
ORIGINAL PAPER

Transient Heat Conduction Between Rough Sliding Surfaces

Yuwei Liu • J. R. Barber

Received: 6 January 2014 / Accepted: 31 March 2014 / Published online: 10 April 2014

� Springer Science+Business Media New York 2014

Abstract When two rough bodies slide against each other,

asperities on the opposing surfaces interact with each other,

defining a transient contact and heat conduction problem. We

represent each body by a Greenwood and Williamson asperity

model with a Gaussian height distribution of identical spher-

ical asperities. The heat transfer during a typical asperity

interaction is analyzed, and the results are combined with the

height distributions to determine the mean heat flux and the

mean normal contact pressure as functions of the separation

between reference planes in the two surfaces. We find that the

effective thermal conductance is an approximately linear

function of nominal contact pressure, but it also increases with

the square root of the sliding speed and decreases with the 3/4

power of the combined RMS roughness. The results can be

used to define an effective thermal contact resistance and

division of frictional heat in macroscale (e.g., finite element)

models of engineering components, requiring as input only the

measured roughness and material properties.

Keywords Heat conduction � Sliding contacts � Rough

surfaces

List of symbols

a Contact radius

a0 Maximum contact radius

Anom Nominal contact area

b Nearest approach

b0 Maximum value of b for contact

d Maximum interference

d0 See Eq. (5)

D Fractal dimension of the profile

E� Composite elastic modulus

hi Asperity height above a datum

h0 Mean plane separation

k Thermal diffusivity

K Thermal conductivity

m0;2;4 Moments of the power spectral density

Ni Surface density of summits

p Contact pressure

P Normal contact force

Pe Peclet number

q Heat flux per unit area

Q Total heat transfer

Ri Radius of asperity summit

R� Composite radius

S Sliding distance

t Time

t0 Half of the duration of contact

Ti Bulk temperatures

T0 Flash temperature
�T0 Average flash temperature

V Relative velocity

x; y Cartesian coordinates

a Bandwidth parameter

h Temperature difference T1 � T2

/i Height distribution of asperities

Ui Probability distribution for asperity interaction

l Coefficient of friction

ri Summit height standard deviation

xh Upper cut-off frequency
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Subscripts and superscripts

c Heat flux due to temperature difference

f Heat generated by friction

i ¼ 1; 2 Bodies 1, 2

nom Nominal contact

1 Introduction

When two bodies slide against each other, frictional heat is

generated at the interface. Since all practical surfaces are

rough on the microscale, contact is restricted to areas of

actual contact between surface asperities and these contacts

are also the location of the frictional heating, leading to

high local ‘flash temperatures’ [1]. However, in the ana-

lysis of real engineering systems—for example using the

finite element method—it is not generally possible to

model the details of the surface topography and appropriate

‘averaged’ boundary conditions must be assumed at the

interface. The usual convention is to assume temperature

continuity at the interface, but this is clearly unrealistic

since the imperfect contact imposes a resistance to heat

flow and is known to cause the ‘bulk temperature’

[essentially the average temperature at the interface or on a

plane slightly below the interface] to differ between the

two contacting bodies [2, 3].

The resistance to heat flow between stationary [non-

sliding] contacting rough surfaces is a mature subject of

research, and generally, it is found that the conductance

[reciprocal of resistance] is approximately proportional to

the nominal contact pressure [4], though many numerical

and analytical models predict power-law dependence sig-

nificantly different from linearity [5], as do experimental

results [6]. However, these results cannot be carried over to

the sliding contact problem, since the relative motion has a

major effect on the heat conduction problem.

Early models of the sliding contact problem were

developed by Blok [7] and Jaeger [8] and extended to more

general contact areas by Bos and Moes [9]. All these authors

assumed that (1) the typical contact area is sustained long

enough for a steady thermal state to be established, (2) the

contact area is fixed in one body and sliding over the other,

and (3) the two bodies can be represented as half spaces

whose temperatures at infinity are zero—in other words, the

bulk temperatures in the two bodies are equal. The results

depend heavily on the ‘Peclet number’ Pe ¼ Va=k, where V

is the sliding velocity, a is a typical dimension of the contact

area, and k is the thermal diffusivity of the material. When

Pe� 1, which is typically the case in tribological applica-

tions, most of the frictional heat passes into the ‘moving’

body and hardly any into the stationary body, meaning the

body on which the contact area is fixed, unless the moving

body has a much lower thermal conductivity.

The kinematic assumptions (1, 2) are appropriate if one

body is smooth, or if asperities on a rough hard body

plough through a smoother softer body. Of course, it is

traditional in contact mechanics to define a fictitious rough

body combining the roughness of the two contacting sur-

faces, but in the case of sliding, this changes the problem

qualitatively. If both surfaces are rough, the typical asperity

interaction will be transient with a short time scale, and it is

unrealistic to expect a thermal steady state to be established

[10, 11]. Furthermore, the kinematics is now symmetrical

about the interfacial plane [12] and in the absence of a bulk

temperature difference, the frictional heat partition for

similar materials would be equal, even at high Peclet

number [13]. We also note that the sliding contact of two

rough surfaces is necessarily stochastic, with contact

occurring at different parts of the surfaces at different

times, leading to dynamic effects and a stochastic distri-

bution of flash temperatures [14, 15].

In this paper, we shall represent each of the rough sur-

faces by classical asperity models and investigate the sta-

tistics of the asperity interactions during sliding and the

resulting heat exchange. Notice in particular that the typi-

cal interaction involves asperity pairs passing near but not

exactly over each other’s summits and the contact period at

each interaction, and hence the heat exchange, will depend

on the nearest approach distance as well as the asperity

heights. The results will enable us to estimate the effective

thermal conductance between the sliding surfaces and in

particular to explore the dependence of this quantity on

roughness and material parameters as well as on the

nominal contact pressure and sliding speed.

2 Transient Contact of an Asperity Pair

Following Greenwood and Williamson [16], we represent

each rough surface as a distribution of spherical asperities

of various heights. The typical mechanical and thermal

interaction will be a transient process in which an asperity

on body 2 passes sufficiently close to an asperity on body 1

to experience a period of contact.

Figure 1 shows a plan view of this process. We can

assume without loss of generality that body 1 is stationary and

that body 2 moves to the right at a constant velocity V . The

point A1 identifies the location of the summit of an asperity in

body 1 with radius R1 and height h1 above some datum

located in body 1. The point A2 defines the instantaneous

position of the summit of an asperity in body 2 of radius R2

and height h2 relative to a datum in body 2. As body 2 moves,

the point A2 traces out the dashed horizontal line in Fig. 1,

whose nearest approach to A1 is denoted by b. We choose to

define time t such that t ¼ 0 at the point of nearest approach,

so that at other times, the x-coordinate of A2 is Vt.
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If the bodies are located such that the distance between

the datum planes in the two bodies is h0, the contact

problem can be defined by an ‘interference function’

f ðx; yÞ ¼ h1 þ h2 � h0 �
x2 þ y2

2R1

� ðx� VtÞ2 þ ðy� bÞ2

2R2

;

ð1Þ

representing the local value of interpenetration of the sur-

faces if this were not prevented by contact forces. Moving

the origin of coordinates by defining

x ¼ nþ R1Vt

ðR1 þ R2Þ
; y ¼ gþ R1b

ðR1 þ R2Þ
; ð2Þ

we obtain

f ðn; gÞ ¼ d0 �
ðVtÞ2

2ðR1 þ R2Þ
� n2 þ g2

2R�
; ð3Þ

where

d0 ¼ h1 þ h2 � h0 �
b2

2ðR1 þ R2Þ
;

1

R�
¼ 1

R1

þ 1

R2

: ð4Þ

It is convenient to write the first of these equations as

d0¼
b2

0�b2

2ðR1þR2Þ
where b0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðR1þR2Þðh1þh2�h0Þ
p

ð5Þ

is the maximum value of b for which the interaction

involves contact. The maximum interference occurs at n¼
g¼ 0 and is given by

d ¼ d0 1� t2

t2
0

� �

where t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d0ðR1 þ R2Þ
p

V
: ð6Þ

Contact occurs while d [ 0 and hence �t0\t\t0. When

this condition is satisfied, Eq. (3) defines an axisymmetric

Hertzian contact problem for which the radius a of the

contact area, the normal contact force P and the contact

pressure distribution pðrÞ are given by [17]

a ¼
ffiffiffiffiffiffiffiffi

R�d
p

; P ¼ 4E�
ffiffiffiffiffi

R�
p

d3=2

3
;

pðrÞ ¼ 2E�

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

R�
1� r2

a2

� �

s

: ð7Þ

2.1 The Heat Conduction Problem

Since the roughness of the surfaces is to be explicitly

described by an asperity model, the bodies will be within

the range of interatomic forces in regions of actual contact,

so we assume continuity of temperature (perfect thermal

contact) in these regions. The duration 2t0 of a typical

asperity interaction event will be extremely small, so it is

reasonable to assume that the bulk temperatures remain

constant and that the heat conduction problem is dominated

by conduction in the direction perpendicular to the contact

surface [18]. In other words, lateral conduction can be

neglected, which reduces the problem to a single space

coordinate and time. In particular, if two stationary bodies

with thermal conductivity Ki and thermal diffusivity ki, and

initially uniform temperatures Ti; i ¼ 1; 2 are brought into

perfect thermal contact for a short period Dt, the total heat

flux per unit area into each body during the contact will be

[18, 19]

q1 ¼
C1qf

ðC1 þ C2Þ
� 2C1C2h
ðC1 þ C2Þ

ffiffiffiffiffi

Dt

p

r

;

q2 ¼
C2qf

ðC1 þ C2Þ
þ 2C1C2h
ðC1 þ C2Þ

ffiffiffiffiffi

Dt

p

r

; ð8Þ

where Ci ¼ Ki=
ffiffiffiffi

ki

p
; h ¼ T1 � T2, and qf is the total heat

generated per unit area at the interface during the contact.

The asperity contact problem is complicated by the

relative motion, which causes a given point on body 1 to

make contact with a range of points on body 2 during the

interaction. For example, Fig. 2a shows the extent of the

contact area on body 1 at various instants during the

interaction for the case where R1 ¼ R2 and we notice that

as the circular contact area grows and then shrinks, it also

moves. Here, we shall make the simplifying assumption

that the contact radius varies in the same way in time

[given by Eqs. (6, 7), but without relative motion, as shown

in Fig. 2b. We shall estimate the error due to this

approximation in Appendix 1.

2.1.1 Frictional Heating

The total frictional heat generated during the asperity

interaction is given by

x

y

V

Vt

b

A1

A2

Fig. 1 Trajectory of the summit A2 of asperity 2. The summit of

asperity 1 is stationary at A1
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Qf ¼
Z

t0

�t0

lPðtÞVdt ¼ 4lVE�
ffiffiffiffiffiffi

R�
p

d
3=2
0

3

Z

t0

�t0

1� t2

t2
0

� �3=2

dt

¼ plE�
ffiffiffiffiffiffiffiffiffiffi

R1R2

p
d2

0
ffiffiffi

2
p ¼ plE�

ffiffiffiffiffiffiffiffiffiffi

R1R2

p
ðb2

0 � b2Þ2

4
ffiffiffi

2
p
ðR1 þ R2Þ2

; ð9Þ

after substituting for t0; d0 from Eqs. (5, 6), respectively,

where l is the friction coefficient which is assumed to be

independent of pressure and velocity.

Equation (8) shows that in the absence of a temperature

difference h, the frictional heat will be distributed between

the two bodies in the fixed ratio C1=C2, giving a total heat

flow into bodies 1 and 2 of

Q
ð1Þ
f ¼

C1Qf

ðC1 þ C2Þ
; Q

ð2Þ
f ¼

C2Qf

ðC1 þ C2Þ
: ð10Þ

Notice that these results are appropriate when the asperity

interactions are of short duration, and hence, sliding speeds

are high. At very slow sliding speeds, a thermal steady state

will be established and the frictional heat will be parti-

tioned in the ratio of conductivities K1=K2 [15].

2.1.2 Heat Exchange Due to a Temperature Difference h

We next consider the modification to these results due to

the existence of a temperature difference h between the two

bodies. From Eqs. (6, 7), we conclude that a point at radius

r will experience contact as long as r\aðtÞ and hence for a

period

Dt ¼ 2t0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

a2
0

s

where a0 ¼
ffiffiffiffiffiffiffiffiffiffi

R�d0

p

ð11Þ

is the maximum radius of the contact circle. Substituting

this result into Eq. (8) and integrating over the contact area,

we find the total heat flux from body 1 into body 2 due to

the temperature difference h alone is

Qc ¼
4C1C2h

ffiffiffiffiffiffiffiffiffi

2pt0
p

ðC1 þ C2Þ

Z

a0

0

1� r2

a2
0

� �1=4

rdr ¼ 8C1C2ha2
0

ffiffiffiffiffiffiffiffiffi

2pt0
p

5ðC1 þ C2Þ
:

ð12Þ

Substituting for t0; a0; d0 from Eqs. (5, 6, 11), respectively,

we then obtain

Qc¼Acðb2
0�b2Þ5=4

where Ac¼
4
ffiffiffiffiffiffi

2p
p

C1C2hR�

5ðC1þC2ÞðR1þR2Þ
ffiffiffiffi

V
p :

ð13Þ

The kinematic approximation illustrated in Fig. 2b will

tend to underestimate the heat exchanged between the

bodies for a given value of the temperature difference h.

The exact calculation is generally intractable, but it can be

performed for the special case where C2 � C1, and this

provides a method of estimating the error introduced by the

approximation of Fig. 2b. This analysis is given in

Appendix 2, and it shows that for the case where the

asperities on the two surfaces have the same summit radius

[R1 ¼ R2], Eq. (13) underestimates the heat exchange by a

factor of
ffiffiffi

34
p
� 1:32. Notice that this is a purely numerical

factor. The parametric dependence of the heat exchange on

sliding speed, and roughness parameters is unchanged by

the kinematic approximation of Fig. 2b.

2.1.3 Flash Temperature

Although the focus in this paper is on the macroscopic heat

transfer behavior resulting from microscopic asperity

interactions, we also record here the maximum temperature

resulting from the frictional heating defined in Eq. (9).

With the simplified kinematics of Fig. 2b, this will occur at

the center of the contact area r ¼ 0, where the frictional

heating rate per unit area is

(a) (b)

Fig. 2 a Contact area at various instants during the interaction; b simplified kinematics used in the analysis
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q0ðtÞ ¼ lVpð0Þ ¼ 2lVE�

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d0

R�
1� s2ð Þ

r

; ð14Þ

from Eqs. (6, 7), where s ¼ t=t0. The temperature at this

point can then be obtained as

T0ðtÞ ¼
Z

t

�t0

q0ðsÞds

ðC1 þ C2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðt � sÞ
p

¼ 2lVE�

ðC1 þ C2Þp3=2

ffiffiffiffiffiffiffiffi

d0t0

R�

r

~TðsÞ ð15Þ

where the dimensionless integral

~TðsÞ ¼
Z

s

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2

s� f

s

df ð16Þ

is plotted in Fig. 3. A similar variation of temperature

during a transient interaction was obtained by Smith and

Arnell [12] (see their Fig. 3) using a finite element model.

The maximum value occurs at s ¼ 0:65 and is 2.19, so the

maximum (flash) temperature is given by

T0 ¼
4:38lVE�

ðC1 þ C2Þp3=2

ffiffiffiffiffiffiffiffi

d0t0

R�

r

¼ 0:94l
ffiffiffiffi

V
p

E�ðR1 þ R2Þ3=4
d

3=4
0

ðC1 þ C2Þ
ffiffiffiffiffiffiffiffiffiffi

R1R2

p ;

ð17Þ

after substituting for t0 from (6)2.

3 Statistics of Asperity Interactions

The Greenwood and Williamson (GW) asperity model

[16], comprises a set of Ni identical spherical asperities per

unit nominal area of summit radius Ri, randomly distrib-

uted in the interfacial plane and following a Gaussian

height distribution with standard deviation ri. This model

is very idealized, since for example, asperities are generally

not axisymmetric and higher summits have larger mean

curvatures [20]. However, McCool [21] compared the GW

model with less restrictive models and showed that it is

nonetheless surprisingly accurate in its predictions.

3.1 Determination of GW Parameters

According to Nayak [20], a random and isotropic surface

with a homogeneous, Gaussian height distribution can be

adequately characterized by the three moments

ðm0Þ; ðm2Þ; ðm4Þ of the power spectral density function.

These values can be determined from a profile function

zðxÞ as

m0 ¼ zðxÞ2
D E

; m2 ¼ z0 xð Þ2
D E

; m4 ¼ z00 xð Þ2
D E

;

ð18Þ

where zðxÞ represents the profile height deviation from an

arbitrary datum plane at some position x and can be derived

from a profilometer or AFM. The square root of m0 is the

RMS roughness of the surface, m2 is the mean square

slope, and m4 is the mean square curvature.

The GW parameters Ni;Ri can then be obtained from the

spectral moments as [22]

Ni ¼
1

6p
ffiffiffi

3
p ðm4Þi
ðm2Þi

; Ri ¼
3

8

ffiffiffiffiffiffiffiffiffiffiffi

p
ðm4Þi

r

; ð19Þ

and Bush et al. [23] express the summit height standard

deviation ri, as

ri ¼ 1� 0:8968

ai

� �1=2 ffiffiffiffiffiffiffiffiffiffiffi

ðm0Þi
q

; ð20Þ

where

ai ¼
ðm0Þiðm4Þi
ðm2Þ2i

ð21Þ

is the bandwidth parameter. As ai [ 1:5 [20], Eq. (20)

shows that the summits have lower variance than the sur-

face as a whole—i.e. ri\
ffiffiffiffiffiffiffiffiffiffiffi

ðm0Þi
p

, but the difference is

small and reduces as ai becomes large.

It is more usual in tribology to use the profile mean

plane as a reference, rather than the summit mean plane

used by the GW model [22], but since the plane separation

will be used merely as an intermediate step in determining

relations between macroscopic quantities, we here use the

more convenient GW definition.

3.2 Probability of a Single Interaction

Suppose that each surface contains only a single asperity,

and we wish to determine the probability distribution UðbÞ
of an asperity interaction occuring during sliding through a

distance S, where b is the nearest approach of the asperities

Fig. 3 Variation of dimensionless central temperature ~TðsÞ during a

single asperity interaction
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shown in Fig. 1. The distribution UðbÞ is defined such that

the probability of an interaction between b and bþ db is

UðbÞdb. Since the location of the asperities is random, we

can determine this probability by fixing the location A1 of

the asperity in body 1 and covering the entire nominal area

Anom by a set of parallel lines separated by a small distance

db, representing the trajectory of A2. The total length of

these lines is Anom=db and just two of them lie in the

required range (one on each side of A1), so the required

probability function is 2S=Anom. However, since there are

N1 asperities on surface 1 and N2 on surface 2 per unit

nominal area, the probability distribution for asperity

interactions is given by

UðbÞ ¼ 2SN1N2Anom: ð22Þ

3.3 Asperity Height Distributions

The frictional heat generated Qf and the heat transferred

between the bodies Qc at each asperity interaction depends

on d0 through Eqs. (9, 13) and hence on the heights h1; h2

of the respective asperities through Eq. (4). We assume a

Gaussian distribution of asperities with height, so that the

probability of a given asperity on surface i having a height

between hi and hi þ dhi is /ðhiÞdhi where

/iðhiÞ ¼
1
ffiffiffiffiffiffi

2p
p

ri

exp � h2
i

2r2
i

� �

: ð23Þ

3.4 Total Frictional Heat Generated

Each asperity interaction results in the generation of an

amount of frictional heat Qf given by Eq. (9), so the total

frictional heat generated per unit nominal area when sliding

a distance S can be obtained by integrating with respect to

h1; h2; b, giving

Qf ðSÞ ¼
1

Anom

Z

1

�1

Z

1

h0�h2

Z

b0

0

UðbÞ/ðh1Þ/2ðh2ÞQf dbdh1dh2;

ð24Þ

where b0 is given by Eq. (5). This integral is evaluated in

Appendix 1 and can be written

Qf ðSÞ ¼
221=4N1N2

ffiffiffi

p
p

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2

p ffiffiffiffiffiffiffiffiffiffi

R1R2

p
lS r2

1 þ r2
2

� �5=4

15

If ðĥ0Þ; ð25Þ

where

If ðĥ0Þ ¼
Z

1

0

e�ðyþĥ0Þ2 y5=2dy and ĥ0 ¼
h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr2
1 þ r2

2Þ
p :

ð26Þ

This integral can be expressed in terms of special functions

using (for example) Maple or Mathematica.

3.5 Heat Exchange Due to a Temperature Difference

An exactly similar procedure can be used to determine the

total heat exchanged between the bodies due to a bulk

temperature difference h. We simply replace Qf by Qc in

Eq. (24), obtaining

QcðSÞ ¼
1

Anom

Z

1

�1

Z

1

h0�h2

Z

b0

0

UðbÞ/ðh1Þ/2ðh2ÞQcdbdh1dh2;

ð27Þ

where Qc is given by Eq. (13).

This integral is evaluated in Appendix 2 and can be

written

QcðSÞ ¼
245=8p3=2SN1N2C1C2hR1R2ðr2

1 þ r2
2Þ

7=8

21Cð3=4Þ2ðC1 þ C2ÞðR1 þ R2Þ1=4
ffiffiffiffi

V
p Icðĥ0Þ;

ð28Þ

where

Icðĥ0Þ ¼
Z

1

0

e�ðyþĥ0Þ2 y7=4dy: ð29Þ

3.6 The Nominal Heat Flux

The velocity V is the distance S slid per unit time, and

hence the rate of heat generation per unit nominal area due

to friction is obtained by replacing S by V in Eq. (25),

giving

qf
nom ¼

221=4N1N2

ffiffiffi

p
p

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2

p ffiffiffiffiffiffiffiffiffiffi

R1R2

p
lV r2

1 þ r2
2

� �5=4

15

If ðĥ0Þ:
ð30Þ

Similarly, the nominal heat flux from body 1 to body 2 due

to a temperature difference h ¼ ðT1 � T2Þ is

qc
nom ¼

245=8p3=2N1N2C1C2ðT1 � T2ÞR1R2ðr2
1 þ r2

2Þ
7=8

ffiffiffiffi

V
p

21Cð3=4Þ2ðC1 þ C2ÞðR1 þ R2Þ1=4

Icðĥ0Þ;
ð31Þ

from (28). The heat flux into bodies 1 and 2 can then be

obtained by superposition as

q1 ¼
C1qf

nom

ðC1 þ C2Þ
� qc

nom; q2 ¼
C2qf

nom

ðC1 þ C2Þ
þ qc

nom: ð32Þ
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3.7 The Mean Nominal Pressure

If the mean separation h0 is maintained constant, the nor-

mal force P, and hence, the nominal contact pressure

pnom ¼ P=Anom will fluctuate randomly because of the

statistical nature of the asperity interactions. However, the

mean value must satisfy the equation

Qf ðSÞ ¼ lpnomS ð33Þ

since this represents the work done against friction during

sliding through a distance S. Using this result and Eq. (25),

we then obtain

pnom ¼
221=4N1N2

ffiffiffi

p
p

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2

p ffiffiffiffiffiffiffiffiffiffi

R1R2

p
r2

1 þ r2
2

� �5=4

15
If ðĥ0Þ:

ð34Þ

3.8 Stochastic Distribution of Flash Temperatures

Since asperity interactions occur with a range of values of

maximum interference d0, the flash temperatures generated

at these interactions will have a stochastic distribution [14,

15]. The present model enables us to estimate the statistical

properties of this distribution.

We first determine the total number of interactions per

unit nominal contact area when sliding a distance S, which is

Nðh0Þ ¼
1

Anom

Z

1

�1

Z

1

h0�h2

Z

b0

0

UðbÞ/ðh1Þ/2ðh2Þdbdh1dh2:

ð35Þ

This integral can be evaluated using the same method as in

Appendix 2 giving

Nðh0Þ ¼
27=4N1N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2

p
S r2

1 þ r2
2

� �1=4

ffiffiffi

p
p I ĥ0;

1

2

� �

;

ð36Þ

where Iðĥ0; cÞ is an integral defined in Eq. (57).

Now, if the mean plane separation h0 were increased by

some value d1, any interactions for which d0\d1 would

cease to occur, and the number of interactions would be

decreased to Nðh0 þ d1Þ. It follows that the proportion of

the interactions at h0 that satisfy the condition d0 [ d1 is

Nðh0 þ d1Þ
Nðh0Þ

¼
I ĥ0 þ d̂1;

1
2

� �

I ĥ0;
1
2

� � : ð37Þ

The flash temperature (17) is a monotonic function of d0,

so it follows that Eq. (37) also defines the probability that a

given interaction will experience a flash temperature

T0 [ T1, where T1 is obtained by substituting d0 ¼ d1 in

(17).

We can also determine the mean flash temperature as

�T0¼
1

Nðh0ÞAnom

Z

1

�1

Z

1

h0�h2

Z

b0

0

UðbÞ/ðh1Þ/2ðh2ÞT0dbdh1dh2;

ð38Þ

where T0 is defined in terms of d0 and hence b through Eqs.

(5, 17). Using the same methods as in Appendix 2, we

obtain

�T0 ¼
0:87l

ffiffiffiffi

V
p

E�ðR1 þ R2Þ3=4ðr2
1 þ r2

2Þ
3=8

ðC1 þ C2Þ
ffiffiffiffiffiffiffiffiffiffi

R1R2

p IT ; ð39Þ

where

IT ¼
I ĥ0;

5
4

� �

I ĥ0;
1
2

� � : ð40Þ

4 Results and Discussion

4.1 Thermal Contact Resistance

As the mean separation ĥ0 is reduced, both the nominal

pressure and the nominal heat flux qc
nom due to the tem-

perature difference ðT1 � T2Þ increase, but the dependence

is not identical in the two expressions because of the dif-

ferent powers of y in the integrals (26) and (29). Figure 4

shows the relation between these integrals on a log-log

scale and an almost perfect fit is provided by the straight

line which corresponds to a power-law relation of the form

Fig. 4 The points represent the relationship between nominal heat

flux qc
nom and nominal contact pressure pnom through the integrals Ic; If

in Eqs. (31, 34). The solid line is the power-law fit (41), and the

dashed line is the linear fit (42)
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qc
nom ¼ BðT1 � T2Þ

ffiffiffiffi

V
p

p0:96
nom; ð41Þ

where B is a constant that depends upon the material and

roughness parameters through Eqs. (31, 34).

Equation (41) shows that the thermal contact resistance

is inverse with V1=2. This results from the assumption that

during sliding, the individual asperity interactions have

very short duration and hence are unable to approach a

thermal steady state, which is clearly not appropriate in the

static limit V ! 0. Nonetheless, a very similar power

exponent with pressure is generally obtained in the static

case. For example, Mikic [24] (see also [25]) predicts an

exponent of 0.94, though other authors report a weak

dependence on fractal dimension [26].

The power law (41) is very close to linear and indeed in

the range where the dimensionless mean separation ĥ0 [ 2

(which includes most practical contact situations) a very

good linear fit can be obtained in the form

qc
nom �

4:26C1C2

ffiffiffiffiffiffiffiffiffiffi

R1R2

p
ðT1 � T2Þ

ffiffiffiffi

V
p

ðC1 þ C2ÞðR1 þ R2Þ3=4ðr2
1 þ r2

2Þ
3=8

pnom

E�
: ð42Þ

We should not be surprised to see nearly linear behavior

here, since the original GW model (admittedly for a single

rough surface contacting a plane) predicted near linearity

for the relations between several other quantities that are

sums over individual asperity events, notably normal load,

electrical contact resistance, and total actual contact area

[16]. The result follows from the assumed Gaussian dis-

tribution of asperity heights, which causes increases in load

to be primarily accommodated by an increased number of

actual contact areas, while leaving the size distribution

relatively unchanged.

If the two sliding surfaces are identical, Eq. (42) reduces to

qc
nom �

0:98KR1=4ðT1 � T2Þ
ffiffiffiffi

V
p

ffiffiffi

k
p

r3=4

pnom

E�
; ð43Þ

which has the advantage of exposing the dependence of the

contstant of proportionality on the roughness parameters r
and R.

4.2 Average Flash Temperature

Figure 5 shows the average flash temperature �T0 as a

function of the nominal contact pressure pnom represented

through the integrals IT ; If , respectively, in Eqs. (34, 40).

The average flash temperature increases modestly with

increase in nominal pressure, but the dependence is very

weak, amounting to only a 50 % increase over four decades

increase in pnom. This again is consistent with GW

arguments.

Assuming an approximate value IT ¼ 0:36 and similar

materials and surfaces, Eq. (39) predicts an average flash

temperature of

�T0 �
0:34l

ffiffiffiffiffiffi

kV
p

E�r3=4

KR1=4
; ð44Þ

which shows a significant dependence on roughness

amplitude and elastic modulus. It is interesting to note that

the material and roughness parameters that affect �T0 have

an exactly inverse effect on the thermal contact resistance,

so that Eqs. (43, 44) can be combined to yield the simple

relation

qc
nom

ðT1 � T2Þ
� lVpnom

3 �T0
ð45Þ

that is material and roughness independent.

4.3 Quasi-Fractal Surfaces

Many rough surfaces exhibit fractal characteristics, but a

truly fractal surface would give unbounded values for the

moments m2;m4. Theories of this kind therefore require

that the spectral density be truncated at some upper cutoff

frequency xh, and the usefulness of the results depends on

the extent to which they depend on this essentially arbitrary

parameter. In Eq. (43), this dependence results only from

the term R1=4, since r is approximately independent of xh.

Using Eq. (19), we then have

R1=4�ðm4Þ�1=8�x�D=4
h

ð46Þ

[27], where D ð1�D\2Þ is the fractal dimension of the

profile. The shortest wavelength of the truncated surface is

kh ¼ 2p=xh and a reasonable practical range for kh is

between 10 nm and 10 lm, limited at the low end by the

atomic structure of the material and at the high end by the

requirement for an adequate description of the rough sur-

face. Over this range, R1=4 varies by a factor of 10�3D=4

which corresponds to 1/13 for D ¼ 1:5, so the quantitative

predictions of thermal contact resistance are significantly

influenced by the roughness description chosen. However,

the parametric dependence on material properties and

Fig. 5 Relation between average flash temperature �T0 and nominal

contact pressure pnom through the integrals IT ; If in Eqs. (34, 40)
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sliding speed and the approximately linear dependence on

nominal pressure are independent of xh.

4.4 Application to Macroscale Finite Element Models

In a macroscale finite element model, the mesh is generally

not sufficiently fine to describe the surface roughness, and

indeed, the typical asperity interaction is likely to be sev-

eral orders of magnitude smaller than the mesh dimension,

so we can reasonably treat the bulk temperatures T1; T2 as

surface nodal temperatures. We must therefore use aver-

aged expressions for the heat fluxes at the sliding interface,

and these values can be estimated from the results derived

above.

We must first obtain or estimate the surface roughness

parameters R1;R2; r1; r2 for substitution into Eq. (42).

These are given in Sect. 3.1 in terms of properties of the

surface profiles that can be obtained using profilometry.

Alternatively, we note that ri is approximately equal to the

RMS surface roughness which is likely to be specified in

the design, and Ri appears only weakly in Eq. (42) [see

(43)], so a rough estimate might reasonably be used.

The local heat fluxes q1; q2 into the two bodies in the

macroscopic model are then given by Eq. (32) where

qf
nom ¼ lVpnom; qc

nom is given by Eq. (42), and pnom is the

local contact pressure.

5 Conclusions

We have developed a Greenwood and Williamson model

of sliding thermal contact to predict the average heat flux

between two bodies at different temperatures and the

average normal contact pressure, both as functions of the

separation between mean planes in the respective surfaces.

The model differs from most previous treatments of rough

surface contact in that both surfaces are treated as rough, so

the contact process is stochastic in both time and space,

comprising a distribution of transient interactions between

pairs of asperities. The transient nature of these interactions

has a significant effect on the heat conduction problem.

We find that the effective thermal conductance is an

approximately linear function of nominal contact pressure,

but it also increases with the square root of the sliding

speed and decreases with r3=4, where r is the combined

RMS roughness. The results can be used to define an

effective thermal contact resistance and division of fric-

tional heat in macroscale numerical models of engineering

components, requiring as input only the measured rough-

ness and material properties.

Appendix 1

Effect of Relative Motion

We consider the case where C2 � C1, so that points on the

surface of body 2 can be assumed to remain at temperature

T2 throughout the contact, and for simplicity we assume

that R1 ¼ R2 ¼ R—i.e. the asperities on the two surfaces

have the same summit radius R.

A representative point ðx; yÞ on the surface of body

1 will make contact as long as it remains within the

appropriate contact circle in Fig. 2a—i.e. if

n2 þ g2� aðtÞ2, where n; g and the time-varying contact

radius aðtÞ are defined in Eqs. (2, 7) respectively. Using

these relations, the inequality can be written in terms of

x; y; t as

x� Vt

2

� �2

þ y� b

2

� �2

� Rd0

2
� V2t2

8
; ð47Þ

and hence

3s2

2
� 2Xsþ X2 þ Y2 � 1

2
� 0; ð48Þ

where we define dimensionless time and coordinates

through

X ¼ x
ffiffiffiffiffiffiffiffi

Rd0

p ; Y ¼ y
ffiffiffiffiffiffiffiffi

Rd0

p � b

2
ffiffiffiffiffiffiffiffi

Rd0

p ; s ¼ t

t0
¼ Vt

2
ffiffiffiffiffiffiffiffi

Rd0

p :

ð49Þ

The times s1; s2 at which contact begins and ends at a given

point ðX; YÞ are defined by taking the equality in (48),

giving

s1; s2 ¼
2

3
X 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4
� X2

2
� 3Y2

2

r

 !

: ð50Þ

It follows that the period of contact at this point is

Ds ¼ s2 � s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

3
1� 2X2

3
� 2Y2

� �

s

: ð51Þ

Notice that by setting Ds ¼ 0, we define the envelope of

the contact regions in Fig. 2a, which is

2x2

3
þ 2 y� b

2

� �2

¼ Rd0; ð52Þ

using (49). Points outside this ellipse never experience

contact. The total heat exchanged per unit area at ðX; YÞ is

given by Eq. (8) with C2 !1 as
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q ¼ 2C1h

ffiffiffiffiffi

Dt

p

r

¼ 2C1hðRd0Þ1=4

ffiffiffiffiffiffiffiffi

2Ds
pV

r

¼ 4C1hðRd0Þ1=4

31=4
ffiffiffiffiffiffi

pV
p 1� 2X2

3
� 2Y2

� �1=4
ð53Þ

and hence the total heat exchange during the interaction is

Qc ¼
Z Z

A

qðx; yÞdxdy ¼ Rd0

Z Z

A

qðX; YÞdXdY; ð54Þ

where the integration domain A comprises the ellipse of

Eq. (52). We obtain

Qc ¼
8
ffiffiffi

34
p

C1

ffiffiffi

p
p

h d0Rð Þ5=4

5
ffiffiffiffi

V
p ¼

ffiffiffi

34
p

C1

ffiffiffiffiffiffi

2p
p

h b2
0 � b2

� �5=4

5
ffiffiffiffi

V
p ;

ð55Þ

which exceeds Eq. (13) [with R1 ¼ R2] by a factor of
ffiffiffi

34
p
� 1:32.

Appendix 2

Evaluation of Gaussian Integrals

Consider the integral

JðcÞ ¼ 1

2pr1r2

Z

1

�1

Z

1

h0�h2

exp � h2
1

2r2
1

� h2
2

2r2
2

� �

ðh1 þ h2 � h0Þcdh1dh2:

We define dimensionless parameters

x1 ¼
h1

r1

ffiffiffi

2
p ; x2 ¼

h2

r2

ffiffiffi

2
p

and then perform the linear transformation

n ¼ x1 þ bx2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p ; g ¼ bx1 � x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p where b ¼ r2

r1

:

This preserves the condition

n2 þ g2 ¼ x2
1 þ x2

2

so that the Jacobean of the transformation is unity. We also

have

h1 þ h2 � h0 ¼ ðn� ĥ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr2
1 þ r2

2Þ
q

where

ĥ0 ¼
h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr2
1 þ r2

2Þ
p ;

and the domain of integration in JðcÞ is n[ ĥ0, giving

JðcÞ ¼ ½2ðr
2
1 þ r2

2Þ

c=2

p

Z

1

ĥ0

Z

1

�1

e�ðn
2þg2Þðn� ĥ0Þcdgdn:

The integral with respect to g evaluates to
ffiffiffi

p
p

so that

finally we obtain

JðcÞ ¼ ½2ðr
2
1 þ r2

2Þ

c=2

ffiffiffi

p
p Iðĥ0; cÞ ð56Þ

where

Iðĥ0; cÞ ¼
Z

1

ĥ0

e�n2ðn� ĥ0Þcdn ¼
Z

1

0

e�ðyþĥ0Þ2 ycdy; ð57Þ

writing y ¼ n� ĥ0. The integral Iðĥ0; cÞ can be evaluated

in terms of special functions (for example using Mathem-

atica or Maple) for integer and fractional values of c.

Frictional Heating

Substituting Qf ;UðbÞ;/1ðh1Þ;/2ðh2Þ from Eqs. (9, 22, 23)

respectively into Eq. (24), we obtain

Qf ðSÞ ¼
SN1N2plE�

ffiffiffiffiffiffiffiffiffiffi

R1R2

p

2
ffiffiffi

2
p
ðR1 þ R2Þ2

I1; ð58Þ

where

I1 ¼
1

2pr1r2

Z

1

�1

Z

1

h0�h2

Z

b0

0

exp � h2
1

2r2
1

� h2
2

2r2
2

� �

ðb2
0 � b2Þ2dbdh1dh2

Evaluating the integral with respect to b and substituting

for b0 from (5), we have

I1 ¼
8½2ðR1 þ R2Þ
5=2

15
J

5

2

� �

:

Substituting this result in (58) and using (56) we obtain

Qf ðSÞ ¼
221=4N1N2

ffiffiffi

p
p

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 þ R2

p ffiffiffiffiffiffiffiffiffiffi

R1R2

p
lS r2

1 þ r2
2

� �5=4

15

I ĥ0;
5

2

� �

:

Heat Exchange Due to a Temperature Difference

Substituting Qc;UðbÞ;/1ðh1Þ;/2ðh2Þ from Eqs. (13, 22, 23)

respectively into Eq. (27), we obtain

QcðSÞ ¼
27=2pSN1N2C1C2hR�

5ðC1 þ C2ÞðR1 þ R2Þ
ffiffiffiffiffiffi

pV
p I2;
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where

I2 ¼
1

2pr1r2

Z

1

�1

Z

1

h0�h2

Z

b0

0

exp � h2
1

2r2
1

� h2
2

2r2
2

� �

ðb2
0 � b2Þ5=4

dbdh1dh2

¼ 5p3=2½2ðR1 þ R2Þ
7=4

21
ffiffiffi

2
p

Cð3=4Þ2
J

7

4

� �

after evaluating the integral with respect to b. We therefore

have

QcðSÞ ¼
245=8p3=2SN1N2C1C2hR1R2ðr2

1 þ r2
2Þ

7=8

21Cð3=4Þ2ðC1 þ C2ÞðR1 þ R2Þ1=4
ffiffiffiffi

V
p I ĥ0;

7

4

� �

:
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