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A ­ nite-element method is developed for determining the critical sliding speed for
thermoelastic instability of an axisymmetric clutch or brake. Linear perturbations
on the constant-speed solution are sought that vary sinusoidally in the circumferen-
tial direction and grow exponentially in time. These factors cancel in the governing
thermoelastic and heat-conduction equations, leading to a linear eigenvalue problem
on the two-dimensional cross-sectional domain for the exponential growth rate for
each Fourier wavenumber. The imaginary part of this growth rate corresponds to a
migration of the perturbation in the circumferential direction.

The algorithm is tested against an analytical solution for a layer sliding between
two half-planes and gives excellent agreement, for both the critical speed and the
migration speed. Criteria are developed to determine the mesh re­ nement required
to give an adequate discrete description of the thermal boundary layer adjacent to
the sliding interface. The method is then used to determine the unstable mode and
critical speed in geometries approximating current multi-disc clutch practice.

Keywords: thermoelastic instability; perturbation methods;
multi-disc clutches; brakes

1. Introduction

When two bodies slide against each other, frictional heat is generated and the result-
ing thermoelastic deformation alters the contact pressure distribution. This coupled
thermomechanical process is susceptible to thermoelastic instability (TEI). Above a
certain critical speed, a nominally uniform pressure distribution is unstable, giving
way to localization of load and heat generation and hence to hot spots at the sliding
interface (Barber 1969; Kennedy & Ling 1974; Floquet & Dubourg 1994; Bryant et
al . 1995; Kao et al . 2000). The problem is particularly prevalent in energy-dissipation
systems such as brakes and clutches. Hot spots can cause material damage and wear
and are also a source of undesirable frictional vibrations, known in the automotive
disc brake community as `hot roughness’ or `hot judder’ (Kreitlow et al . 1985; Inoue
1986; Zagrodzki 1990; Anderson & Knapp 1990; Lee & Dinwiddie 1998).

y The authors dedicate this paper to the memory of Dr R. A. Burton, whose pioneering work made
possible modern methods of analysis of thermoelastic instability.
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Figure 1. Evidence of hot spotting on a clutch disc.

Figure 2. Clutch disc after a single engagement.

Figure 1 shows one of the plates of a typical multi-disc wet clutch after a period
of normal service. The dark areas correspond to regions in which high local temper-
atures have been experienced. Evidence of surface melting can be found in extreme
cases. In addition, transfer of friction material components and the products of over-
heated transmission ®uid may be involved. The pattern seen in ­ gure 1 represents
the e¬ect of multiple engagements of the clutch and shows several series of hot spots
at di¬erent locations overlayed on each other. A better picture of the phenomenon is
obtained if the clutch is examined after a single engagement, in which case the regu-
lar pattern of ­ gure 2 is obtained. The complete disc in this particular case exhibits
12 equally spaced hot spots on each side and they are arranged antisymmetrically.
In other words, the hot spots on the opposite side of the disc are located in the gaps
between those shown in the ­ gure.

(a) Stability analysis

Burton et al . (1973) used a perturbation method to investigate the stability of
contact between two sliding half-planes. The system is linearized about the uniform
pressure state and perturbations that can grow exponentially with time are sought.
Their results provided useful insight into the nature of the phenomenon, but there is
no inherent length-scale in the problem as de­ ned and it was found that sū ciently
long wavelengths are always unstable. A length-scale can be arti­ cially introduced
into the analysis by restricting attention to perturbations below a certain wavelength,
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estimated as being comparable with the linear dimensions of the practical system,
but the resulting predictions for critical speed do not generally show good agreement
with those observed experimentally (Dow & Stockwell 1977; Banerjee & Burton
1979).

(b) The e® ect of geometry

The ­ rst solution of a TEI problem involving a geometric length-scale was given
by Lee & Barber (1993), who used Burton et al .’s (1973) method to analyse the
stability of a layer sliding between two half-planes. This geometry provided a ­ rst
step towards that of the typical disc brake assembly, where a disc slides between
two pads of a friction material. Using typical material properties from automotive
applications, it was found that stability is governed by a deformation mode that is
antisymmetric with respect to the mid-plane of the layer and that has a wavelength
proportional to the layer thickness.

Despite the considerable idealizations involved in Lee’s theory, it provides plausible
predictions for the critical speed and the mode shape in typical brake assemblies and
is therefore quite widely used in the brake and clutch industry for TEI analysis.
However, there is a clear need for a method that will account for other features of
the system geometry, such as the ­ nite width of the sliding surface, the axisymmetric
geometry of the disc, and the `hat’ section used to attach the disc to its support.
One approach is to use ­ nite-element analysis (FEA) to solve the coupled transient
thermoelastic contact problem in time (Zagrodzki 1990; Johansson 1993; Zagrodzki
et al . 1999). This method is extremely ®exible, in that it can accommodate nonlinear
or temperature-dependent constitutive behaviour, more realistic friction laws, and
practical loading cycles. However, it is also extremely computer intensive and appears
unlikely to be a practical design tool for three-dimensional problems in the foreseeable
future.

(c) Numerical implementation of Burton’s method

A promising alternative approach is to implement Burton’s perturbation method
numerically, leading to an eigenvalue problem to determine the stability boundary.
If the exponential growth rate of the dominant perturbation can be assumed to be
real, the critical sliding speed is de­ ned by the condition that there exists a steady-
state equilibrium perturbation, i.e. one with zero growth rate. Du et al . (1997) used
the ­ nite-element method to develop the matrix de­ ning this eigenvalue problem.
Yi et al . (1999) used Du et al .’s method to explore the e¬ect of disc geometry in
an idealized disc brake in which the brake pads are assumed to be rigid and non-
conducting. Their results showed that the critical speed is in many cases quite close
to that predicted by the considerably simpler analysis of Lee & Barber (1993), which
probably explains the success of that analysis in practical applications.

Du et al .’s method rests on the assumption that the dominant perturbation has a
real growth rate. The limited range of problems that have been solved analytically
suggest that this assumption is justi­ ed if one of the two sliding bodies is a thermal
insulator, or if the dominant perturbation is independent of the coordinate in the
sliding direction, as in `banding’ instabilities in axisymmetric systems, where the
frictional heating is concentrated in an axisymmetric annular band within the contact
area. However, a rigorous proof of this result has never been advanced. When both
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materials are thermally conducting, the stability boundary is generally determined by
a disturbance that migrates with respect to both bodies in or opposed to the direction
of sliding (Burton et al . 1973). In a stationary frame of reference, the perturbation
will then appear to oscillate in time, corresponding to a complex exponential growth
rate. The migration speed is smaller than for the better thermal conductor and
this relative motion approaches zero when the other body tends to the limit of
thermal insulation. Practical systems such as brakes and clutches usually involve a
steel or cast-iron disc sliding against a composite friction material of signi­ cantly
lower conductivity (typically two orders of magnitude lower than that of steel). As
a result, the dominant perturbation migrates only very slowly relative to the metal
disc. However, this migration plays an important part in the process, because it
reduces the thermal expansion due to a given perturbation in heat input and hence
increases the critical speed.

(d ) Eigenvalue formulation for the exponential growth rate

Burton’s method can be implemented numerically for systems of two thermal
conductors by de­ ning the eigenvalue problem for the exponential growth rate. This
method was ­ rst suggested by Yeo & Barber (1996), who developed it in the context
of the related static thermoelastic contact problem, where instability results from
the pressure dependence of an interfacial contact resistance.

We ­ rst assume that the temperature, stress and displacement ­ elds can be written
as the product of a function of the spatial coordinates (x; y; z) and an exponential
function of time; for example, the temperature ­ eld T (x; y; z; t) is written

T (x; y; z; t) = ebt £ (x; y; z): (1.1)

When these expressions are substituted into the governing equations and boundary
conditions of the problem, the exponential factor cancels and we are left with a mod-
i­ ed system of equations in which the growth rate b appears as a linear parameter. A
­ nite-element discretization of this modi­ ed problem then yields a linear eigenvalue
problem for b.

In order to adapt this method to the sliding contact problem, we need to choose a
suitable frame of reference, relative to which at least one of the bodies will necessarily
be moving. This introduces convective terms into the heat-conduction equation and
can present numerical problems when the convective term is large (Christie et al .
1976). The relative magnitude of convective and di¬usive terms can be assessed by
calculating the Peclet number

Pe = V a=k; (1.2)

where V is the convective velocity, k is the thermal di¬usivity, and a is a repre-
sentative length-scale. Peclet numbers in tribological applications are typically very
large. For example, a steel clutch disc of mean diameter 0.2 m rotating at 2000 rpm
corresponds to Pe º 3:5 £ 105 using the mean diameter for a, and even the element
Peclet number will be large compared with unity for a realistic discretization. Thus,
the convective terms will tend to dominate the ­ nite-element solution.

Fortunately, di¯ culties with convective terms can be avoided by using Fourier
reduction in the sliding direction as long as

(i) no material points on either sliding body experience intermittent contact, and
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Figure 3. Schematic model for the two-body sliding system.

(ii) periodic boundary conditions apply in the sliding direction.

These conditions are satis­ ed for multi-disc brakes and clutches, which have an
axisymmetric geometry, but which often exhibit signs of damage attributable to TEI
with a non-axisymmetric eigenmode. In this case, orthogonality arguments show that
all the eigenmodes must have Fourier form in the circumferential direction and the
temperature ­ eld (for example) can be written in the form

T (r; ¿ ; z; t) = Refebt + jn¿ £ (r; z)g; (1.3)

where (r; ¿ ; z) are cylindrical polar coordinates, n is a wavenumber, and j =
p

¡ 1.
Once again, the (complex) exponential term cancels in the governing equations and
the boundary conditions, leading to a reduced problem in (r; z) only. A ­ nite-element
implementation of this reduced problem leads to a complex linear eigenvalue problem
for b for given values of n and the sliding speed, V .

2. Solution method

It is convenient to consider ­ rst the related problem in three-dimensional Cartesian
coordinates, since this permits a direct comparison with the results of Lee & Barber
(1993), which can therefore be used to validate the computational algorithm. The
system is shown schematically in ­ gure 3. Two bodies, « 1, « 2, with boundaries ¡ 1,
¡ 2, respectively, slide in the positive x-direction at constant speeds V1, V2, respec-
tively, and make contact over a common interface, ¡ c, which is independent of time,
t. The bodies are assumed to be of in­ nite extent in the x-direction and to have a
cross-section that is independent of x, in which case the system will support solutions
that are sinusoidal in x.

(a) The heat-transfer problem

The heat-conduction equation for body ­ (­ = 1; 2) in the ­ xed frame of reference
x; y; z is

K­ r2T ¡ » ­ c­
@T

@t
+ V­

@T

@x
= 0; (2.1)

where K­ , » ­ , c­ are the thermal conductivity, density and speci­ c heat, respectively,
of material ­ .
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By analogy with equation (1.3), we assume an exponentially growing perturbation
solution of the form

T (x; y; z; t) = Refebt+ jmx £ (y; z)g; (2.2)

where b is a possibly complex exponential growth rate and m is a real wavenumber.y
This function will satisfy equation (2.1) if

K­ r2 £ ¡ [K­ m2 + » ­ c­ (jmV­ + b)]£ = 0: (2.3)

Notice that £ is a function of (y; z) only, so equation (2.3) de­ nes a two-dimensional
problem in the yz-plane. Appropriate boundary conditions on £ for body ­ (­ = 1; 2)
are

K­
@T

@n­

= ¡ q­ on ¡ ­
c ; (2.4)

and

K­
@T

@n­
= 0 on ¡ ­ ¡ ¡ ­

c ; (2.5)

where ¡ ­ is the boundary of body « ­ , ¡ ­
c is that part of ¡ ­ that is in contact, n­

is the inward normal to « ­ and q­ is de­ ned such that the heat ®ux into « ­ at the
contact surface is Refq­ ebt + jmxg.

To obtain a ­ nite-element formulation of the problem, we multiply the governing
equation (2.3) by an arbitrary trial function, v(y; z), and integrate over the domain
« ­ , with the result

« ­

fK­ r2 £ ¡ [K­ m2 + » ­ c­ (jmV ­ + b) £ ]gv d « ­ = 0: (2.6)

We then use the divergence theorem to integrate the ­ rst term by parts, obtaining,
after some rearrangement,

K­
« ­

r v r £ d « ­ + [K­ m2 + » ­ c­ (jmV ­ + b)]

£
« ­

£ v d « ­ ¡ K­
¡ ­

v
@£

@n­

d ¡ ­ = 0: (2.7)

The last term in this equation can then be simpli­ ed using equations (2.4) and (2.5)
with the result

K­
« ­

r v r £ d « ­ + [K­ m2 + » ­ c­ (jmV ­ + b)]

£
« ­

£ v d « ­ +
¡ ­

c

vq­ d ¡ ­ = 0: (2.8)

y Notice that m has the dimensions (length) ¡ 1 and can take all positive real values. By contrast, n
in equation (1.3) is dimensionless and must be a positive integer.

Proc. R. Soc. Lond. A (2000)



Eigenvalue solution of TEI problems using Fourier reduction 2805

We represent £ in the discrete form

£ (y; z) =

N­

i= 1

£ iWi(y; z); (2.9)

where £ i are the nodal values (i = 1; N­ ), and Wi is a set of N­ shape functions.
There are no convective terms in the governing equation (2.8), since there is no

discretization in the sliding direction. We can therefore safely use the Galerkin formu-
lation in which the same functions Wi are used as both shape and weight functions,
leading to

K­
« ­

N­

i = 1

£ i
@Wj

@y

@Wi

@y
+

@Wj

@z

@Wi

@z
d « ­ + [K­ m2 + » ­ c­ (jmV ­ + b)]

£
« ­

N­

i= 1

£ iWjWi d « ­ + Q­
j = 0; j = 1; N­ ; (2.10)

where

Q­
j =

¡ ­
c

Wjq­ d ¡ ­ (2.11)

is the nodal heat source and is zero for all nodes except the contact nodes in ¡ ­
c .

The two sets of equations de­ ned by (2.10) for ­ = 1; 2 can be combined into a
single set. For this purpose, we note that the common contact nodes should appear
only once, since we assume temperature continuity in the contact region. There are
therefore N = N1 + N2 ¡ Nc nodes in the combined domain « = « 1 + « 2, where
Nc is the number of contact nodes. The corresponding heat sources in ¡ c should be
added to de­ ne

Qj = Q1
j + Q2

j ; (2.12)

which are the nodal heat sources at the contact interface due to frictional heating.
At all the other nodes in « , there is no heat source (Qj = 0).

We can write the resulting equations in the matrix form

(K + C + bH)£ + Q = 0; (2.13)

where

K =
«

K­
@W

@y

@W T

@y
+

@W

@z

@W T

@z
d « (2.14)

is the conductivity matrix,

H =
«

» ­ c­ W W T d « (2.15)

is the mass matrix,

C =
«

(K­ m2 + jm» ­ c­ V­ )W W T d « ; (2.16)

and W = [W1; : : : ; WN­
]T is a column vector of shape functions. These matrices are

easily evaluated using the four-node Gaussian quadrature method.
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(b) The thermoelastic problem

Equation (2.13) de­ nes the temperature, £, due to a prescribed set of nodal heat
sources, Q. These heat sources are non-zero only at the contact interface, ¡ c, and are
the result of frictional heating. We denote this non-zero subset of nodal heat sources
~Q and they are given by

~Q = fV ~P ; (2.17)

where ~P is the corresponding vector of nodal contact forces normal to the contact
interface, f is the coē cient of friction, and V = jV1 ¡ V2j is the relative sliding
velocity.

To complete the solution of the thermomechanically coupled problem, we need to
solve a thermoelastic contact problem to determine the linear relation between the
nodal forces, ~P , and the nodal temperatures, £. This relation can be written in the
symbolic form

~Pi =
N

j = 1

Aij £ j ; i = 1; Nc; (2.18)

where Aij is a non-square matrix of order Nc £ N .
We seek to determine the matrix A, which constitutes the general solution of

the thermoelastic problem. It is somewhat more straightforward than the heat-
conduction problem, since there are no time-dependent terms in the quasi-static
thermoelastic governing equations, so the only modi­ cation to these equations is
that introduced by the Fourier spatial variation exp(jmx). In particular, the result-
ing matrix A has no dependence on the velocities V­ or the exponential growth
rate b.

The most computationally e¯ cient procedure for determining A is to write a
custom-made ­ nite-element solution of the thermoelastic problem in which the Four-
ier term, exp(jmx), is cancelled before discretization (as in x 2 a above). This method
was described by Yeo & Barber (1996) and it permits A to be determined from a
single ­ nite-element run for each Fourier term.

An alternative method is to use a commercial code to determine the nodal force
vector ~P (j) due to the nodal temperatures £ k = ¯ kj, where ¯ kj is the Kronecker
delta. Substitution in equation (2.18) then gives

Aij = ~P (j)
i ; i = 1; Nc; (2.19)

which determines the jth column of A. The complete matrix can be determined col-
umn by column from a series of such runs for j = 1; N . This method requires N ­ nite-
element runs for each Fourier term, but it involves less initial programming e¬ort,
most of which can be performed within the user-friendly environment of the commer-
cial code. Many commercial codes do not contain appropriate Fourier elements, par-
ticularly in Cartesian coordinates, but these can often be de­ ned with a `user element’
option. The essential mathematics for this purpose is given in Appendix A, for the
axisymmetric geometry. An alternative strategy is to use a three-dimensional ­ nite-
element model and impose the above conditions in the form Tk(x) = ¯ kj cos(mx).
The corresponding value of ~P (j) can then be obtained by Fourier inversion of the
variation of the resulting nodal forces in the x-direction.
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In the present study we experimented with all of these methods, all of which
gave similar results. Yeo & Barber’s (1996) method is by far the most e¯ cient and
is worth the extra programming e¬ort for anyone wishing to use the method on a
regular basis. However, for a limited number of calculations, familiarity with the
commercial software may outweigh the slower solution procedure.

(c) Development of the eigenvalue equation

Once the matrix A has been determined, we can eliminate ~P between equations
(2.17) and (2.18), obtaining

~Q = fV A£: (2.20)

Notice that ~Q is de­ ned only at the Nc contact nodes, whereas the nodal heat source
vector, Q, in equation (2.13) is de­ ned at all the N nodes in « . The two vectors are
related by the equation

Q = © ~Q; (2.21)

where the N £ Nc matrix © is de­ ned by

© =
I
0

; (2.22)

and I is the identity matrix of order Nc £ Nc. Multiplying (2.20) by © and using
(2.21), we obtain the N £ N matrix equation

Q = fV ©A£: (2.23)

Finally, substituting for Q from (2.13) and rearranging, we obtain

[(K + C + fV ©A) + bH ]£ = 0; (2.24)

which is an N £ N linear eigenvalue problem for the exponential growth rate, b. The
resulting eigenvalue depends on the sliding speed, V , and also on the Fourier number,
m, since this appears in the de­ nition of the matrix, C. We also note that C is a
complex matrix, so that the eigenvalues and eigenvectors are generally complex.

(d ) Axisymmetric geometries

The same method is easily extended to the stability of Fourier perturbations in
the sliding of axisymmetric bodies. Axisymmetric or almost axisymmetric geome-
tries arise in automotive transmission clutches and in multi-disc aircraft brakes and
are therefore of considerable technological importance, particularly since TEI often
places serious limitations on the performance of these components.

The polar coordinate equivalent of equation (2.1) is

K­
@2T

@r2
+

1

r

@T

@r
+

1

r2

@2T

@¿ 2
+

@2T

@z2
¡ » ­ c­

@T

@t
+ !­

@T

@¿
= 0; (2.25)

where !­ is the angular velocity of body ­ in the chosen frame of reference. As
before, we substitute the form (1.3) for T (r; ¿ ; z; t), obtaining

K­
@2 £

@r2
+

1

r

@£

@r
+

@2 £

@z2
¡

K­ n2

r2
+ » ­ c­ (jn!­ + b) £ = 0: (2.26)
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Notice that the unknown temperature function, £ (r; z), is de­ ned only in the two-
dimensional spatial domain, « ­ , representing the cross-section of the axisymmetric
geometry at constant ¿ .

The ­ nite-element solution of the heat-conduction problem now proceeds exactly
as in x 2 a, leading to the same ­ nal equation (2.13), but with the modi­ ed matrices

K =
«

K­
@W

@r

@W T

@r
¡

W

r

@W T

@r
+

@W

@z

@W T

@z
d « ; (2.27)

H =
«

» ­ c­ W W T d « ; (2.28)

C =
«

K­ n2

r2
+ jn» ­ c­ !­ W W T d « : (2.29)

In the axisymmetric geometry, the relative sliding speed varies with radius, being
given by

V = !r; (2.30)

where ! = j!1 ¡ !2j is the relative angular velocity. The nodal heat sources, ~Q, at
the Nc contact nodes are, therefore, given by

~Q = fV ~P ; (2.31)

where V is the diagonal Nc £ Nc matrix de­ ned by

Vji = !ri ¯ ji (2.32)

and ri is the radial coordinate of the ith contact node.
The matrix A is determined as in x 2 b and the solution of the coupled problem

results in the N £ N linear eigenvalue problem

[(K + C + f(V ©)A) + bH ]£ = 0; (2.33)

for the exponential growth rate, b.

3. Results and discussion

We ­ rst apply the method to the two-dimensional problem solved analytically by Lee
& Barber (1993). This will allow us to validate the method and also to explore the
mesh re­ nement required to give a good description of the dominant eigenfunction
and the critical speed. For this purpose, we used the properties of cast iron for
the layer and of a commercial friction material for the half-planes. The appropriate
physical propertiesy are tabulated in table 1 and correspond to typical automotive
disc brake practice.

y We assume here that the friction material is isotropic and that the properties are independent of
mean temperature. Typical friction materials are signi­ cantly anisotropic, but manufacturers generally
only quote values of the modulus for compression across the thickness. If more complete constitutive
data are available, they are easily incorporated into the solution using equations (A 5) and (A 6) of
Appendix A. The thermal expansion coe¯ cient for many friction materials increases signi­ cantly with
mean temperature, and this can cause systems to become unstable at later stages in a braking event
(Lee & Barber 1994).
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Table 1. Material properties for the layer problem

layer half-plane

Young’s modulus, E (GPa) 125 0.53

Poisson’s ratio, ¸ 0.25 0.25

thermal expansion coe± cient, ¬ (¯C¡ 1 ) 12 £ 10¡ 6 30 £ 10¡ 6

thermal conductivity, K (W m ¡ 1 ¯C¡ 1 ) 54.0 0.5

thermal di® usivity, k (mm2 s ¡ 1 ) 13.0 0.27

The friction coe¯ cient was taken as f = 0:4 and the layer semi-thickness as a =
10 mm. The half-planes were modelled as layers of ­ nite thickness equal to 900 mm.
This is about three times larger than the dominant wavelength for the problem,
which is su¯ ciently large to ensure that the distant boundary has no e¬ect on the
perturbation problem. The system is symmetric about the mid-plane of the layer
and all the modes are either symmetric or antisymmetric. We therefore modelled
half of the system (half of the layer and one half-plane) and used antisymmetric
boundary conditions at the symmetry plane, since Lee & Barber (1994) showed that
the antisymmetric mode is always dominant for practical material combinations.

(a) Meshing and convergence

Fourier reduction converts the layer/half-plane problem into a one-dimensional
problem and hence only meshing in the direction normal to the interface needs to be
considered. As explained in x 1 b above, the disturbance moves relatively slowly over
the good conductor (the layer) but with a speed close to the sliding speed over the
half-plane. The Peclet number for the half-plane is, therefore, extremely high, and
as a result the thermal disturbance is concentrated in a very small boundary layer
near the contact surface. It is essential to use a ­ ne mesh in this region in order to
describe the temperature ­ eld adequately. However, the related elastic problem is less
localized, with signi­ cant stress variation at depths comparable with the wavelength
of the disturbance.

In order to capture these two processes with dissimilar length-scales, a graded mesh
was used with a bias ratio (i.e. the ratio between the lengths of adjacent elements)
of 0.7. In this way, a mesh with only 20 elements in the half-plane has a smallest
element (at the surface) of dimension less than 0.04% of the total depth modelled.

The degree of mesh re­ nement required near the critical speed can be estimated
by considering the heat-conduction problem in which a constant Fourier disturbance
moves over the surface of a half-plane at speed, c1. Elementary calculations show
that the resulting thermal disturbance decays exponentially with depth according to

£ (y) = £ 0 exp( ¡ ¶ y); (3.1)

where the complex decay rate

¶ = m2 ¡ jc1m

k
: (3.2)

If the migration Peclet number is large, i.e.

Pe =
c1

km
¾ 1; (3.3)
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Figure 4. Comparison of the analytical solution and the ¯nite-element results for £ (y)
( ,̄ ¯nite-element solution; ||, analytical solution).

this expression can be approximated by

¶ = (1 ¡ j)
V m

2k
; (3.4)

where we have used the fact that c1 º V for the poor conductor. This represents an
oscillatory decaying disturbance of wavelength

À = 2 º
2k

V m
: (3.5)

Equations (3.1) and (3.4) show that £ (y) decays to less than 0.2% of £ 0 within
one wavelength, and hence to capture the thermal disturbance it is essential to use
a reasonable number of elements in the domain 0 < y < À . Figure 4 compares the
theoretical temperature function £ (y) at the critical speed from Lee & Barber’s
(1993) analysis with the corresponding ­ nite-element results, using a mesh with 30
elements and a bias ratio of 0.7, which provides 10 elements in the ­ rst wavelength,
0 < y < À . The agreement is extremely good, showing that the above strategy
is successful in determining the degree of mesh re­ nement required to capture the
thermal boundary-layer e¬ect. An alternative strategy here would be to partition the
poor conductor into two parts, using a ­ ne mesh in the thermal boundary layer and
a coarser mesh in the rest of the body.

For the materials used in this study, this strategy is required only in the poor con-
ductor. Migration speeds in the good conductor were always su¯ ciently small to give
thermal boundary-layer thicknesses comparable with the other system dimensions.

(b) Critical speed and migration speed

The ­ nite-element formulation was used to obtain the complex eigenvalue, b, for
various sliding speeds, V , and iteration was used to determine the critical speed, V0,
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Figure 5. Comparison of the ¯nite-element solution with the analytical solution of
Lee & Barber (1993).
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Figure 6. Sensitivity of the critical speed to the number of elements, Nb , in the boundary layer
( ,̄ ¯nite-element solution; { { {, analytical solution).

at which the real part of the ­ rst eigenvalue reaches zero. Figure 5 shows the dimen-
sionless critical speed, V ¤

0 = V0a=k2, as a function of dimensionless wavenumber ma,
where k2 is the thermal di¬usivity of the cast-iron layer. The solid line represents the
analytical solution of Lee & Barber (1993) and the circles were obtained using the
present ­ nite-element method with 22 elements in the half-plane. Extremely good
agreement was achieved throughout the critical range of wavenumber, m, con­ rming
the e¬ectiveness of the method for this category of problem.
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The imaginary part of the eigenvalue, Im(b) = c2, represents the migration velocity
of the perturbation through the reference frame, which we ­ xed in the material of the
layer. This migration velocity tends to zero in the limiting case, where the thermal
conductivity of the moving material tends to zero and is small compared with the
sliding speed for practical friction material/metal material pairs. The dimensionless
migration speed c ¤

2 = c2a=k2 is compared with the predictions of Lee & Barber (1993)
in ­ gure 5 and again the agreement is very good.

Figure 6 explores the sensitivity of the critical speed to the number of elements,
N b , in the thermal boundary layer, de­ ned as 0 < y < À , where À is given by
equation (3.5). Convergence on the exact result is non-monotonic because of the
oscillatory nature of the temperature ­ eld presented in ­ gure 4. Good results are
obtained for N b > 6, but if N b is too small, very large non-conservative errors can
be obtained (i.e. the critical speed is very much overestimated). For example, with
N b = 2, the critical speed was overestimated by more than a factor of three, even
though the smallest element in this case was only an apparently respectable 1.7%
of the layer thickness, 2a. This highlights the danger of using numerical methods in
such problems without adequate regard to thermal boundary-layer e¬ects.

The thickness of the boundary layer (equation (3.5)) depends on the wavenumber
m, and in general the dominant wavenumber is not known until the analysis is com-
pleted. This di¯ culty can be overcome by using a relatively coarse mesh to estimate
the dominant wavenumber, which is then used to determine the mesh re­ nement
required for a more accurate calculation.

(c) Finite pad thickness

In practical brakes and clutches, the pad is also of ­ nite thickness and is supported
by a more rigid backing plate. This increases the e¬ective pad sti¬ness and generally
lowers the critical speed. Hartsock & Fash (1999) developed an approximate ana-
lytical solution to this problem. The basis of their method is the observation that
the thermal boundary layer in the friction material is so small that the temperature
­ eld is essentially unin®uenced by the thermal boundary condition at the backing
plate. Lee & Barber’s (1993) half-plane assumption can therefore be retained for the
heat-conduction problem, and the in®uence of the ­ nite thickness is felt only in the
elastic problem, which de­ nes the relation between the amplitude of a Fourier term
in the contact pressure and that of the corresponding term in the normal surface
displacement. Hartsock & Fash (2000) solved this elementary elasticity problem and
used their results to de­ ne a wavenumber-dependent `e¬ective modulus’ that a half-
plane would need to have to exhibit the same elastic behaviour. They then used this
modulus in place of the real modulus in Lee & Barber’s (1993) solution.

The present method enables us to test Hartsock & Fash’s (2000) approximation
numerically. Figure 7 shows the critical speed for a three-layer system comprising
a central steel layer of thickness 2.75 mm and two friction material layers each of
thickness 0.673 mm, assumed to be rigidly supported at the non-contacting interface.
The friction material properties were those of `friction material 1’ in table 2 and
are based on transmission clutch practice. The experimentally measured friction
coe¯ cient for this material combination is f = 0:12.

The solid line in ­ gure 7 represents the analytical solution from Hartsock & Fash
(2000), while the points are the present ­ nite-element results. The agreement is
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Table 2. Material properties for the three-layer and multi-disc clutch problems

friction friction
steel material 1 material 2

Young’s modulus, E (GPa) 200 0.11 0.30

Poisson’s ratio, ¸ 0.30 0.25 0.12

thermal expansion coe± cient, ¬ (¯C¡ 1 ) 12 £ 10¡ 6 14 £10¡ 6 14 £10¡ 6

thermal conductivity, K (W m ¡ 1 ¯C¡ 1 ) 42.0 0.22 0.241

thermal di® usivity, k (mm2 s ¡ 1 ) 11.9 0.122 0.177
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Figure 7. Critical speed for the two-dimensional three-layer model as a function of wavenumber,
m ( ¤ , two-dimensional ¯nite-element model; ||, Hartsock & Fash’s (2000) model; ,̄ Zagrodzki
et al .’s (1999) simulation).

excellent, showing that the approximate representation of the temperature ­ eld is
justi­ ed even for such a thin friction material layer. This holds out promise for
the development of analytical models for more complex multi-disc brake and clutch
applications.

Also shown in ­ gure 7 is a single point representing the critical speed and wavenum-
ber obtained for this system by Zagrodzki et al . (1999), using a full time domain
simulation. Once again, this point agrees almost exactly with the ­ nite-element and
the approximate analytical results.

(d ) The axisymmetric geometry

Practical brakes and clutches use axisymmetric annular discs of ­ nite thickness and
­ nite inner and outer radii. We ­ rst tested a simple geometry of this kind involving a
single steel disc of thickness 2.75 mm sliding between two stationary friction material
discs of thickness 0.673 mm with rigid backing plates. All three discs were taken to
have inner radius 44.5 mm and outer radius 57.0 mm. The friction material properties
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Figure 8. Critical rotational speed, !0 , for the three-layer axisymmetric clutch model
( ,̄ three-dimensional ¯nite-element model; ||, Hartsock & Fash’s (2000) model).

were those of `friction material 2’ in table 2, for which the experimentally measured
friction coē cient f = 0:13.

Systems with axisymmetric geometry can only exhibit modes with an integer num-
ber of waves, n, around the circumference, including the special case n = 0 corre-
sponding to axisymmetric or `banding’ modes. Yi et al . (1999) showed that for a
single disc sliding between two non-conducting rigid surfaces, the critical speed for
su¯ ciently large wavenumber is bounded by the two-dimensional plane-strain and
plane-stress solutions. A similar comparison is performed for the present two-material
three-disc system in ­ gure 8. The solid lines represent predictions of the critical speed
from the two-dimensional solution of Hartsock & Fash (2000), while the results of
the present ­ nite-element solution are represented by ¯s.

Stability of the system is determined by the wavenumber with lowest critical speed,
which here corresponds to n = 11. The three-dimensional results lie between the two-
dimensional plane-strain and plane-stress bounds for n > 4. The modes for n < 4
involve several reversals of temperature through the radial thickness and these modes
cannot of course be captured by a two-dimensional analysis. In particular, the critical
speed for the ­ rst banding mode (n = 0) is fairly low, so that banding as well as
focal modes might be expected with this geometry.

Additional runs were made to explore the sensitivity of the results to modest
changes in the coē cient of friction. For example, increasing f from 0.13 to 0.16 left
the dominant eigenfunction (the number of hot spots) unchanged, but reduced the
critical speed from 175 rad s¡1 to 134 rad s¡1.

(e) A multi-disc clutch

Finally, we apply the ­ nite-element method to the practical clutch design shown
schematically in ­ gure 9. The design parameters and material properties were chosen
to be consistent with the clutch whose experimentally damaged discs are shown
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Figure 9. Typical multi-disc clutch system. All dimensions are in mm.

in ­ gures 1 and 2. The clutch has three steel stators and two composite rotors.
The rotors each have a steel core and a friction material layer bonded onto each
side. During operation, sliding occurs between the friction material layers and the
adjacent stators. A hydraulic pressure, P , is applied to the upper piston, causing the
stack of discs to be compressed against the lower reaction plate. The corresponding
boundary conditions on the (homogeneous) perturbation problem are therefore that
the upper surface of the piston be traction free and the lower surface of the end
plate be restrained against axial motion. All exposed surfaces were assumed to be
thermally insulated, since practical heat-transfer coē cients are so small that they
hardly a¬ect thermoelastic instability. The material properties for this example are
those of friction material 2 in table 2 above, for which the friction coē cient is again
f = 0:13.

The critical speed for the ­ ve-disc clutch system is shown as a function of wavenum-
ber n in ­ gure 10. Instability ­ rst occurs in the banding mode (n = 0) at a rotational
speed of 218 rad s¡1, but there is also a local minimum of 237 rad s¡1 at n = 10.
This clutch is designed for initial engagement speeds of 628 rad s¡1, so we also calcu-
lated the exponential growth rate at this speed. The maximum value of b = 39:6 s¡1

corresponds to the Fourier mode with 10 hot spots per revolution, while the banding
mode grows only at a rate of 12.2 s¡1. Thus, the non-axisymmetric mode would be
expected to be dominant in this application. The eigenfunction for temperature in
the stator surface is shown in ­ gure 11 for the n = 10 mode and the correspond-
ing temperature contours in the (r; z)-plane are shown in ­ gure 12. Notice that the
eigenmode is antisymmetric with respect to the central stator, in which the greatest
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Figure 10. Critical speed as a function of wavenumber n for the ¯ve-disc clutch.

Figure 11. Dominant eigenmode for the temperature in the stator surface.

temperature perturbations are recorded. The temperatures in the rotors are close to
zero except in a thermal boundary layer that is too thin to be visible in ­ gure 12.

Comparison of ­ gures 11 and 12 with the experimental discs of ­ gures 1 and 2
shows that the perturbation analysis correctly predicts an antisymmetric mode with
focal hot spots, but the dominant wavenumber is predicted to be 10, in contrast to
the 12 hot spots observed experimentally. Various explanations might be advanced
for this relatively small discrepancy. The initial speed for clutch engagement is well
above the predicted critical value and all wavenumbers between 4 and 14 are unsta-
ble at the beginning of the engagement. However, the mode of ­ gures 11 and 12 has
the highest growth rate and would be expected to dominate the transient process.
A more plausible explanation is that clutch friction materials exhibit quite com-
plex constitutive behaviour and it is di¯ cult to select an appropriate incremental
elastic modulus for the analysis. The modulus given in table 2 is the incremental
modulus obtained in compression tests at the mean engagement pressure, but sig-
ni­ cant sti¬ening may occur under service conditions. The critical speed and the
dominant eigenmode are both quite sensitive to the modulus of the friction material
and plausible values could have been chosen to `­ t’ the theoretical predictions to a
wavenumber of 12. This highlights the fact that the principal di¯ culty remaining
in obtaining reliable theoretical predictions for TEI performance lies in the accurate
characterization of the properties of the complex friction materials used.
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Figure 12. Temperature contours in the (r; z)-plane for the eigenmode of ¯gure 10.

In ­ gure 12, the two rotors exhibit a `qualitative’ symmetry, in the sense that hot
regions occur at the same locations on the two sides, but the maximum temperatures
are lower on those surfaces nearest to the piston and the end plate. Both these pre-
dictions were con­ rmed by the experimental observations. The most severe damage
was observed on the central steel disc and the location of hot spots on the other two
stators indicated a mode symmetric with respect to the rotors. The attenuation of
the disturbance near the ends of the disc stack is probably attributable to the extra
rigidity provided to the terminal stators by the piston and end plate. In fact, a sim-
pler model in which the piston and end plate were replaced by rigid non-conducting
surfaces predicted a critical speed within 1% of the more exact value.

This explanation also suggests that a more exact sequence of antisymmetric and
symmetric perturbations in the stators and rotors, respectively, would be observed
in a clutch with a larger number of discs. This was con­ rmed by additional ­ nite-
element calculations for clutches of the same form as ­ gure 9, but with odd numbers
of discs between 3 and 13. The critical speed decreases towards a limit as the number
of discs increases, and the dominant mode approaches a state in which the pertur-
bation is strictly antisymmetric in the steel discs and symmetric in the composite
discs, except for those near to the ends of the stack. This limiting condition was also
obtained independently by modelling half of one rotor and one stator, using symmet-
ric/antisymmetric boundary conditions at the respective mid-planes. The number of
hot spots in the dominant eigenmode increases slightly with the number of discs,
but the solution has essentially converged on the limit for clutches with 11 discs or
more.

Notice that the axisymmetric mode in this example has the lowest critical speed
but that a non-axisymmetric mode becomes dominant at larger speeds. The general
solution of the transient thermoelastic contact problem at constant sliding speed can
be written down as an eigenfunction expansion, i.e. as a series containing all possible
terms of the form of equation (1.3). Furthermore, the fact that some of these terms
grow exponentially but that most decay suggests that a severely truncated series (a
reduced-order model) might give a highly e¯ cient numerical approximation to the
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transient behaviour, while retaining adequate accuracy. This is the subject of an
ongoing investigation.

4. Conclusions

The Fourier reduction method developed in this paper permits a remarkably e¯ -
cient solution of the frictional thermoelastic stability problem for systems in which
the geometry is axisymmetric. The power of the method is demonstrated by the
multi-disc clutch example, direct numerical simulation of which would represent an
extremely challenging computational problem. Values are obtained for the critical
sliding or rotational speed and also for the exponential growth rate of each mode
when operating above the critical speed.

In conventional clutch systems with alternating steel and composite discs, the
dominant unstable mode is usually antisymmetric with respect to the steel discs,
symmetric with respect to the composite discs, and involves an integer number of
focal hot spots around the circumference. This prediction is con­ rmed by experi-
mental observations of thermal damage in a ­ ve-disc clutch.

The method is easily applied to other examples and can therefore be used to assess
the e¬ect of design modi­ cations such as changes in geometry and material properties
on the thermoelastic stability of multi-disc brakes and clutches.

Y.-B.Y. and J.R.B. are pleased to acknowledge support from the National Science Foundation
under contract no. CMS-9619527.

Appendix A. Procedure for developing ùser elements’

Circumferentially periodic displacement and temperature ­ elds in an axisymmetric
body can be discretized in the form

ur =
N

i= 1

WiU
i
r cos n¿ ;

u ¿ =
N

i= 1

WiU
i
¿ sin n¿ ;

uz =
N

i= 1

WiU
i
z cos n¿ ;

T =
N

i= 1

Wi £ i cos n¿

(A 1)

(Zienkiewicz 1989), where Wi(r; z) is a set of N shape functions de­ ned in the
two-dimensional cross-sectional domain, « , and U i

r, U i
¿ , U i

z are the components
of the corresponding nodal displacement vectors Ui. The strain displacement rela-
tions in cylindrical polar coordinates can then be used to write the strain vector
e = ferr; e¿ ¿ ; ezz; er¿ ; e¿ z ; ezrgT in the form

e =
N

i = 1

BiU
i; (A 2)
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where

Bi =

@Wi

@r
cos n¿ 0 0

Wi

r
cos n¿

nWi

r
cos n¿ 0

0 0
@Wi

@z
cos n¿

¡
nWi

2r
sin n¿

1

2

@Wi

@r
¡

Wi

r
sin n¿ 0

0
1

2

@Wi

@z
sin n¿ ¡

nWi

2r
sin n¿

1

2

@Wi

@z
cos n¿ 0

1

2

@Wi

@r
cos n¿

: (A 3)

The corresponding stress vector ¾ = f¼ rr; ¼ ¿ ¿ ; ¼ zz; ¼ r¿ ; ¼ ¿ z ; ¼ zrgT is given by the
constitutive law

¾ = Ce ¡ DT; (A 4)

where

C =
E

(1 + ¸ )(1 ¡ 2 ¸ )

1 ¡ ¸ ¸ ¸ 0 0 0
¸ 1 ¡ ¸ ¸ 0 0 0
¸ ¸ 1 ¡ ¸ 0 0 0
0 0 0 1 ¡ 2 ¸ 0 0
0 0 0 0 1 ¡ 2 ¸ 0
0 0 0 0 0 1 ¡ 2 ¸

(A 5)

and

D =
E¬

(1 ¡ 2 ¸ )
1 1 1 0 0 0

T
: (A 6)

Notice that the method can easily be extended to anisotropic materials by using
appropriate anisotropic constitutive relations in place of equations (A 5) and (A 6).
Substituting (A 2) into (A 4) and the resulting stresses into the weak (Galerkin) form
of the equilibrium equations leads to the vector equation

LU = G£; (A 7)

where

L =
«

BTCBr drdzd ¿ ; (A 8)

G =
«

BTDW cos n¿ r drdzd ¿ ; (A 9)

and B is the 6 £ 3N matrix B = [B1 ; : : : ; BN ].
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The integrals with respect to ¿ can be performed, using the result

2 º

0

cos2 n¿ d ¿ =
2º

0

sin2 n¿ d ¿ =
º ; n 6= 0;

2 º ; n = 0;
(A 10)

giving the modi­ ed equation

~LU = ~G£; (A 11)

where

~L =
«

~BTC ~Br dr dz; (A 12)

~G =
«

~BTDW r dr dz (A 13)

and ~B = [ ~B1; : : : ; ~BN ] with

~Bi =

@Wi

@r
0 0

Wi

r

nWi

r
0

0 0
@Wi

@z

¡
nWi

2r

1

2

@Wi

@r
¡

Wi

r
0

0
1

2

@Wi

@z
¡

nWi

2r

1

2

@Wi

@z
0

1

2

@Wi

@r

: (A 14)

In these equations, ~L is the global sti¬ness matrix and ~G£ is a vector of `thermo-
elastic’ nodal forces. The `user element’ option in a commercial ­ nite-element code
requires the user to evaluate and input the element sti¬ness matrix ~Le, which has
the same de­ nition as (A 12) except that the integration is performed only over the
element « e, i.e.

~Le =
« e

~BTC ~Br dr dz: (A 15)

An essentially similar procedure can be used to de­ ne Fourier elements in the
Cartesian coordinate system x; y; z.
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