
Linear elastic contact of the Weierstrass pro¯ley
By M. Ciavarella1z, G. Demelio2, J. R. Barber3

an d Yo ng Ho on Jang3

1Department of Mechanical Engineering, University of Southampton,
High¯eld, Southampton SO17 1BJ, UK

2Dipartimento di Progettazione e Produzione Industriale, Politecnico di Bari,
Viale Japigia 182, 70126 Bari, Italy

3Department of Mechanical Engineering and Applied Mechanics,
University of Michigan, Ann Arbor, MI 48109-2125, USA

Received 12 January 1999; revised 18 May 1999; accepted 2 June 1999

A contact problem is considered in which an elastic half-plane is pressed against
a rigid fractally rough surface, whose pro­ le is de­ ned by a Weierstrass series. It
is shown that no applied mean pressure is su¯ ciently large to ensure full contact
and indeed there are not even any contact areas of ­ nite dimension|the contact
area consists of a set of fractal character for all values of the geometric and loading
parameters.

A solution for the partial contact of a sinusoidal surface is used to develop a relation
between the contact pressure distribution at scale n 1 and that at scale n. Recursive
numerical integration of this relation yields the contact area as a function of scale.
An analytical solution to the same problem appropriate at large n is constructed
following a technique due to Archard. This is found to give a very good approximation
to the numerical results even at small n, except for cases where the dimensionless
applied load is large.

The contact area is found to decrease continuously with n, tending to a power-law
behaviour at large n which corresponds to a limiting fractal dimension of (2 D),
where D is the fractal dimension of the surface pro­ le. However, it is not a `simple’
fractal, in the sense that it deviates from the power-law form at low n, at which there
is also a dependence on the applied load. Contact segment lengths become smaller
at small scales, but an appropriately normalized size distribution tends to a limiting
function at large n.

Keywords: multifractals; Weierstrass; contact mechanics;
rough surfaces; asperities; multiscale models

1. Introduction

Real surfaces are rough on the microscopic scale and the e¬ect of roughness on
the contact process, particularly in sliding contact, forms the basis of most models
of friction and wear. Contact is generally expected to be restricted to the highest

y The authors dedicate this paper to the memory of Dr J. F. Archard, 1918{1989.
z Present address: CNR-IRIS Computational Mechanics of Solids, str. Croce­ sso, 2/B, 70126 Bari,
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points of the surface and hence early models of contact introduced the concept of
a distribution of `asperities’ or peaks, whose contact behaviour mimics that of the
real surface. An important breakthrough in this ­ eld was made by Greenwood &
Williamson (1966), who showed that if identical asperities were distributed according
to an exponential distribution, the relations between macroscopic quantities such as
total normal and tangential load, total actual contact area and thermal contact
conductance would all be linear. With a more realistic Gaussian height distribution,
these relations cease to be strictly linear, but the ratio between normal and tangential
force in sliding varies su¯ ciently slowly with load to provide what is still one of the
more convincing explanations of Amonton’s law of friction.

Greenwood & Williamson’s (1966) results focused attention on the importance
of the asperity height distribution and many subsequent advances have been made
in characterizing surfaces using random process theory (Nayak 1971; Whitehouse &
Phillips 1978, 1982; Greenwood 1984). At the same time, improvements in experi-
mental methods have increased the bandwidth of surface pro­ le measurements and
revealed the existence of a hierarchy of scales up to the limits of experimental dis-
crimination (Mandelbrot 1982; Russ 1994; Lopez et al . 1994; Majumdar & Bhushan
1995). This is an embarrassment to asperity model theories, because the de­ nition
of an asperity is scale dependent. Thus, whereas with a coarse measuring system (or
a large sampling interval) we see only a few asperities of large radius of curvature, as
the experimental system is re­ ned, we see more and more asperities of ever decreasing
radius. In a remarkably prescient paper, Archard (1957) proposed just such a model
to explain some of the characteristics of the elastic contact of two rough surfaces.

Typical surface pro­ les exhibit a power-law spectral density P (!) = C! q at high
frequencies !, suggesting that a fractal description of the surface and the contact
process would be more appropriate (Lopez et al . 1994; Majumdar & Bhushan 1990,
1995; Borodich & Mosolov 1992; Borodich & Onishchenko 1999; Borri-Brunetto et
al . 1998). The advantage of the fractal description is that it eliminates the implied
truncation at small length-scales, by assuming that the same power-law behaviour
continues without limit as ! ! 1.

The qualitative nature of the contact process in this limit remains undetermined.
In a recent paper, Borri-Brunetto et al . (1998) created a ­ nite numerical realization
of a surface with appropriate fractal properties and then used a numerical method to
solve the resulting elastic contact problem at various levels of spatial discretization.
With a coarse discretization, they obtained a few large actual contact areas, but as
the grid was re­ ned, these broke up progressively into clusters of smaller and smaller
areas and the total area of actual contact decreased, following a characteristic power-
law behaviour. This suggests that in the fractal limit the contact may consist of an
in­ nite number of in­ nitesimal contact areas of total area zero. In other words, the
actual contact area appears to be a fractal with dimension below two.

By contrast, Majumdar & Bhushan (1991) developed a theory of contact for fractal
surfaces based on the `bearing area’ assumption (Johnson 1985, p. 407) that the
distribution of actual contact area sizes would be similar to that of the `islands’
generated by cutting through the surface at a constant height z. Mandelbrot (1982)
conjectures that the set of boundary curves obtained by this section has a fractal
dimension one unit lower than the surface, but the set of islands themselves, which
correspond to the assumed total contact area, clearly tends to a ­ nite limit between
zero and the extent of the nominal contact area.
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The present paper seeks to investigate this issue by considering the elastic contact
of a specialized two-dimensional fractal surface consisting of superposed sine waves
of widely spaced wavelengths. We shall demonstrate that extended regions of contact
are not possible with this model and we obtain results for the fractal dimension of
the contact area by evaluating a sequence of truncated fractal series.

2. Westergaard’s solution

We ­ rst consider the simple case of a two-dimensional elastic half-plane indented by
a rigid body with a sinusoidal pro­ le de­ ned by the function

z(x) = g cos(2 x= ); (2.1)

where g; are, respectively, the amplitude and wavelength of the sine wave.
If the mean pressure applied to the surface, ·p p , complete contact will be

established and the contact pressure will be given by (Johnson 1985, x 13.2)

p(x) = ·p + p cos(2 x= ); (2.2)

where
p =

Eg

(1 2)
(2.3)

and E; are Young’s modulus and Poisson’s ratio, respectively, for the material.
For ·p < p , contact will be restricted to a series of regions at the peaks of the sine

waves of width 2a. A closed-form solution of this problem was given by Westergaard
(1939). The contact pressure in a representative contact segment is given by

p(x) =
2·p cos( x= )

sin2( a= )
sin2 a

sin2 x
1=2

; a < x < a (2.4)

and the half-length of the contact segment is

a = arcsin
·p

p

1=2

: (2.5)

If ·p p , these results reduce to the Hertzian values

p(x) =
2·p

a
1

x2

a2
; (2.6)

a =
·p

p
: (2.7)

Figure 13.2 of Johnson (1985) shows that these results give an acceptable approxi-
mation to (2.4), (2.5) if

·p=p < 0:2: (2.8)

We also record the maximum pressure at the peaks, x = 0, which is

pm ax = ·p + p ; ·p > p ; (2.9)

= 2
p

·pp ; 0 < ·p < p ; (2.10)

from (2.4).
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The cumulative pressure distribution function, Q(p; ·p; p ), can be de­ ned as that
proportion of the wavelength over which the contact pressure exceeds a given value,
p. For full contact, ·p > p ,

Q(p; ·p; p ) = 1; p < ·p p ; (2.11)

= 0; p > ·p + p : (2.12)

In the intermediate range, ·p p < p < ·p + p , we note from equation (2.2) that the
pressure will exceed p in the segment

2
arccos

p ·p

p
< x <

2
arccos

p ·p

p
(2.13)

and hence

Q(p; ·p; p ) = arccos
p ·p

p
; ·p p < p < ·p + p : (2.14)

The probability distribution for contact pressure

q(p; ·p; p ) =
@Q

@p
=

1

p 2 (p ·p)2
; ·p p < p < ·p + p ; (2.15)

= 0; p < ·p p or p > ·p + p (2.16)

is de­ ned such that the probability of a given point having a pressure in the range
p; p + p is q(p) p.

Corresponding results for partial contact, ·p < p , can be obtained in the same way
by solving equation (2.4) for x to determine the length of the segment in which the
pressure exceeds p. After some algebraic manipulations, we obtain

Q(p; ·p; p ) =
2

arcsin
1

2

·p

p
+ 1 1

·p

p

2

+
p

p

2

; 0 < p < 2
p

p ·p;

(2.17)

= 0; p > 2
p

p ·p (2.18)

and hence

q(p; ·p; p ) =
@Q

@p
=

p

f(p ·p)2 + p2gf2·p(p ·p + (p ·p)2 + p2) p2g
;

0 < p < 2
p

p ·p; (2.19)

= 0; p > 2
p

p ·p: (2.20)

3. The Weierstrass function

Suppose now that instead of a single sine wave, the rough surface contains a series of
superposed sinusoids, de­ ned by the Weierstrass function (Weierstrass 1895; Berry
& Lewis 1980)

z(x) = g0

1

n = 0

(D 2)n cos(2 nx= 0): (3.1)
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The amplitude and wavelength of the nth term are, respectively,

gn = g0
(D 2)n; n = 0

n; (3.2)

where g0; 0 are constants with dimensions of length and ; D are dimensionless
constants. If > 1 and D > 1, equation (3.1) de­ nes a plane fractal surface of
fractaly dimension D.

In contrast to the Weierstrass{Mandelbrot function (Berry & Lewis 1980), the
function (3.1) has a largest scale and is bounded in the range

ẑ < z(x) < ẑ; (3.3)

where

ẑ =
g0

1 (D 2)
: (3.4)

It satis­ es the scaling relation

z( x) = 2 Dz(x) g0
2 D cos(2 x= 0) (3.5)

and hence is self-ā ne except for an additive smooth function (T´el 1988). We also
note that successive sinusoids in (3.1) satisfy the recurrence relations

gn 1=gn = 2 D ; n 1= n = : (3.6)

We ­ rst postulate that the mean pressure ·p is su¯ cient to cause full contact
between the bodies. The elastic contact problem is then linear, since the inequality
constraints precluding tensile tractions and negative gaps are inactive, and we can
write down the corresponding pressure distribution by superposition of terms like
equation (2.2) in the form

p(x) = ·p +

1

n= 0

pn cos(2 nx= 0); (3.7)

where

pn =
Eg0

(D 1)n

(1 2) 0

: (3.8)

This expression is bounded in the range

·p p̂ p(x) ·p + p̂; (3.9)

where

p̂ =

1

n = 0

pn

Eg0

(1 2) 0

1

n = 0

(D 1)n; (3.10)

but for > 1, D > 1 the series in (3.10) does not converge, indicating that there
is no ­ nite value of mean pressure ·p that is su¯ cient to ensure complete contact
between a fractal rigid surface of the form (3.1) and an elastic half-plane.

It is interesting to note that the series in equation (3.10) also diverges for the
limiting case D = 1, showing that non-fractal surfaces can be de­ ned for which
complete elastic contact is unachievable.

y The fractal dimension of the Weierstrass function is discussed by Falconer (1990, x 11.1). For more
general self-a¯ ne curves, see Mandelbrot (1985) and Borodich & Onishchenko (1999).
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4. Partial contact

An ad hoc argument can be developed to show that there can be no contact segments
of ­ nite size even in the nonlinear problem with partial contact. Suppose that the
contrary is true and that in the fractal limit there exists some contact segment A of
­ nite length 2l. We take a new origin at the midpoint of A and perform an asymptotic
expansion of the solution in terms of the new variable y = M x, where M is a suit-
ably large number. In physical terms, this is equivalent to focusing attention on the
immediate vicinity of the midpoint of A, using a powerful microscope. Terms in p(x)
associated with the low-order terms in z(x) will appear as constants in this expansion
and the endpoints (x = l) of A will recede to 1. However, the fractal character
of the surface ensures that we shall still see an in­ nite sequence of superposed sinu-
soids in the ­ nite domain. The local in®uence of the inequality constraints outside A
will therefore be vanishingly small and the argument of the preceding section shows
that the local pressure distribution cannot be bounded as we add additional terms
to the series. Thus at some value of n, the contact inequality p > 0 must be violated
somewhere in the domain, contradicting the original hypothesis.

We therefore conclude that there will be no contact segments of ­ nite size in the
fractal limit and hence that the fractal dimension of the total contact area will be
less than unity, as found by Borri-Brunetto et al . (1998). We shall explore these
questions using a restricted form of the pro­ le (3.1) in the next section.

5. Contact conditions near the asperity peaks

From this point on, we shall restrict attention to fractal surfaces of the form (3.1) in
which 1, so that there are many waves of scale n in one wavelength of scale n 1.
Under these conditions, the pressure pn 1 at scale n 1 changes only slightly over
one wavelength n at scale n and hence the problem at scale n can be considered
as a series of applications of Westergaard’s solution in which the local value of pn 1

serves as the mean pressure ·p. All the relations established in x 2 then carry over to
this problem, with the substitutions

p ! pn; ·p ! pn 1; p ! pn: (5.1)

As the ratio pn 1=pn increases, there will be a progression from `Hertzian’ contact,
to partial contact described by the Westergaard equations (2.4), (2.5) and then to
full contact. Now equation (3.8) shows that pn increases with n, whereas the aver-
age value of pn 1 must remain constant at ·p from equilibrium considerations. We
therefore anticipate that the contact process will become increasingly dominated by
individual asperity contacts in the Hertzian regime with increasing n.

We can establish an upper bound on the value of pn 1=pn by considering the most
heavily loaded asperities at any scale n, which are those near the peak of the pressure
distribution at scale n 1. We denote this peak pressure by pm ax

n 1. It then follows
from equations (2.9), (2.10) and (5.1) that

pm ax
n = pnf(xn 1); (5.2)

where

xn 1 = pm ax
n 1=pn (5.3)
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Linear elastic contact of the Weierstrass pro¯le 393

2

x

f (x)

xn - 1n

B

C
D

P

(D -  1)x

f (x)
A

0

g

1 x

Figure 1. Graphical illustration of the iteration process de¯ned by equation (5.6).

and

f(x) = 1 + x; x > 1; (5.4)

= 2
p

x; 0 < x < 1: (5.5)

We then have, using (3.8),

xn
pm ax

n

pn+ 1

=
pn

pn + 1

f(xn 1) = 1 Df(xn 1): (5.6)

Equation (5.6) de­ nes an iteration of the form ABCD in ­ gure 1 and it is readily
veri­ ed that it converges monotonically on the unique positive non-zero solution of
the equation

x = 1 Df(x) (5.7)

for any positive starting value x0. The solution of equation (5.7) corresponds to the
point P in ­ gure 1, where the straight line has slope D 1. Substituting (5.4), (5.5)
into (5.7) and solving for xP, we obtain

xP =
4

2D 2
; D 1 > 2; (5.8)

=
1

( D 1 1)
; D 1 < 2; (5.9)

corresponding to partial and full contact, respectively. We conclude that, for su¯ -
ciently large n, the maximum contact pressure

pm ax
n = pn

D 1xP; (5.10)

from (5.2), (5.7), where xP is given by (5.8), (5.9).
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A
B

(1)

(2)

(3)

Figure 2. Evolution of the contact pressure distribution for D 1 < 2. A full contact region (1)
evolves to (2) at the next scale. With one further reduction of scale, regions (2A) evolve once
again to (2), while regions (2B) evolve to (3).

All asperities will be in the Hertzian regime at large n if the ratio pm ax
n 1=pn ! xP

is su¯ ciently small. For example, the inequality (2.8) will be satis­ ed everywhere at
large n as long as xP < 0:2 and hence

D 1 >
p

20; (5.11)

from (5.8). In view of the monotonicity of the iteration of ­ gure 1, (2.8) will be
satis­ ed at all scales if in addition the largest scale sinusoid satis­ es the condition

~p ·p=p0 < 0:2: (5.12)

By a similar argument, there will be partial contact at every asperity for sū ciently
large n if

D 1 > 2 (5.13)

and for all n if in addition

~p < 1: (5.14)

The parameter range D 1 < 2 deserves some comment, since it predicts the
existence of some regions of full contact at all scales and appears at ­ rst sight to
contradict the argument of x 4. However, these regions become a vanishingly small
proportion of the total number of asperity contacts as n ! 1 and their sizes decrease
at each scale. Figure 2 shows this process schematically for the case D 1 < 2. Each
region of full contact (1) evolves into a smaller similar region (2A) at the next scale
along with a region of separated contacts (2B). With one further reduction of scale,
regions (2A) evolve once again to (2), while regions (2B) evolve to (3).

6. The contact pressure distribution

If we know the probability distribution function qn 1(pn 1) for contact pressure at
scale n 1, we can determine the corresponding distribution at scale n by sum-
ming the contributions from the separate asperities. In view of (5.1), the function
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q(pn; pn 1; pn) de­ ned by equations (2.15), (2.16), (2.19) and (2.20) can be inter-
preted as the conditional probability of pn, given pn 1. Summation over all values
of pn 1 then gives

qn(pn) = I1 + I2

pn

0

q(pn; pn 1; pn)qn 1(pn 1) dpn 1

+
1

pn

q(pn; pn 1; pn)qn 1(pn 1) dpn 1; (6.1)

where we have split the integral into two ranges corresponding to partial contact
(2.19), (2.20) and full contact (2.15), (2.16), respectively.

The inequalities in (2.15), (2.16), (2.19) and (2.20) impose further restrictions on
the range of I1; I2, leading to the results

I1 =
1 pn

p2
n=4pn

qn 1(pn 1)pn dpn 1

f(pn pn 1)2 +p2
ngf2pn 1(pn pn 1 + (pn pn 1) +p2

n) p2
ng

;

pn < 2pn; (6.2)

= 0; pn > 2pn; (6.3)

I2 =
1 pn + pn

pn

qn 1(pn 1) dpn 1

p 2
n (pn pn 1)2

; pn < 2pn; (6.4)

=
1 pn + pn

pn pn

qn 1(pn 1) dpn 1

p 2
n (pn pn 1)2

; pn > 2pn: (6.5)

For n = 0, we have q0(p0) = q(p0; ·p; p0) and hence equation (6.1) can be used
recursively to determine qn(pn) for any n.

(a) Total contact area

A similar argument can be used to determine the total contact area An at scale
n in the segment 0, i.e. the sum of all the individual contact segments at scale n.
We ­ rst note that the conditional probability of contact, given pn 1, is unity for full
contact (pn 1 > pn) and is

2a
=

2
arcsin

pn 1

pn

1=2

(6.6)

for partial contact (pn 1 < pn), from (2.5). It follows that the proportion of the
segment L in contact at scale n is

An

L
=

2 pn

0

qn 1(pn 1) arcsin
pn 1

pn

1=2

dpn 1 +
1

pn

qn 1(pn 1) dpn 1: (6.7)

Numerical integration methods were used to determine qn(pn) and hence An= 0

as functions of n for various values of ; D and the dimensionless loading parameter

~p = ·p=p0: (6.8)
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Figure 3. Variation of total contact area (An ) with scale (n) for various values of D; ; ~p, from
equation (6.7). The dashed curves represent the Hertzian approximation developed in equa-
tion (7.18). (a) D = 1:05, = 5; (b) D = 1:05, = 10; (c) D = 1:5, = 5; (d) D = 1:5,

= 10.

The contact area An= 0 is plotted logarithmically against n in ­ gure 3. The most
striking feature of these results is that at su¯ ciently large n they all tend to straight
lines with a negative slope that depends upon D and , but not on ~p. If ~p 1, the
process starts in full contact (A0= 0 = 1) and this may persist for several scales for
large ~p. However, at larger n, the behaviour is increasingly dominated by partial and
indeed Hertzian contact as predicted in x 5. For very light loads (~p 1), the opposite
e¬ect is observed, with the curves in ­ gure 3 being initially steeper than the limiting
slope. We conclude that the total contact area is not a simple fractal (in the sense
that it deviates from the power-law form at low n), but this is hardly surprising in
view of the nonlinearity inherent in the solution of the contact problem. However,
the contact area does exhibit limiting power-law fractal behaviour at large n and in
all cases the limiting slope is achieved at fairly modest values of n.

This conclusion requires some quali­ cation when applied to the underlying phys-
ical contact problem, as distinct from the mathematical linear-elastic idealization.
The higher-order terms in the Weierstrass series have increasingly high surface slopes
and curvatures leading to increased contact pressure and the probability of plastic
deformation or fracture. There must therefore be some n, depending on the value of
the initial amplitude{wavelength ratio, g0= 0, beyond which the idealization breaks
down and qualitatively di¬erent results may be obtained. Of course, a similar restric-
tion applies to any attempt to apply fractal arguments to a physical problem, since
no part of the physical world exhibits re­ nement to smaller and smaller length-scales
ad in­ nitum. The fractal mathematics can only be regarded as describing an asymp-

Proc. R. Soc. Lond. A (2000)



Linear elastic contact of the Weierstrass pro¯le 397

totic behaviour that holds until a su¯ ciently small scale is reached for the stated
description to be unrealistic.

7. Archard’s method

The results of ­ gure 3 were obtained by successive numerical integration of equa-
tions (6.1), (6.7), but a closed-form expression for the limiting slope at large n can
be obtained by extending the methodology of Archard (1957).

Archard (1957) considered a three-dimensional self-similar surface consisting of a
single spherical asperity on which are superposed successive scales of smaller spherical
asperities with uniform spatial distribution. An exactly parallel argument can be
used for the two-dimensional Weierstrass pro­ le of equation (2.1), whose peaks can
be regarded as a self-ā ne sequence of uniformly distributed parabolas. The solution
developed here uses the approximate Hertzian equations (2.6), (2.7), but this is not a
serious restriction, since Hertzian contacts increasingly dominate the contact process
at large n. Archard developed expressions for the total contact area as a function
of force for the ­ rst three scales n = 1; 2; 3 and in each case obtained a power-law
relation tending towards linearity as n increased. Here we generalize the procedure
by establishing a recurrence relation between the expressions at scale n and n + 1
and hence reason inductively to an expression valid for all n.

For 1, the pressure pn(x) at level n is approximately constant over one
complete wave at level n + 1 and translates into a force

Fn + 1 = pn(x) n+ 1 (7.1)

on the corresponding asperity. The solution strategy is based on the fact that the
sublevels 1 m n + 1 can be mapped into 0 m n. Thus, if we knew the
total contact area An due to an applied force F0, we could deduce the contribution
to An+ 1 associated with a single asperity at level 1 due to a given force F1. Using
equation (7.1) for F1 and summation over the range of x would then give the value
of An + 1.

Archard’s results for the sphere problem lead us to expect a power-law dependence
of contact area on force at any scale, so we start by advancing the tentative hypothesis
that

An

0
= Kn

¬ n 0

g0

­ n (1 2)F0

Eg0

¯ n

; (7.2)

where the groupings of parameters are dictated by dimensional considerations. In
particular, we note that the dimensionless loading parameter

(1 2)F0

Eg0
= ~p (7.3)

using (2.3), (6.8), since F0 = 0 ·p.
The contact area for a single asperity at level 1 with n sublevels, loaded by a force

F1, is obtained by replacing g0; 0; F0 by g1; 1; F1, i.e.

A

1
= Kn

¬ n 1

g1

­ n (1 2)F1

Eg1

¯ n

: (7.4)
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Using (7.1) for F1 and (3.2) to write g1; 1 in terms of g0; 0; , we obtain

A

0
= Kn

» 0

g0

­ n (1 2)p0(x) 0

Eg0

¯ n

; (7.5)

where

= n 1 + (1 D)( n + n): (7.6)

Now A is the contribution to the total contact area An + 1 from a single asperity
at level 1 and hence from a length 1 = 0

1 of the surface, so An + 1 can be found
by integration as

An + 1

0

= Kn
» + 1 0

g0

­ n a0

a0

(1 2)p0(x) 0

Eg0

¯ n dx

0

: (7.7)

Noting that F0 = ·p 0, we can rewrite the Hertzian relations (2.6), (2.7) in the
form

p0(x) =
2F0

a0
1

x2

a2
0

; (7.8)

a0 =
0 (1 2)F0

Eg0

1=2

=
0 ~p1=2

(7.9)

and substitution into (7.7) yields

An+ 1

0
= 2¯ n Kn

» + 1 ( ¯ n 3)=2 0

g0

­ n

~p( ¯ n + 1)=2
1

1

(1 2) ¯ n=2 d (7.10)

Kn+ 1
¬ n+1 0

g0

­ n+1

~p ¯ n+1 ; (7.11)

by analogy with (7.2).
We note that the result for An + 1 is of the same power-law form, thus justifying the

initial choice in (7.2), and a comparison of the two expressions yields the recursive
relations

n + 1 = n + (1 D)( n + n); n + 1 = n; n + 1 = 1
2
( n + 1) (7.12)

and

Kn+ 1 =
2 ¯ n Kn

1

1

(1 2) ¯ n=2 d

=
2 ¯ n Knp

(1 + 1
2 n)

( 3
2

+ 1
2 n)

; (7.13)

where (x) is the Euler -function.
For n = 0, we have

A0

0
=

2a0

0
=

2
~p1=2: (7.14)
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Table 1. Values of Kn

n Kn n Kn n Kn n Kn n Kn

0 0.636 620 4 0.403 792 8 0.392 153 12 0.391 435 16 0.391 391

1 0.500 952 5 0.397 546 9 0.391 770 13 0.391 412 17 0.391 389

2 0.443 157 6 0.394 456 10 0.391 579 14 0.391 400 18 0.391 388

3 0.416 550 7 0.392 919 11 0.391 483 15 0.391 394 19 0.391 388

Thus,

0 = 0; 0 = 0; 0 = 1
2
; K0 = 2= (7.15)

and it follows from (7.12), (7.13) that

n = 1 2 (n + 1); n = 0; n = (1 D)(n 1 + 2 n); (7.16)

Kn =
2(n+ 2 n)

(n+ 2)=2

n 1

i= 0

(1 2 (i+ 2))

( 3
2

2 (i+ 2))
; (7.17)

and

An

0

=
2(n+ 2 n)

(n + 2)=2

n 1

i = 0

(1 2 (i+ 2))

( 3
2

2 (i+ 2))
(D 1)(n 1+ 2 n) ~p(1 2 (n+1)): (7.18)

Equation (7.18) is a closed-form expression de­ ning the total extent of the contact
area as a power-law function of ·p for any ­ nite scale n. The two-dimensional (plane)
equivalent of Archard’s results for the ­ rst few scales can be obtained by substituting
n = 1; 2; 3 into this equation.

Equation (7.16) shows that n approaches unity as n ! 1, con­ rming the trend
noted by Archard (1957) that the nonlinear Hertzian relation between contact area
and load approaches more closely to linearity as the number of superposed scales
increases. However, the constant of proportionality gets smaller as n increases, prin-
cipally through the in®uence of the term

¬ n = (D 1)(n 1+ 2 n) (7.19)

in equation (7.18). At large n, Kn tends to a limit, which can be evaluated as

K 1 = lim
n ! 1

Kn = 0:391 39 : : : (7.20)

and hence at large n,

An= 0 K 1
(D 1)(n 1) ~p: (7.21)

In fact, Kn converges quite rapidly on the limit, the ­ rst 20 values being tabulated
in table 1.

The expression (7.18) is plotted as a dashed line in ­ gure 3. It is an extremely
good approximation to the numerical results at large values of n|a result that is to
be anticipated in view of the increasing prevalence of contacts in the Hertzian range
at large n. More surprisingly, the Hertzian approximation performs very well even
at the ­ rst few scales, except for the curves ~p = 10 in ­ gure 3a; b.
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We conclude that equation (7.21) de­ nes the limiting behaviour of the system at
large n and in particular that the limiting slope of the lines in ­ gure 3 is

(D 1) ln( ):

8. Characterization of the contact area

Following T́el (1988), we consider a partition of the interval 0 into n subintervals
each of length n. If the origin in (3.1) is taken at the centre of 0, there will be a
peak of the nth wave at the centre of each subinterval and it is clear from (7.1) that
this peak will contribute a contact segment at level n if and only if pn 1(x) > 0.
This in turn requires that the point x be included in the contact area An 1 at level
n 1. The Hertzian approximation (7.18) then predicts that the number of contact
segments in 0 at level n is

N ( 0; n) = An 1= n = An 1
n= 0 (8.1)

= Kn 1
[(2 D)n+ 2(D 1)(1 2 n)]~p(1 2 n): (8.2)

This expression de­ nes a continuous (non-integer) function of which should be
interpreted as the expected number of contact segments, since the contact area An 1

will not generally be an integer multiple of n. In the special case where the expected
value of N < 1 it should be rounded up to unity, since physical considerations dictate
a minimum of one contact segment in the domain 0. At large n, equation (8.2)
approaches the value

N( 0; n) Nlim ( 0; n) = K 1
(2 D)n+ 2(D 1) ~p: (8.3)

De­ ning the dimensionless scale parameter (T́el 1988)

= n= 0 = n; (8.4)

we have

n =
ln( )

ln( )
(8.5)

and the limiting expression (8.3) can be written as

Nlim ( 0; ) = K 1
2(D 1) (2 D) ~p; (8.6)

showing that the limiting fractal dimension of the contact area is

dA = (2 D): (8.7)

Equations (8.3), (7.21) show that, at any sū ciently ­ ne resolution, both the total
contact area and the number of contact areas are almost linear with the applied load,
so that the average contact segment length is almost independent of load. This is
consistent with the conclusions of classical theories of rough contact (see, for example,
Greenwood & Williamson 1966).

Figure 4 shows a log{log plot of N ( 0; ) against for the cases considered in
­ gure 3. The solid lines were obtained from equation (8.1) using the numerical results
for An 1 and hence apply over the complete range of contact conditions, while the
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Figure 4. The number of contact areas (N ) as a function of the dimensionless resolution
( = n = 0 ) for various values of D; ; ~p. The solid lines were obtained from equation (8.1)
using the numerical results for An 1 and the dotted lines represent the Hertzian approximation.
(a) D = 1:05, = 5; (b) D = 1:05, = 10; (c) D = 1:5, = 5; (d) D = 1:5, = 10.

stippled line was obtained from the Hertzian approximation of equation (8.2). As
in ­ gure 3, the Hertzian approximation gives good results over almost all of the
range of , except for large values of ~p. The results converge quite rapidly on the
limiting expression (8.6) as decreases, but when approaches unity (low n) the
deviation from the limiting form depends on the value of the loading parameter ~p.
The results show that the `apparent fractal dimension’|i.e. the slope of the line|
increases signi­ cantly with ~p at larger scales. Indeed, for sū ciently small values
of ~p, several scales have to be passed before more than a single contact segment is
predicted, corresponding to an apparent fractal dimension of zero.

This observation explains why Borri-Brunetto et al . (1998) reported a load depen-
dence of fractal dimension in their numerical simulations. Computational limitations
restricted their results to a maximum ratio of 28 between the smallest and largest
scales and, in this region, the limiting fractal dimension was probably not fully estab-
lished.

9. Distribution of contact segment lengths

The preceding analysis and results demonstrate clearly that, as we pass to smaller
scales, the total contact area decreases and breaks into larger numbers of smaller
segments. In this section, we determine the distribution of contact segment lengths
at any given scale for cases that satisfy the conditions (5.13), (5.14) and hence do
not involve any regions of full contact.
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At any point where p > pn 1, the individual contact segments developed at scale
n must satisfy

a >
n

arcsin
pn 1

pn

1=2

; (9.1)

since (2.5) de­ nes a monotonic function of ·p. The total number of contact segments
per unit length with a > an is therefore

Nn(an) =
1

n
Qn 1(pn 1) =

1

n
Qn 1 pn sin2 an

n
; (9.2)

where Qn 1(pn 1) is the cumulative probability distribution corresponding to
qn 1(pn 1), i.e. the probability that a given point will have a contact pressure
p > pn 1.

The total number of `potential’ contact segments per unit length is 1= n, so the
normalized distribution function for an, i.e. the probability that a given asperity
peak will lead to a contact segment with an < a < an + an, is N̂n(an) an, where

N̂n(an) = nN 0
n(an) =

pn

n
sin

2 an

n
qn 1 pn sin2 an

n
: (9.3)

Figure 5 shows (a) the pressure distribution function qn(pn) and (b) the distribu-
tion function for contact segment half-lengths N̂n(an) for the case D = 1:5, = 10,
~p = 0:001. Both curves are presented in terms of normalized variables, pn=pm ax

n , etc.,
since the range of pressures obtained increases rapidly (5.10) and the probability of
contact at any given point decreases with reducing scale. Notice that pm ax

n is given
by equation (5.10) and am ax

n can be obtained by substituting this expression into
(6.6), with the result

am ax
n =

n
arcsin(xP); (9.4)

where xP is given by (5.8), (5.9).
Both distribution functions change character considerably during the ­ rst few

scales, but they converge on a limiting normalized form as n increases, no signi­ cant
deviation from this form being observed for n > 20. Similar behaviour was observed
for other values of D; ; ~p, but convergence was slower in cases that involved signi­ -
cant regions of contact outside the Hertzian range at low n. The converged normalized
distributions depend upon the characteristics, D; , of the fractal surface, but are
independent of the load ~p. Thus, the self-ā ne fractal character of the contact pro-
cess at large n extends to the distributions of the contact parameters as well as to
the integrated and averaged quantities.

10. Discussion

These results show that the contact process exhibits a limiting self-ā ne fractal
behaviour at small scales, despite the nonlinearity of the elastic contact problem
de­ ned by Westergaard’s solution (x 2). In particular, the total contact area is a lacu-
nar fractal, as predicted from the numerical simulation of Borri-Brunetto et al . (1998)
and in contrast to the predictions of Majumdar & Bhushan (1995). Other features
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Figure 5. Evolution of the normalized distribution functions for (a) contact pressure and
(b) contact segment length with the scaling parameter, n.

of Borri-Brunetto et al .’s simulation are also elucidated by the present analysis|
notably their observation that the fractal dimension of the contact area increases
with the applied load. Figure 4 shows that this is precisely the behaviour to be
expected from the apparent fractal dimension|i.e. the slope of the N curve|at
relatively coarse scales, but that at smaller the fractal behaviour should become
independent of load.

In making this comparison, it is important to recognize that the simulation of
Borri-Brunetto et al . (1998) describes a three-dimensional contact problem, whereas
the present analysis is two dimensional. Thus, their nominal contact region is an
area (dimension 2), while ours is a line segment (of length 0 and dimension 1). An
equivalent three-dimensional problem can be de­ ned from equation (3.1) by assuming
that the pro­ le is independent of the orthogonal Cartesian coordinate y, in which
case the line segments de­ ning individual asperity contacts would represent contact
strips. With this interpretation, both the fractal dimension of the surface D and that
of the total contact area 2 D would need to be incremented by unity, suggesting a
limiting fractal dimension of 4 D to compare with Borri-Brunetto et al .’s simulation.
All the results they report fall short of this limit. For example, with a surface of
dimension 2.5, they obtained a maximum apparent fractal dimension (at high load)
of 1.2, where our predicted limit would be 1.5. However, most practical surfaces
are su¯ ciently rough even on the coarsest scales to place the individual asperity
contacts ­ rmly in the Hertzian range (Johnson 1985, x 13.1), implying that ~p 1.
In this range, ­ gure 4 leads us to expect an apparent fractal dimension lower than
the limiting value, as observed by Borri-Brunetto et al . (1998).

The present analysis is clearly extremely idealized, both because of the restriction
to 1 (required to permit the decoupling of scales) and to linear elastic behaviour,
which must cause the model to become inappropriate at su¯ ciently large n. However,
there is every reason to believe that qualitatively similar behaviour would be obtained
at more realistic values of , as indeed is con­ rmed by the above comparison with
the results of Borri-Brunetto et al . (1998).

The fractal description of any physical phenomenon must become inappropriate at
su¯ ciently small scale and the utility of the description in any practical application
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depends upon whether the essential physics of interest is adequately characterized
within the range of applicability. In the present case, plastic deformation or fracture
is likely to modify the behaviour at su¯ ciently large n, but an additional question
is whether the important physical e¬ects are largely determined by the limiting
fractal behaviour at large n, or by the ­ rst few scales, where the apparent fractal
dimension varies with load. However, regardless of the answer to these questions,
it is generally desirable to use a surface characterization that does not contain an
arbitrary (measurement precision determined) truncation limit.

11. Conclusions

These results show that for a plane surface de­ ned by the Weierstrass series with
admittedly rather restricted values of the scaling parameter , the contact area shows
fractal characteristics with a limiting fractal dimension at large n of (2 D), where
D is the fractal dimension of the surface. The results con­ rm the conclusion reached
numerically by Borri-Brunetto et al . (1998) that the contact area is de­ ned by a
fractal set, i.e. that contact is restricted to an in­ nite set of in­ nitesimal contact
segments in the limit n ! 1; there are no contact segments of ­ nite dimension
and the total contact area tends regularly to zero. In addition, the deviation from
simple power-law fractal behaviour at low wavenumbers provides an explanation of
their observation that the apparent fractal dimension is load dependent. Even at
large n, the splitting of segments of the contact area does not follow a `simple’ rule
for successive scales. Without recourse to advanced multiscale multifractal analysis
(Carpinteri & Chiaia 1997), we use a recursive formulation to obtain the distribution
functions, indicating their dependence on geometrical characteristics of the pro­ le.

J.R.B. is pleased to acknowledge support from the National Science Foundation under contract
number CMS-9619527.
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