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Abstract

The Stroh formalism is extended to provide a new class of three-dimensional solutions for the

generally anisotropic elastic material that have polynomial dependence on x3, but which have quite

general form in x1; x2. The solutions are obtained by a sequence of partial integrations with respect to

x3, starting from Stroh’s two-dimensional solution. At each stage, certain special functions have to be

introduced in order to satisfy the equilibrium equation. The method provides a general analytical

technique for the solution of the problem of the prismatic bar with tractions or displacements

prescribed on its lateral surfaces. It also provides a particularly efficient solution for three-

dimensional boundary-value problems for the half-space. The method is illustrated by the example of

a half-space loaded by a linearly varying line force.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The constitutive law for a generally anisotropic material involves 21 independent elastic
constants. Methods are well established for the solution of such problems for cases where
the stress and displacement fields depend on only two of the three spatial coordinates
x1;x2;x3. Lekhnitskii (1963) starts from expressions for the stresses in terms of stress
functions that satisfy equilibrium and shows that the compatibility condition can then be
see front matter r 2007 Elsevier Ltd. All rights reserved.
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decomposed into six first order operators. Alternatively, Stroh (1958, 1962) shows that
particular solutions can be found in which the displacement vector has the same direction
at all points and a magnitude that is a function of a certain complex combination of x1; x2.
The general solution is then written as a sum of these solutions. (For a detailed exposition
of Stroh’s solution including numerous examples, see Ting, 1996.) Both the Stroh and
Lekhnitskii methods can be regarded as emanating from appropriate linear transforma-
tions of the in-plane coordinates x1; x2 and require that these transformations be distinct.
For example, if two of Lekhnitskii’s first order operators or two of Stroh’s combinations of
x1; x2 should be identical, special methods are necessary for the solution. This condition
arises only for certain special combinations of elastic constants (including of course the
case of isotropy) and will not be considered in the present paper.
Very few solutions exist for problems of general anisotropy when the stresses depend on

all three coordinates. Published solutions, such as those for a concentrated point force or
dislocation in an infinite body or a concentrated force on the surface of a half-space are
generally obtained using transform methods, such that the problem in the transform
domain is two-dimensional and can therefore be treated using the Stroh or Lekhnitskii
formalism (Sveklo, 1964; Willis, 1966; Ting, 2006; Wu, 1998). This contrasts with isotropic
elasticity, where (for example) general solutions can be expressed in terms of three-
dimensional harmonic functions using the Papkovitch–Neuber formulation (Barber, 2002).
Barber (2006a) has shown how certain three-dimensional isotropic solutions can be derived
from their two-dimensional counterparts by successive partial integrations in the x3-
direction. This leads to a general solution of the problem of an isotropic prismatic bar
loaded on its lateral surfaces, provided only that these loads can be expressed as finite
power series in x3. At each stage in the integration process, a two-dimensional problem is
solved to ensure that the lowest order terms in the solution satisfy: (i) the equations of
elasticity and (ii) the boundary conditions. The hierarchical structure underlying this
procedure was first enunciated by Ies-an (1986) and has also been applied by other
authors in both analytical and numerical formulations (Ladevèze et al., 2004; Huang and
Dong, 2001).
An essentially similar procedure can be applied to problems in general anisotropy (Rand

and Rovenski, 2005). However, in the isotropic case, the equations of elasticity can be
reduced to the condition that the Papkovitch–Neuber potentials satisfy Laplace’s equation
and the development of partial integrals satisfying this condition is a routine problem in
potential theory. For the anisotropic case, this strategy is no longer available, except for
certain special cases such as that of transverse isotropy.
The problem of determining an appropriate partial integral can be reduced to a sequence

of two-dimensional body force problems (Barber, 2006b), which in turn could be solved by
convolution on the known line force solution. However, this procedure is extremely
cumbersome in practice. In the present paper, we shall extend the classical Stroh formalism
for two-dimensional general anisotropy to stress and displacement fields with polynomial
dependence on the third coordinate x3. In particular, we shall show that the general
solution for a stress field with polynomial dependence on x3 can be written as a series
involving powers of x2;x3 multiplying arbitrary functions of x1 þ px2, where p is one of the
Stroh eigenvalues and we shall develop a set of recurrence relations for determining the
coefficients in this series that depend only on the elastic constants and not on the particular
boundary-value problem. The method is illustrated with the problem of a half-space
loaded by a linearly-varying line load.
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2. The Stroh formalism

The constitutive law for the generally anisotropic material takes the form

sij ¼ Cijkl

quk

qxl

, (1)

where s is the stress tensor, u is the displacement vector and Cijkl is the elasticity tensor,
which satisfies the symmetry conditions

Cijkl ¼ Cjikl ¼ Cklij ¼ Cijlk. (2)

The suffixes i; j; k; l are assumed to take the values 1, 2, 3 and summation is implied over
repeated suffixes.

It is convenient to define the matrices

Qik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2, ð3Þ

Eik ¼ Ci1k3; F ik ¼ Ci2k3; Gik ¼ Ci3k3 ð4Þ

from selected coefficients of the elasticity tensor, after which the vector traction ri on the
xi-surface (i.e. the surface xi ¼ constant) can be written as

r1 ¼ Q
qu

qx1
þ R

qu

qx2
þ E

qu

qx3
,

r2 ¼ RT qu

qx1
þ T

qu

qx2
þ F

qu

qx3
,

r3 ¼ ET qu

qx1
þ FT qu

qx2
þ G

qu

qx3
. ð5Þ

The stress components are required to satisfy the equilibrium equations

qsij

qxj

¼ Cijkl

q2uk

qxjqxl

¼ 0 (6)

in the absence of body forces. Stroh (1958, 1962) investigated the conditions under which
Eq. (6) admits a two-dimensional solution of the form

u ¼ Rfaf ðzÞg, (7)

where

z ¼ x1 þ px2 (8)

and p is a complex scalar parameter. Physically, this corresponds to the special case
where the magnitude of the displacement vector has fairly general dependence on x1;x2,
but its direction is the same at all points. Substituting into (6), we obtain the matrix
equation

DðpÞa ¼ 0, (9)

where

DðpÞ ¼ fQ þ pðRþ RTÞ þ p2Tg. (10)

Eq. (9) has a non-trivial solution if and only if the determinant

jQ þ pðRþ RTÞ þ p2Tj ¼ 0 (11)
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and this yields a sextic equation for p which for physically realistic material properties
always has three pairs of complex conjugate roots, those with positive imaginary part
being denoted pð1Þ; pð2Þ; pð3Þ, respectively. If these roots (eigenvalues) are distinct, a general
solution of the two-dimensional problem can then be constructed by superposition in the
form

u ¼ R
X3
a¼1

aðaÞf ðaÞðzðaÞÞ

( )
, (12)

where zðaÞ ¼ x1 þ pðaÞx2 and aðaÞ is the eigenvector of (9) corresponding to the eigenvalue
pðaÞ. A detailed exposition of Stroh’s solution and many examples are given by Ting (1996).
Notice that the physical displacement is defined as the real part of a complex expression.
We shall omit the real part designation in the analysis which follows, but this is to be
understood in the interpretation of any expressions for stresses or displacements.
3. Three-dimensional solutions

In this paper, we shall assume that the pðaÞ are distinct, special methods for dealing with
the various degenerate cases being discussed in Ting (1996, Chapter 13). In the following,
we shall omit the superscript ðaÞ on p, which will therefore be taken to represent any one of
the Stroh eigenvalues. Superposition over the three eigenvalues is needed only at the final
stage in the development of the general solution.
We choose to express the displacement u as a vector function of ðz;x2;x3Þ, where z is

given by (8). The derivatives with respect to the original coordinates x1;x2;x3 are then
replaced according to the scheme

q
qx1
!

q
qz
;

q
qx2
! p

q
qz
þ

q
qx2

� �
;

q
qx3
!

q
qx3

(13)

and the equilibrium equation (6) takes the form

LðuÞ � D
q2u
qz2
þ T

q2u
qx2

2

þ V
q2u
qzqx2

þW
q2u
qx3qz

þ ðF þ FTÞ
q2u

qx3qx2
þ G

q2u

qx2
3

¼ 0, ð14Þ

where

V ¼ Rþ RT þ 2pT; W ¼ E þ ET þ pðF þ FTÞ. (15)

Notice that the choice of coordinates ðz;x2;x3Þ is not unique, nor is the original
Stroh combination (8). Any two linearly independent combinations of x1;x2 could be
used to represent the general position in the plane and indeed the complex conjugate
pair z ¼ x1 þ px2, z ¼ x1 þ px2 was used in Barber (2006b). The advantage of the
present choice is that dependence on the Stroh eigenvalue p disappears on the plane surface
x2 ¼ 0, resulting in particularly simple solutions for problems involving boundary
conditions at this plane. We shall exploit this simplification in the example in
Section 4(a). A similar simplification occurs for two-dimensional problems in the original
Stroh formalism.
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Following Barber (2006a), we anticipate the existence of a sequence of particular
solutions un of the equilibrium equation (6), such that

qun

qx3
¼ un�1 (16)

and the final term in the sequence

u0 ¼ g0ðz;x2Þ (17)

is a two-dimensional displacement field that is independent of x3. It follows that u0 can be
represented in the Stroh formalism by writing

g0 ¼ af ðzÞ, (18)

where f is a scalar function of z only, a is the Stroh eigenvector and summation is implied
across the three Stroh eigenvalues as in Eq. (12). Progressive partial integrations of (16)
then show that un can be written in the polynomial form

un ¼
Xn

j¼0

x
ðn�jÞ
3 gjðz;x2Þ

ðn� jÞ!
, (19)

where the gj are a set of arbitrary vector functions of z; x2 (or equivalently of x1;x2 in view
of (8)) only.
3.1. Linear function of x3

To gain some insight into possible strategies for determining the vector functions gj in
(19), we first consider the displacement field u1 that is linear in x3. Substituting (18) into
(19) with n ¼ 1, we have

u1 ¼ ax3f ðzÞ þ g1ðz;x2Þ, (20)

which we choose to write in the form

u1 ¼ ax3f ðzÞ þ bhðz;x2Þ, (21)

where b is a vector coefficient and h is a scalar function of z; x2. This is not as general as
(20), since the three displacement components might have different functional dependence
on z;x2 (or x1;x2). However, we shall show in the following that the form assumed here is
sufficiently general to produce a particular solution satisfying the equilibrium equation
(14). Complete generality can be restored at the end of the procedure by superposition over
a series of functions un and over the three Stroh eigenvalues.

Substituting (21) into (14), we obtain

Lðu1Þ ¼ Dax3f
00
ðzÞ þWaf 0 þDb

q2h
qz2
þ Tb

q2h

qx2
2

þ Vb
q2h

qzqx2
. (22)

The first term is zero in view of (9) and hence (14) will be satisfied if

Db
q2h
qz2
þ Tb

q2h

qx2
2

þ Vb
q2h
qzqx2

¼ �Waf 0. (23)
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At first sight, it appears that a particular solution of this equation can be obtained by
choosing h to be a function of z only, such that

qh

qz
¼ f ðzÞ, (24)

and then solving the resulting matrix equation

Db ¼ �Wa (25)

for the unknown vector b. However, this strategy fails precisely because the matrix
D is singular. The problem is similar to that which arises in other degenerate problems (see,
for example, Barber, 2002, Section 10.3). It can be resolved by the inclusion of an
additional function obtained from the ‘obvious’ form hðzÞ of (24) by differentiation
with respect to the parameter (in this case p) whose special value causes the degeneracy.
We obtain

qhðzÞ

qp
¼ h0ðzÞ

qz

qp
¼ x2h0ðzÞ, (26)

showing that for completeness we must include an arbitrary function of z multiplied by x2.
We therefore write the displacement in the generic form

u ¼ ax3f ðzÞ þ bx2h1ðzÞ þ ch2ðzÞ, (27)

where f ; h1; h2 are arbitrary functions of z only. Substitution into (14) and cancellation of
any null terms resulting from (9) then yields

Dbx2h001ðzÞ þ Vbh01ðzÞ þDch002ðzÞ ¼ �Waf 0ðzÞ. (28)

The first term can be set to zero by choosing b ¼ a, leaving

Vah01 þDch002 ¼ �Waf 0. (29)

A particular solution can then be found by writing

h1ðzÞ ¼ gf ðzÞ; h2ðzÞ ¼

Z
f ðzÞdz, (30)

and choosing c to satisfy

Dc ¼ �ðW þ gVÞa. (31)

This does not produce the most general solution of form (27), since we could add in an
arbitrary multiplier of the two-dimensional Stroh solution. However, generality will be
restored by summation over the un at the end of the procedure.
Since D is singular, (31) is solvable if and only if the right-hand side satisfies a condition

which is equivalent to the statement that only two of the three algebraic equations are
linearly independent. This condition can be made explicit by premultiplying by aT and
noting that aTD ¼ 0. We then have

aTðW þ gVÞa ¼ 0 (32)

and hence

g ¼ �
aTWa

aTVa
. (33)
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If this condition is satisfied, (31) has a solution for c which is indeterminate to within any
multiplier of the eigenvector a. This solution can be obtained by writing b as an eigenvector
expansion, as shown in Appendix A.

3.2. Higher order terms

The procedure described in the previous section could be applied sequentially to
generate multiple partial integrals of the two-dimensional solution with correspondingly
higher order polynomial dependence on x3. At each stage, degeneracy of the matrix D
demands additional special functions. These can be generated by further differentiations
with respect to p as in (26) and hence will lead to higher order power dependence on x2.
A generalization of (27), (30) (ii) suggests that these special functions will be of the form
xr
2 f ½s�ðzÞ, where the notation f ½��ðzÞ represents a set of partial integrals of f ðzÞ defined by the

recurrence relations

f ½s�ðzÞ ¼
qf ½sþ1�

qz
; f ½0�ðzÞ ¼ f ðzÞ. (34)

The equilibrium equation (14) is homogeneous in the coordinates and hence for
dimensional consistency terms of the form

x
q
3x

r
2 f ½s�ðzÞ

must share the same value of the sum qþ rþ s. We therefore explore the possibility of a
polynomial solution to (14) of the form

un ¼
Xn

j¼0

Xj

i¼0

ci
jx
ðn�jÞ
3 xi

2f
½j�i�
n ðzÞ

ðn� jÞ!i!
. (35)

Substituting (35) into (14) and equating coefficients of like powers of x3 and x2, we then
obtain the recurrence relation

Dc i
j ¼ �Tciþ2

j � Vciþ1
j �Wci

j�1 � ðF þ FTÞciþ1
j�1 � Gci

j�2, (36)

for the vector coefficients ci
j. This equation can be applied to all values of i, j, provided we

interpret the terms on the right-hand side following the convention

c s
t ¼ 0 if so0 or tos. (37)

Suppose that all the non-zero coefficient vectors ci
t are known for tpj � 1 and we wish to

determine those for t ¼ j. For i ¼ j the right-hand side of (36) is null because of (37) and
we have

Dc j
j ¼ 0, (38)

with general solution

c
j

j ¼ bja, (39)

where bj is an arbitrary scalar multiplier.
For i ¼ j � 1, (36) reduces to

Dc j�1
j ¼ �Vc j

j �Wc j�1
j�1 ¼ �ðbjV þ bj�1WÞa, (40)
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using (39). Premultiplying by aT, we then have

aTbjVaþ aTbj�1Wa ¼ 0, (41)

or

bj ¼ gbj�1, (42)

using (33). We can arbitrarily assign the first coefficient b0 ¼ 1, since this degree of
freedom can be wrapped into the arbitrary function f ðzÞ. It then follows that bj ¼ gj and

c
j
j ¼ gja, (43)

from (39). Eq. (42) represents the solvability condition for (40), after which the vector c j�1
j

can be determined in the form

cj�1
j ¼ bj�1

j þ bj�1
j a, (44)

where bj�1
j is any solution of (40) and bj�1

j is an as yet unknown scalar multiplier. A general
procedure for solving the degenerate vector equation (40) is given in Appendix A.
This procedure can be applied recursively to obtain all the vector coefficients ci

j. Suppose
at some stage we have all the coefficients cs

t for tpj � 1 or t ¼ j; sXi þ 1, except for the
unknown multiplier biþ1

j in

c iþ1
j ¼ biþ1

j þ biþ1
j a, (45)

where biþ1
j is also known. Substitution into (36) then yields

Dci
j ¼ �Tciþ2

j � Vbiþ1
j � biþ1

j Va�Wci
j�1 � ðF þ FTÞciþ1

j�1 � Gci
j�2 (46)

and biþ1
j can be found by premultiplication by aT, with the result

biþ1
j ¼ �

aTTciþ2
j þ aTVbiþ1

j þ aTWci
j�1 þ aTðF þ FTÞciþ1

j�1 þ aTGci
j�2

aTVa
. (47)

With this choice of biþ1
j , the procedure of Appendix A applied to (46) then enables us to

find ci
j in the form

ci
j ¼ bi

j þ bi
ja, (48)

where bi
j is a known vector and bi

j is an unknown scalar multiplier. This completes one
stage of the recursion. Starting from c

j
j from Eq. (43) and applying the recursion each time

at the same j but reducing i by one step, we can determine all the coefficients ci
j for

the given value of j. In each case, the unknown multiplier introduced is determined from
the solvability condition for the next vector coefficient. This leaves undetermined the
multipliers b0j in the lowest coefficients c0j , but these functions can be wrapped into
the corresponding terms for lower values of n and hence b0j can be set to zero without loss
of generality. Once the coefficients have been determined for a given value of j, the
procedure can be repeated for the next higher value of j. The overall procedure is started
from the result c00 ¼ a, which is essentially a restatement of Stroh’s two-dimensional
solution. We also note that the coefficients ci

j determined by this procedure are
independent of n, or more precisely, the n dependence of each term in (35) is explicitly
contained in the factorial ðn� jÞ! in the denominator.
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This procedure is sufficient to determine the function un of Eq. (35) for arbitrary n,
except for the unspecified function f nðzÞ. A general polynomial solution of order m can
then be constructed as

u ¼
Xm

n¼0

un ¼
Xm

n¼0

Xn

j¼0

Xj

i¼0

ci
jx
ðn�jÞ
3 xi

2f
½j�i�
n ðzÞ

ðn� jÞ!i!
. (49)

This contains mþ 1 arbitrary functions f nðzÞ and further superposition over the
three Stroh eigenvalues p1, p2, p3 then defines the most general solution of (14) that is a
finite polynomial of degree m in x3. In particular, this solution is sufficiently general
to satisfy arbitrary polynomial boundary values on the lateral surfaces of the prismatic
bar.
3.3. Expressions for the stresses

The stress components corresponding to the displacement u of Eq. (49) can be obtained
by substitution into Eq. (5), with the result

r1 ¼
Xm

n¼0

Xn

j¼0

Xj

i¼0

½ðQ þ pRÞx
ðn�jÞ
3 xi

2f
½j�i�1�
n ðzÞ

þ Rix
ðn�jÞ
3 x

ði�1Þ
2 f ½j�i�

n ðzÞ þ Eðn� jÞx
ðn�j�1Þ
3 xi

2f ½j�i�
n ðzÞ�

ci
j

ðn� jÞ!i!
, ð50Þ

r2 ¼
Xm

n¼0

Xn

j¼0

Xj

i¼0

½ðRT þ pTÞx
ðn�jÞ
3 xi

2f
½j�i�1�
n ðzÞ

þ Tix
ðn�jÞ
3 x

ði�1Þ
2 f ½j�i�

n ðzÞ þ Fðn� jÞx
ðn�j�1Þ
3 xi

2f
½j�i�
n ðzÞ�

ci
j

ðn� jÞ!i!
, ð51Þ

r3 ¼
Xm

n¼0

Xn

j¼0

Xj

i¼0

½ðET þ pFTÞx
ðn�jÞ
3 xi

2f
½j�i�1�
n ðzÞ

þ FTix
ðn�jÞ
3 x

ði�1Þ
2 f ½j�i�

n ðzÞ þ Gðn� jÞx
ðn�j�1Þ
3 xi

2f ½j�i�
n ðzÞ�

ci
j

ðn� jÞ!i!
. ð52Þ
4. Problems for the half-space

The presence of the explicit factors of x2 in Eqs. (49)–(52) make this solution
particularly convenient for problems in which boundary conditions are imposed on the
plane x2 ¼ 0, such as the half-space x240 with fairly general three-dimensional loading on
the surface x2 ¼ 0. In particular, the displacement at the surface reduces to the simpler
form

uðx1; 0; x3Þ ¼
Xm

n¼0

Xn

j¼0

c0j x
ðn�jÞ
3 f ½j�n ðx1Þ

ðn� jÞ!
(53)
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and the surface traction is

t ¼
Xm

n¼0

Xn

j¼0

1

ðn� jÞ!
½fðRT þ pTÞc0j þ Tc1j gx

ðn�jÞ
3 f ½j�1�n ðx1Þ

þ Fc0j ðn� jÞx
ðn�j�1Þ
3 f ½j�n ðx1Þ�. ð54Þ

If the prescribed surface displacements or tractions are expanded as a polynomial in x3, it
is then a fairly routine process to determine the appropriate functions f n.

4.1. Linearly-varying line load

As a simple example, we consider the half-space x240 loaded by a concentrated line
load proportional to x3, the rest of the surface being traction-free—i.e.

t ¼ Px3dðx1Þ. (55)

Setting m ¼ 1 in (49), we have

u ¼ c00f 0ðzÞ þ c00x3f 1ðzÞ þ c01f
½1�
1 ðzÞ þ c11x2f 1ðzÞ (56)

and the corresponding surface traction is

t ¼ ðRT þ pTÞðc00f
0
0ðx1Þ þ c00x3f

0
1ðx1Þ þ c01f 1ðx1ÞÞ þ ðFc00 þ Tc11Þf 1ðx1Þ. (57)

Our strategy will be to choose the function f 1 so as to ensure that the x3-term in (57) is
given by (55). The remaining free constants and f 0 will then be chosen so as to set the
x3-independent terms in (57) to zero.
The vector coefficients in (56), (57) can be written in the form

c00 ¼ qa; c11 ¼ gqa; c01 ¼ qâþ q̂a, (58)

from (43), (44), where â is any particular solution of

Dâ ¼ �ðgV þWÞa (59)

and q̂ is an arbitrary constant. These results follow from (43), (44) by: (i) extracting an
explicit arbitrary constant q from the eigenvector a and (ii) using the alternative notation
â ¼ b0

1, q̂ ¼ b01, since no other combinations of suffixes will be involved in this example
problem.
Substituting these results into (56), (57), we then have

u ¼ qaf 0ðzÞ þ qax3f 1ðzÞ þ ðqâþ q̂aÞf ½1�1 ðzÞ þ gqax2f 1ðzÞ, (60)

t ¼ qbf 00ðx1Þ þ qbx3f
0
1ðx1Þ þ ðqb̂þ q̂bþ qFaþ gqTaÞf 1ðx1Þ, (61)

where we define the vectors

b ¼ ðRT þ pTÞa; b̂ ¼ ðRT þ pTÞâ. (62)

The final summation over the three Stroh eigenvalues pð1Þ; pð2Þ; pð3Þ is conveniently
expressed by defining the matrices

A ¼ ½að1Þ; að2Þ; að3Þ�; Â ¼ ½âð1Þ; âð2Þ; âð3Þ�; B ¼ ½bð1Þ; bð2Þ; bð3Þ�;

B̂ ¼ ½b̂ð1Þ; b̂ð2Þ; b̂ð3Þ� ð63Þ
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and vectors

q ¼ fqð1Þ; qð2Þ; qð3ÞgT; q̂ ¼ fq̂ð1Þ; q̂ð2Þ; q̂ð3ÞgT (64)

and the notation

hf ð�Þðzð�ÞÞi ¼ diag½f ð1Þðzð1ÞÞ; f ð2Þðzð2ÞÞ; f ð3Þðzð3ÞÞ� (65)

for diagonal matrices. We then have

u ¼ Ahf ð�Þ0 ðz
ð�ÞÞiqþ x3Ahf ð�Þ1 ðz

ð�ÞÞiqþ Âhf ½1�ð�Þ1 ðzð�ÞÞiq

þ Ahf ½1�ð�Þ1 ðzð�ÞÞiq̂þ x2Ahgð�Þf ð�Þ1 ðz
ð�ÞÞiq, ð66Þ

t ¼ Bhf 0ð�Þ0 ðx1Þiqþ x3Bhf 01ð�Þðx1Þiqþ B̂hf ð�Þ1 ðx1Þiq

þ Bhf ð�Þ1 ðx1Þiq̂þ FAhf ð�Þ1 ðx1Þiqþ TAhgð�Þf ð�Þ1 ðx1Þiq. ð67Þ

From Eq. (67), it is clear that the x3-independent terms in the surface traction t can be set
to zero by setting

f 0 ¼ 0; f
ð1Þ
1 ¼ f

ð2Þ
1 ¼ f

ð3Þ
1 � f (68)

and choosing q̂ to satisfy the matrix equation

Bq̂ ¼ �ðB̂ � FA� TAhgð�ÞiÞq. (69)

The boundary condition (55) will then be satisfied if

Bhf ðx1Þiq ¼ Pdðx1Þ. (70)

This condition is identical to that arising in the corresponding two-dimensional problem of
a uniform line load and it is satisfied by the function

f ðzÞ ¼ lnðzÞ, (71)

if the vector q is determined from the equation

Bq ¼ �
{P

p
. (72)

Notice that Eqs. (68), (69) are independent of f ; q and hence this solution can be used for
more general problems of loading of the half-space by tractions varying linearly with x3.
Similar techniques could be developed for other boundary conditions on the plane x2 ¼ 0,
including those arising when a plane crack is loaded by tractions varying in the ‘antiplane’
direction x3.

5. Discussion

The solution given in Section 3 represents a recursive extension of the Stroh formalism,
using successive partial integrations in the x3-direction. Rand and Rovenski (2005) define a
recursive procedure for the generally anisotropic prismatic bar based on the Lekhnitskii
formalism and it is clearly apposite to consider the relative advantages of these two
approaches.

The principal difference between the two methods is that Stroh constructs solutions for
the displacement fields, whereas Lekhnitskii constructs analogous fields for the well-known
Airy and Prandtl stress functions. Barnett and Kirchner (1997) established the formal
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equivalence of the two methods, but the relation between them is not simple and the choice
of the most efficient method depends on the problem under consideration. It is sometimes
argued that Lekhnitskii’s formalism is more physical and that Stroh’s is mathematically
more elegant (Kim and Paulino, 2004), but this distinction is at best somewhat subjective.
Stroh’s formalism has clear advantages if the boundary conditions involve prescribed
displacements, as in the problem of a line dislocation in an infinite anisotropic space. This
latter example may explain the fact that material scientists almost universally prefer
Stroh’s method.
The relative efficiency of the two methods in two-dimensional cases carries over to the

present three-dimensional extensions. In problems involving dislocations a further
simplification arises if the branch cut is taken to be the plane x2 ¼ 0, since the expressions
for stresses and displacements take on a much simplified form on this plane, as
demonstrated in Section 4. Notice in particular that by choosing ðz; x2;x3Þ as the
coordinate set, the higher order polynomial terms for three-dimensional problems acquire
powers of x2, but these terms drop out on the plane x2 ¼ 0, leaving a problem that is no
more complex than the corresponding two-dimensional one. A classical method of
determining the perturbation in stress field due to a plane crack is to represent the crack-
opening displacement and/or relative tangential motion by a distribution of dislocations,
leading to a Cauchy integral equation for the distribution (Hills et al., 1996). The present
results therefore open up the possibility of extending this method to problems in which the
unperturbed stress field, and hence the resulting stress intensity factors, have polynomial
dependence on x3.
As in all general anisotropic problems, solutions involve a sequence of matrix algebra

operations that, though routine, lead to rather complicated expressions even for
comparatively simple boundary-value problems. However, it is worth noting that the
eigenvalues p, eigenvectors a and vector coefficients ci

j depend on the material properties,
but are independent of the particular boundary-value problem, and in principle, they can
therefore be calculated once and for all as numerical values for a given anisotropic
material. Furthermore, the recurrence relation for these coefficients requires the solution of
the same matrix equation at all stages of the recursion, so the operation lends itself to
automated computation, using either a symbolic program such as Maple or Mathematica,
or a conventional computer program, based on the methodology of Appendix A. Maple
codes for the alternative Lekhnitskii formulation for the prismatic bar are given by Rand
and Rovenski (2005).

6. Conclusions

The results given in this paper extend the classical Stroh formalism to three-dimensional
problems for the generally anisotropic material, subject only to the restriction that the
stress and displacement fields be expressible as power series in x3. The progression to
higher order terms is achieved by a recursion technique which lends itself to numerical or
symbolic computation and whose results depend on the material properties, but not on the
particular boundary-value problem under consideration.
The method provides an exact general solution to the problem of the infinite prismatic

bar subjected to tractions or displacements on its lateral surfaces that are finite power
series in the axial coordinate x3. However, it is particularly efficient for problems in which
boundary conditions are imposed on the plane x2 ¼ 0, such as the half-space or the plane
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crack loaded by tractions varying in the ‘antiplane’ direction x3. Explicit results are
developed for the tractions and displacements on this plane and the solution for a linearly
varying line force applied on the surface of the half-space x240 is given as an example.

Appendix A. Solution of singular matrix equations

We consider the solution of the matrix equation

DðpÞc ¼ d, (73)

where p is one of the eigenvalues of (9). Since DðpÞ is singular, this equation is solvable only
if

aTd ¼ 0, (74)

where a is the eigenfunction of (9) corresponding to p.
For a particular value of p, DðpÞ is a known symmetric matrix for which we can define

the ‘conventional’ eigenvalue problem through the equation

DðpÞx ¼ lx. (75)

This equation has three eigenvalues li, and corresponding eigenvectors xi. However,
comparing (75) with (9), it is clear that one of the eigenvalues (which we arbitrarily denote
by l1) is zero and the corresponding eigenfunction

x1 ¼ a. (76)

We assume that DðpÞ has only one degree of degeneracy, in the sense that all the remaining
eigenvalues are non-zero.

The unknown vector c in Eq. (73) can now be written as an eigenvector expansion

c ¼
XN

i¼1

yixi, (77)

where yi, i ¼ 1;N is a set of scalar coefficients (for the present problem N ¼ 3).
Substituting into (73) and using the result

DðpÞxi ¼ lixi, (78)

we have

XN

i¼2

liyixi ¼ d. (79)

Premultiplying (79) by xT
j , we then obtain

ljyj ¼ xT
j d, (80)

since the eigenvectors are orthogonal and with a suitable normalization,

xT
j xi ¼ dij . (81)

For j ¼ 1, we have l1 ¼ 0 and (80), (76) yield condition (74). For ja1, (80) yields

yj ¼
xT

j d

lj

, (82)
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after which the solution for the vector c is recovered from Eq. (77), except that the
coefficient y1 remains undetermined. In other words, the solution remains indeterminate to
within an arbitrary multiplier of the eigenvector x1 ¼ a.
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