominally static collec-
tions of objects, such as masonry structures or granular media, which can sometimes be moved
further from an incipient collapse state by one-time dynamic loading.

8.6. Summary

If the load factor A is increased beyond A3, we shall eventually reach a value (\4) at which all
the nodes slip simultaneously at least once during each cycle. When this happens, the equations
(T-3) are sufficient to determine the instantaneous state uniquely, so no further dependence on
initial conditions can occur. Thus, for a coupled system we anticipate the following ranges of \:-

0< A<\ Shakedown for all initial conditions.

AL <A< A Shakedown or cyclic slip depending on initial conditions.

Aoy < A< A3 Cyclic slip, but the steady state depends on initial conditions.
At least some nodes must be permanently stuck.

A3 <A< N\ Unique cyclic slip (or one of a few such states) approached asymptotically.
The permanent stick zone 7 = ().

A >\ Unique cyclic slip reached after one or two cycles.

There is some time during each cycle when all nodes slip.
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For uncoupled systems, Ao = A\; and in the range Ay < A < A3, many features of the steady state
are independent of initial conditions, as explained in §2.5.

If the bodies posess one or more degrees of freedom of rigid-body relative motion, the behaviour
of the system is essentially unchanged for A < A3, but is qualitatively different for A > A3. In this
case, sliding occurs as soon as \4 is reached, but in the range A3 < A < A4 we can obtain behaviour
analogous to ‘ratchetting’ in elastic plastic systems. Each node slips at least once during the cycle
in the steady state, and the total nodal slip during a cycle is non-zero, leading to the accumulation
of rigid-body motion. This can involve a rocking or walking motion (Mugadu et a., 2004, Wetter
and Popov, 2014, Ciavarella, 2015), or progressive slip and /or separation (Anscombe and Johnson,
1974). An application where this is of particular concern is the interference fit between the bushing
and a conrod end, where accumulated relative rotation can cause oil holes to become misaligned
and hence blocked (Antoni et al., 2010).

4. Continuous systems

Most engineering contact problems are too intractable for analytical treatment, particularly
when friction is involved, so we are more or less forced to use finite element or boundary element
methods, which of course converts them to discrete problems. However, there are two important
exceptions where significant analytical progress can be made with a continuum description:-

1. If the contact area is sufficiently small compared with the other linear dimensions of the
bodies, so that these can be modelled as two elastic half spaces.

2. If slip is confined to a region at the edge of the contact area that is small compared with
all other dimensions, including those of the contact area.

In continuum problems, the slip displacement v is a continuous function of position in the
contact area. In two-dimensional problems, the derivatives v’(s),w’(s) represent distributions
of glide and climb dislocations respectively, where s is a coordinate defining position along the
interface, and this permits the contact problem to be reduced to the solution of one or more
integral equations if the appropriate dislocation solutions are known (Hills et al., 1996).

4.1. Half-space models

Cattaneo (1938) and Mindlin (1949) showed that if the contacting bodies have quadratic
profiles as in the Hertz contact problem (Johnson, 1985), the frictional (shear) tractions for the
problem of Figure 1 in the uncoupled case (3 = 0) are given by

Qz(xay):fhj(xay)_p*(xay)] ) (8)

where p(x,y) is the normal contact pressure and p*(z,y) is the contact pressure that would be
developed at some smaller normal force P* given by

@
=

Also, if the contact area at load P is defined as A(P), the instantaneous ‘stick’ area will be
Astick = A(P*), whilst the region Ag;, = [A(P) — A(P*)] slips. Ciavarella (1998a) and Jéger
(1998) have since shown that this form of superposition is exact for all shapes of contacting bodies

Pr=r (9)
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in the two dimensional case. Equations (8] [9) also define a good approximation in the general
three-dimensional case (Ciavarella, 1998b), again subject to (6).
This method has been extended to general loading paths by Barber et al. (2011). During
periods where
Q|

W<f’ (10)

the contact area increases and new contact is laid down in a state of full stick (Mindlin and
Deresiewicz, 1953). At all other stages of the loading cycle, changes in the traction distribution
can be expressed as a superposition of appropriate Ciavarella-Jager distributions (8). For three-
dimensional problems, this approach permits the relation between tangential displacement and
tangential force and hence the dissipation per cycle to be expressed in terms of the incremental
normal stiffness (Putigniano et al., 2011).

P>0 and

4.1.1. Bulk stress

In practical applications, particularly those involving fretting fatigue, the contact problem is
often complicated by the presence of a periodic bulk stress o1, 02 in one or both of the contacting
bodies, as shown in Figure 7. If the tangential strains associated with these stresses are not equal,
there will be a tendency for slip at the interface which interacts with that due to the tangential
force Q.

=]

- —>
Oy<— Q —> 0

- —_— —>

X

- -
Op<— Q 0

-—

P

Figure 7: A contact problem involving bulk stress.

Ciavarella and Demelio (2001) have shown that for two-dimensional problems with relatively
low levels of the bulk stress difference |01 — o3|, the effect is merely to extend one of the two
slip regions and reduce the other. Also, the Ciavarella-Jiager superposition can be extended
to this case for general geometries by defining p*(x,y) as the normal traction associated with a
normal force P* and a moment, or equivalently a normal force with a non-central line of action.

However, above some critical level of |o1 — o3|, slip will occur in opposite directions in the two
slip zones, and a more complex solution strategy is required.

4.1.2. Incremental solution

An alternative approach to the solution of half-space problems with friction is to regard the
instantaneous state as an appropriate integral of the incremental solution — i.e. of the change
in traction distribution during an infinitesimal change of normal and tangential load. In the
incremental problem, the contact area A4 and the stick area Agiex can be regarded as essentially
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unchanged, so the incremental problem in the two-dimensional case (for example) is defined by
the boundary conditions

ou, '

== 0 acA (11)

Ouy

61; = 0 S Astick (12)
4z = :I:fp(x) S -Aslip 5 (13)

where u, is the relative normal displacement and the sign in (13) depends on the direction of slip.
In effect, the incremental problem is a continuum statement of the frictional rate problem.

Equations (11-13) define a ‘flat punch’ problem (possibly also including incremental bulk
stresses) that can be solved in general for the two dimensional case, after which more general
solutions can be constructed by integration (Hills et al., 2011). This technique can also be used
for coupled problems for the half space, where 8 # 0 and the corresponding incremental problem
will involve both normal and shear tractions, even under purely normal incremental loading.
Storakers and Elaguine (2005) used this formulation to show that the stick zone Agick during
purely normal loading is a constant proportion of the total contact area A for contacting bodies
of any shape, provided only that the contact area is a monotonic function of the normal load, a
result that was previously established by Spence (1973) only for power-law profiles.

4.2. Slip near a corner

In systems subject to fretting fatigue, microslip is often confined to a region that is small
compared with the extent of the contact area and the dimensions of the bodies, in which case
results of some generality can be achieved using the asymptotic technique due to Williams (1952).
In effect, the fields local to the corner are completely characterized by the generalized stress-
intensity factors K7, K1, which are the multipliers on the first two terms in an asymptotic series
for the stress field in powers of the distance r from the corner. Figure 8 shows the detail of a
contact between a body with a right-angle corner and a plane surface.

body2 | traction-free

/
)V body 1

Figure 8: Indentation of an elastic half plane by a body with a right-angle corner.

For the case of similar materials, Churchman and Hills (2006) have shown that regardless
of the far-field loading and macroscopic geometry, the corner must either stick or separate for
coefficients of friction greater than 0.543. For lower coefficients of friction, a slip zone develops
at the corner, whose length depends only on the ratio Ky;/Kj. The application of these results
to fretting fatigue problems is discussed by Flicek et al. (2015b).

Similar methods can be applied to determine the local perturbation in stress field and the
extent of the slip zone due to a slightly rounded corner (Dini and Hills, 2004).
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5. Conclusions

The behaviour of elastic systems with frictional interfaces is critically dependent on the extent
of coupling between the normal tractions and the tangential (slip) displacements. If the system
is uncoupled, a frictional equivalent of Melan’s theorem applies, and above the shakedown limit,
the frictional dissipation is independent of initial conditions. By contrast, coupled systems retain
a memory of the initial conditions, which is stored in the slip displacements at permanently stuck
nodes. Uncoupled problems that can be modelled as half spaces permit a fairly general analytical
continuum solution, based on an extension of the Ciavarella-Jager theorem.
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