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Abstract

If a body with a stiffer surface layer is loaded in compression, a surface wrinkling instability may be developed.

A bifurcation analysis is presented for determining the critical load for the onset of wrinkling and the associated

wavelength for materials in which the elastic modulus is an arbitrary function of depth. The analysis leads to an eigenvalue

problem involving a pair of linear ordinary differential equations with variable coefficients which are discretized and solved

using the finite element method.

The method is validated by comparison with classical results for a uniform layer on a dissimilar substrate. Results are

then given for materials with exponential and error-function gradation of elastic modulus and for a homogeneous body

with thermoelastically induced compressive stresses.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

If a structure consisting of a thin stiff layer and a more flexible substrate is subjected to a sufficiently large
compressive load, a buckling or wrinkling surface instability can occur, as shown in Fig. 1. Generally, surface
wrinkling has been considered as an undesirable phenomenon to be avoided. However, in emerging areas such
as micro/nano-fabrication and bio-engineering, wrinkling can be used to produce controlled nano-scale
features (Bowden et al., 1999; Moon et al., 2007; Efimenko et al., 2005). It has been proposed that these may
be useful for applications such as diffraction gratings, patterned platforms for cell adhesion or nano-fluidic
channels. Surface wrinkling may also provide a way of probing the surface characteristics of the materials
(Stafford et al., 2004).
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of a half space subjected to a compressive load.
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Chen and Hutchinson (2004) developed a closed-form solution for the wrinkling of a gold layer deposited
on an elastomer substrate. They modeled the structure as a plate on a linear elastic foundation with infinite
thickness. The same methodology was extended to the case of a thin elastic layer on a substrate of finite
thickness by Huang et al. (2005). These solutions most naturally relate to the situation in which a thin stiff film
is deposited on a more flexible substrate, so that there is a sharp discontinuity in elastic modulus at the
interface. However, similar effects should be anticipated in cases where the elastic modulus of the material is
graded continuously from the surface to a lower substrate value.

The present work was motivated by observations of micron-scale buckling on oxidized poly(methyldisilox-
ane) (PDMS) in which a stiff surface-modified layer was formed by exposure to an oxygen plasma. The surface
layer in this material is formed by a diffusive process, so we anticipate a gradation of mechanical properties
from the surface. The absence in the literature of any discussion of surface wrinkling under these conditions
prompted the question of how the mechanics of wrinkling might be affected by the graded properties. The
intent of this paper is to establish the general mechanics framework for the study of such problems. In
particular, we develop a bifurcation method to analyze the onset of surface wrinkling of an elastic layer with
elastic properties that are arbitrary functions of depth. The analysis is sufficiently general to allow for an
arbitrary distribution of applied compressive strain with depth. In addition to cases of functionally graded
elastic modulus, it can therefore be applied to situations where a non-uniform distribution of eigenstrain is
generated by thermal expansion or other mechanisms such as a change in lattice parameters due to variable
concentration of a diffusive species (Larché and Cahn, 1982). The method is validated by comparison with the
results of Huang et al. (2005). It is then used to determine the critical compressive strain at which wrinkling
occurs and the associated wavelength for different distributions of elastic moduli. A subsequent paper will
examine some specific examples of buckling associated with cracking in oxidized PDMS.

2. General theory of the instability

The study of buckling (i.e. the sudden change of deformation pattern upon increase of the externally applied
load) in elastic structures and solids is a classical problem in solid mechanics, dating back two and a half
centuries to Euler and his celebrated study of the problem of the elastica. Restricting attention to conservative
elastic systems, the key ingredients for the appearance of buckling are the non-linearity of the system’s
governing equations and the symmetries inherent in its fundamental solution (i.e. the solution which exists at
small load levels, prior to the appearance of buckling). These features are present in the problem at hand, as
will be explained below.

For elastic solids, Koiter (1945) was the first in the mechanics community to formulate buckling as a
bifurcation problem associated with the principal solution and provide an asymptotic technique to follow the
post-bifurcation equilibrium paths. With the development of large strain continuum mechanics in the early
1950s, Koiter’s work was subsequently applied to a vast array of structural buckling problems in mechanics.
The interested reader is referred to the eminently readable review article by Budiansky (1974), who gives the
variational formulation for buckling problems in elastic solids that have a potential energy. The connection
between the loss of stability of the principal solution at the lowest load bifurcation in elastic systems—the
reason for associating the onset of a bifurcation buckling with an instability in these applications—is also well
explained in this article. The most general variational formulation of the buckling and post-buckling problem
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Fig. 2. The graded layer subjected to a compressive load.
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of conservative elastic systems can be found in Triantafyllidis and Peek (1992), whose notation is followed in
the present paper.

We consider the orthotropic elastic layer 0ox2oH t in a state of plane strain and subjected to a compressive
load parallel to the x1-axis, as shown in Fig. 2. The elastic moduli Lijklðx2Þ are assumed to be arbitrary
functions of x2 only, satisfying the major and minor symmetry conditions

Lijkl ¼ Lklij ¼ Ljikl ¼ Lijlk.

The boundary x2 ¼ 0 is assumed traction-free, while x2 ¼ H t is attached to a rigid plane surface. In many
cases, the wrinkling field will be localized near the free surface and we can then use the simplifying assumption
that the body is a half space ðH t!1Þ with zero displacement at infinity.

If there is no wrinkling, we expect the stress state to be independent of x1. We shall refer to this as the
‘fundamental stress state’ and the corresponding solution of the elasticity equations as the ‘principal solution’

s
0
. It must satisfy the equilibrium equations

s
0

ij;i ¼ 0; i; j ¼ 1; 2

and the boundary conditions

s
0

i2 ¼ 0

on the free surface x2 ¼ 0. Here and subsequently, the notation ð:Þ;i denotes differentiation with respect to xi

and the Einstein summation convention is implied over repeated indexes. Since there is no dependence on x1

(i.e., s
0
;1 ¼ 0), the only possible non-zero stresses are s

0
11;s

0
33 which can be general functions of x2. It is

convenient to define a loading parameter L such that s
0
ðx2;LÞ ¼ 0 at L ¼ 0 and an increase in L describes a set

of progressively increased applied loads. We then anticipate that above some critical value of L, the principal
solution will become unstable and wrinkling will occur.

2.1. Nature of the loading

The loading s
0
may result from a force applied to the extremities of the body, but in this case, compatibility

considerations demand that the corresponding strain e
0
11 � e0 be independent of x2, giving

s
0

ij ¼ Lij11ðx2Þe0.

Thus, the fundamental stress state varies with depth in proportion with the elastic modulus. However, more
general variations in loading can be generated by other mechanisms. For example, if the temperature Tðx2Þ of
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the body is a function of depth, we will have

s
0

ij ¼ Lijklðx2Þfe
0

kl � aklTðx2Þg, (1)

where akl is the tensor of thermal expansion coefficients. This situation may give rise to wrinkling even for a
homogeneous half space if the surface is suddenly heated, leading to high compressive stresses in a thin surface
layer. Other physical mechanisms leading to transformation strains could have similar effects.

2.2. Analysis

Since we assume an elastic material response, the problem is conservative and a potential energy functional
PðuiÞ exists, defined by

PðuiÞ ¼ U int þW ext, (2)

where ui is the displacement field, U int is the internal energy and W ext is the potential of the external forces.
The latter are given by

U int ¼

Z
V

W ðeijÞdV and W ext ¼ �

Z
V

rbiui dV �

Z
qV

tiui dG, (3)

where W ðeijÞ is the strain energy density in the body V, bi is the body force and ti is the traction on the
boundary qV . In the present problem, there is no body force or boundary traction, so only the strain energy
term appears in the subsequent analysis. The strain energy density W is

W ¼ 1
2
Lijkleijekl , (4)

where eij is the strain field. The wrinkling is governed by small strains and moderate rotations, so the strain can
be expressed as

eij ¼
1

2

qui

qxj

þ
quj

qxi

þ
quk

qxi

quk

qxj

� �
. (5)

The equilibrium of this system can be examined by taking the first derivative of the potential energy

P;udu ¼ 0. (6)

The equilibrium equation can be expressed in the weak form by substituting Eqs. (2)–(5), into Eq. (6),
givingZ

V

sijdeij dV ¼ 0. (7)

The fundamental stress state s
0
ðLÞ is always a solution of Eq. (7).

We now consider the stability of the principal solution by taking the derivative of the equilibrium equation.
The principal solution is stable in the neighborhood of L ¼ 0 since it minimizes the total potential energy P—

i.e., ½P;uuðu
0
Þdu�du40, where u

0
ðLÞ is the displacement field corresponding to the fundamental stress state s

0
and

du is any kinematically admissible perturbation. As L increases, there will be a critical value Lc where stability

is lost—½P;uuðu
0
ðLcÞÞDu�du ¼ 0 (Eq. (7)), where Du is the eigenmode. By substituting the stress field s

0
ij ¼ Lijkle

0
kl

in the left-hand side of Eq. (7), we can define a stability functional

SðLÞ � ½P;uuðu
0
ðLÞÞDu�du ¼

Z
V

½LijklDekldeij þ s
0

ijDdeij �dV , (8)

where

Ddeij ¼ ðDuk;iduk;jÞs; deij ¼ ðdui;j þ u
0

k;iduk;jÞs; Deij ¼ ðDui;j þ u
0

k;iDur;jÞs,

where ð:Þs denotes the symmetric part of the corresponding second-order tensor. Since we assume small strains,

ju
0

k;ij51 and the strain field perturbation simplifies to deij ’ ðdui;jÞs, Deij ’ ðDui;jÞs. At the onset of wrinkling,
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we therefore have

SðLcÞ ¼ ½P;uuðu
0
ðLcÞÞDu�du ¼

Z
V

½LijklDuk;ldui;j þ s
c

ijDuk;iduk;j�dV ¼ 0, (9)

where s
c
� s

0
ðLcÞ. Integrating Eq. (9) by parts and using Gauss’ divergence theorem, we obtain

½LijklDuk;l þ s
c

pjDui;p�;j ¼ 0, (10)

with boundary conditions

Li2klDuk;l þ s
c

p2Dui;p ¼ 0 (11)

at the free surface x2 ¼ 0 and

Dui ¼ 0 (12)

at x2 ¼ H t.
Since the fundamental stress state s

0
ij and the orthotropic elasticity tensor Lijkl are independent of x1, the

equilibrium equation (10) and boundary conditions (11) simplify to

L1212Du1;22 þ L1212;2Du1;2 þ ðL1111 þ s
c
11ÞDu1;11 þ L1122Du2;21 þ L1221Du2;12 þ L1221;2Du2;1 ¼ 0,

L2211Du1;12 þ L2112Du1;21 þ L2211;2Du1;1 þ L2222Du2;22 þ L2222;2Du2;2 þ ðL2121 þ s
c
11ÞDu2;11 ¼ 0, ð13Þ

L1212Du1;2 þ L1221Du2;1 ¼ 0,

L2211Du1;1 þ L2222Du2;2 ¼ 0, ð14Þ

respectively. Since the material is orthotropic, Eqs. (12)–(14) admit eigenmodes of sinusoidal form

Du1 ¼ U1ðx2Þ sinðox1Þ,

Du2 ¼ U2ðx2Þ cosðox1Þ. ð15Þ

For the problem at hand, the eigenmode decomposition in Eq. (15) is complete. Substituting these expressions
in Eq. (13), we obtain two ordinary differential equations

L1212U 001 þ L01212U 01 � o2ðL1111 þ s
c
11ÞU1 þ oðL1122 þ L1221ÞU

0
2 þ oL01221U2 ¼ 0,

L2222U 002 þ L02222U 02 � o2ðL2121 þ s
c
11ÞU2 � oðL2211 þ L2112ÞU

0
1 � oL02211U1 ¼ 0 (16)

for the functions U1ðx2Þ;U2ðx2Þ, where the primes denotes derivatives with respect to x2. The boundary
conditions are

L1212U 01 � oL1221U2 ¼ 0; oL2211U1 � L2222U 02 ¼ 0 (17)

at x2 ¼ 0 and

Ui ¼ 0 (18)

at x2 ¼ H t, from Eqs. (12), (14) and (15). In the special case where the material is isotropic, Eqs. (16) and (17)
reduce to

mU 001 þ m0U 01 � o2ðlþ 2mþ s
0
11ÞU1 � oðlþ mÞU 02 � om0U2 ¼ 0,

oðlþ mÞU 01 þ ol0U1 þ ðlþ 2mÞU 002 þ ðl
0
þ 2m0ÞU 02 � o2ðmþ s

0
11ÞU2 ¼ 0 (19)

with boundary conditions

U 01 � oU2 ¼ 0; olU1 � ðlþ 2mÞU 02 ¼ 0 (20)

at x2 ¼ 0 and Eq. (18) at x2 ¼ H t, where l; m are Lamé’s constants.
Eqs. (16)–(18) or Eqs. (18)–(20) define an eigenvalue problem for the critical loading parameter Lc and the

eigenmodes U1ðx2Þ;U2ðx2Þ for given wavenumber o. If the elastic modulus Lijkl and the fundamental stress
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state s
0
are piecewise constant functions of x2, the problem can be solved analytically, but the authors were

unable to obtain an analytical solution for the more general case of a functionally graded material. In the next
section, we therefore develop a numerical discretization of the problem.

2.3. Numerical solution

A numerical solution could be obtained by discretizing the differential equations (16), but it is more
convenient to apply the finite element method directly to Eq. (8). Using the same eigenmodes as given in
Eq. (15), the stability functional (8) can be written as

SðL;oÞ ¼
Z

x1

Z
x2

½LijklDuk;lDui;j þ s
0

ijDuk;iDuk;j�dx2 dx1. (21)

Stability of the structure depends on SðL;oÞ being positive definite for all o 2 R. Since from symmetry S

depends on o2, only o40 needs to be checked for L.
The x2 domain is decomposed in a set of 2-node linear interpolation elements, within each of which the

unknown displacement Ui is represented in the form

Uiðx2Þ ¼
X2
I¼1

NI ðx2Þu
I
i , (22)

where NI ðx2Þ is the shape function and uI
i is the local degree of freedom for Ui at the two terminal nodes

ðI ¼ 1; 2Þ of the element. For each element there are therefore four degrees of freedom, which we combine into
the vector

qe ¼ fu
1
1; u

1
2; u

2
1; u

2
2g

T.

By substituting Eq. (22) into Eq. (21) and integrating over the element in question in x2-space,
1 we obtain the

element stiffness matrix

ke ¼

Z
e

Ldx2,

where

L ¼

o2ðL1111 þ s
0
11Þ

N1N1 þ L1212N 01N 01

oðL1122 � L1221Þ

N1N
0
1

o2ðL1111 þ s
0
11Þ

N1N2 þ L1212N 01N
0
2

oðL1122N1N
0
2

�L1221N 01N2Þ

oðL2211 � L2112Þ

N1N 01

o2ðL2121 þ s
0
11Þ

N1N1 þ L2222N 01N 01

oð�L2112N1N 02

þL2211N 01N2Þ

o2ðL2121 þ s
0
11Þ

N1N2 þ L2222N 01N
0
2

o2ðL1111 þ s
0
11Þ

N1N2 þ L1212N 01N 02

oð�L1221N1N 02

þL1122N 01N2Þ

o2ðL1111 þ s
0
11Þ

N2N2 þ L1212N 02N
0
2

oðL1122 � L1221Þ

N2N
0
2

oðL2211N1N 02

�L2112N 01N2Þ

o2ðL2121 þ s
0
11Þ

N1N2 þ L2222N 01N 02

oðL2211 � L2112Þ

N2N
0
2

o2ðL2121 þ s
0
11Þ

N2N2 þ L2222N 02N
0
2

2
6666666666666666666664

3
7777777777777777777775

.

The global stiffness matrix K can then be constructed by adding the element stiffnesses such thatX
e

qT
e keqe ¼ QTKQ,

where Q is a vector of global degrees of freedom. The eigenvalues of the system can be obtained by
decomposing the global stiffness matrix K using Choleski decomposition, subject to the essential boundary
1The integral
R

x1
cos2ðox1Þdx1 ¼

R
x1

sin2ðox1Þdx1 is taken out of (21) as a common factor.
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condition UiðH tÞ ¼ 0. We write

K ¼ LDU ,

where L is the lower triangular matrix with unit diagonal terms, U ¼ LT is the upper diagonal matrix and D is
the diagonal matrix. By tracking the positive definiteness of the matrix D, the system stability can be
evaluated. If the system is stable, the lowest eigenvalue should be positive. When the load parameter L reaches
a critical value Lc at which the lowest element of D is zero, the system becomes unstable.

3. Results

3.1. Convergence and validation

The method developed in the preceding two sections can be used to evaluate the stability of a layer or half
space with arbitrarily graded properties and applied loading. However, to validate the method, we first
compare its predictions with the results of Huang et al. (2005) for an isotropic homogeneous layer of thickness
H f on a dissimilar substrate of finite thickness Hs (so in our notation H t ¼ H f þHs). Notice that these
authors made the simplifying assumption that the shear stress at the film/substrate interface remains zero in
the buckled state, whereas our analysis is exact within the context of the numerical discretization.

Fig. 3 shows the critical strain ec0 and critical dimensionless wavelength 2p=ocH f as a function of
the thickness ratio Hs=H f for three values of the modulus ratio Ēf=Ēs, where Ē is the plane strain modulus
defined as

Ē ¼
E

ð1� n2Þ

and E and n are Young’s modulus and Poisson’s ratio respectively. Poisson’s ratio for both film and substrate
was taken as n ¼ 0:4. The solid lines are taken from Huang et al. (2005) and reproduce their Fig. 5, while the
points were obtained from the present program. The agreement is extremely good in all cases.

Tests were also conducted to determine the number of elements required for the numerical solution to
converge. A finer mesh was used in the film and in the upper layers of the substrate since the perturbation is
concentrated in this region. Better than 0.1% accuracy was obtained using 100 elements in the film and an
equal number in a region of the substrate adjacent to the interface of thickness 3H f . For the most efficient
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Fig. 3. Critical strain and wavelength for a homogeneous layer on a dissimilar substrate. The solid lines are taken from Huang et al.

(2005).
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meshing, the element gradation should follow the rate of decay of the eigenmode, but this depends on the
wavelength which is only known a posteriori.

It is clear from Fig. 3 and from heuristic considerations that the thickness of the substrate has little effect on
the results if it is large compared with the wavelength of the eigenmode. For the homogeneous layer, we found
that the half space results can be recovered from the necessarily finite numerical model provided that the
substrate thickness Hs is greater than about twice the wavelength—i.e. Hs44p=oc.

3.2. Graded materials

We next turn our attention to continuously graded materials, for which no previous results are available.
We considered two examples: a half space in which the plane strain modulus is graded exponentially from a
surface value Ē0 to a substrate value Ēs as x2!1 — i.e.

Ēðx2Þ ¼ Ēs þ ðĒ0 � ĒsÞ exp
�x2

H

� �

and one in which the grading follows the complementary error function

Ēðx2Þ ¼ Ēs þ ðĒ0 � ĒsÞ erfc
x2

H

� �
. (23)

In both of these examples, the parameter H serves as a characteristic length for the decay and can also be used
in constructing an expression for the critical dimensionless wavenumber ocH. The two expressions are
compared in Fig. 4, which shows that the error function decays to zero more rapidly at large depths.

Fig. 5 shows the critical strain ec0 and the critical dimensionless wavenumber ocH for the exponentially
graded modulus as a function of the modulus ratio Ē0=Ēs. Poisson’s ratio was taken as a constant n ¼ 0:4 for
these calculations. For comparison we also show in these figures the results for a discrete homogeneous layer
(solid line). The parameters for this ‘equivalent homogeneous layer’ were chosen by matching the area between
the modulus curve and the constant substrate level and the first moment of the same area, giving

H f ¼
2
R1
0 ðĒðx2Þ � ĒsÞx2 dx2R1
0 ðĒðx2Þ � ĒsÞdx2

(24)

and

Ēf ¼
1

H f

Z 1
0

ðĒðx2Þ � ĒsÞdx2. (25)
X2H

E0

Es

E

Fig. 4. Examples of variable modulus:—exponential grading, - - - error function grading.
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The graded results show a trend similar to the homogeneous layer, but the dependence on modulus ratio is not
now of power law form and both critical strain and wavenumber become less sensitive to modulus ratio at
high ratios. However, the homogeneous approximations (24) and (25) underestimate the critical strain by up
to a factor of two and generally overestimate the corresponding wavenumber.

Corresponding results for error-function gradation are shown in Fig. 6. The results are qualitatively similar
to the exponential case, though the homogeneous approximation to the critical wavenumber is less good.
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3.3. Effect of Poisson’s ratio

In the preceding results, Poisson’s ratio was assumed to be independent of depth. To examine the effect of
grading in n, we considered the case in which both Ē and n have error function grading. In other words, Ē is
given by Eq. (23) and

n ¼ ns þ ðn0 � nsÞ erfc
x2

H

� �
. (26)

The critical strain and wavenumber are shown as functions of Ē0=Ēs in Fig. 7 for the case where n0 ¼ 0 and
ns ¼ 0:49. For comparison, we also show results for the two cases where the modulus has the same grading but
Poisson’s ratio is uniform and given by the extreme values n0 ¼ 0 and 0:49, respectively.

For a homogeneous layer on a homogeneous substrate, the critical strain and wavenumber depend only on
the ratio of the plane strain moduli Ēf=Ēs and are otherwise unaffected by Poisson’s ratio (Huang et al., 2005).
By contrast, if the modulus is graded, we find a significant effect of n even if it is assumed uniform. These
effects are greatest when the modulus ratio is relatively modest. For example, for Ē0=Ēs ¼ 10, the critical
strain for n ¼ 0 exceeds that for n ¼ 0:49 by almost 90%.

The results for graded Poisson’s ratio are very close to those obtained using the uniform value 0.49. In other
words, a good approximation is obtained if the substrate value of n is used throughout the body. This
conclusion was verified by other numerical experiments.
3.4. Thermoelastic wrinkling

As a final example, we consider the case where the material is isotropic and homogeneous,
but the fundamental stress state s

0
varies with depth because of a non-uniform temperature field

due to surface heating, as in Eq. (1). If the body is initially at zero temperature and the boundary
x2 ¼ 0 is raised to a constant temperature T0 for time t40, the subsequent temperature profile will be
given by

Tðx2; tÞ ¼ T0 erfc
x2ffiffiffiffiffiffiffi
4kt
p

� �
,
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where k is the thermal diffusivity (Carslaw and Jaeger, 1959, Section 2.5). The corresponding fundamental
stress state is then

s
0
11 ¼ �

EaT0

ð1� nÞ
erfc

x2ffiffiffiffiffiffiffi
4kt
p

� �

from (1), where a is the coefficient of thermal expansion. Both expressions have the same functional form at all
times, but the characteristic length scale kt (and hence the wavelength of any wrinkles) increases with time. We
can therefore determine a universal dimensionless critical thermal strain að1þ nÞTc

0 and critical wavenumber
oc

ffiffiffiffiffi
kt
p

from a single numerical calculation. We find

að1þ nÞTc
0 ¼ 0:287; oc

ffiffiffiffiffi
kt
p
¼ 75:6.

A related problem is one in which the thermal-expansion mismatch is uniform and limited to a surface layer of
thickness H f in a homogeneous material. The critical strain for this problem is given by að1þ nÞT c

0 ¼ 0:267, and
the critical wavenumber is ocH f ¼ 12:2. This thermoelastic problem also provides a model for other phenomena
that involve compressive misfit strains within a surface layer; for example, a layer with epitaxial strains, a layer with
a volume change due to a phase transition or concentration of a diffusive species (Larché and Cahn, 1982), or a
piezo-electric layer. The critical strains due to pure thermoelastic effects are sufficiently large that the surface
instabilities may not be of practical significance when there is no modulus mismatch, but in conjunction with a stiff
surface layer, phenomena such as thermoelastic wrinkling are likely to occur at practical levels of strain.

4. Conclusions

We have presented a general strategy for determining the critical strain and the corresponding wavenumber
for the wrinkling instability of a half space or thick layer loaded in compression, when the elastic properties
vary with depth. Results exhibit dependence on modulus ratios similar to those observed when a homogeneous
stiff surface layer is bonded to a more flexible substrate (i.e. where the elastic properties are piecewise
constant). We present expressions permitting analytical results for the latter case to be used in an approximate
sense. The method can also be applied to thermoelastic loading associated with transient surface heating and
we give results for the critical surface temperature at which a homogeneous half space will develop wrinkling.
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