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Abstract

Elastic systems with frictional interfaces subjected to periodic loading are sometimes predicted to ‘shake down’ in the
sense that frictional slip ceases after the first few loading cycles. The similarities in behaviour between such systems and
monolithic bodies with elastic–plastic constitutive behaviour have prompted various authors to speculate that Melan’s the-
orem might apply to them – i.e., that the existence of a state of residual stress sufficient to prevent further slip is a sufficient
condition for the system to shake down.

In this paper, we prove this result for ‘complete’ contact problems in the discrete formulation (i) for systems with no
coupling between relative tangential displacements at the interface and the corresponding normal contact tractions and (ii)
for certain two-dimensional problems in which the friction coefficient at each node is less than a certain critical value. We
also present counter-examples for all systems that do not fall into these categories, thus giving a definitive statement of the
conditions under which Melan’s theorem can be used to predict whether such a system will shake down.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nominally static frictional contacts between engineering components are extremely prevalent, including for
example bolted joints (Berczynski and Gutowski, 2006; Law et al., 2006), blade root contacts in jet engines
(Murthy et al., 2004) and shrink fit assemblies (Booker et al., 2004). Such contacts are often subjected to a
substantial mean load and a superposed oscillatory load due to mechanical vibrations. Under these condi-
tions, failure can occur due to fretting fatigue, associated with periodic reversed microslip in parts of the con-
tact region (Lovrich and Neu, 2006; Nowell et al., 2006). However, when the contact is ‘complete’ – i.e., when
the contact area is known a priori and does not change during the loading cycle – analysis of the resulting
contact problem sometimes predicts that the system shakes down (Banerjee and Hills, 2006; Churchman
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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and Hills, 2006). In other words, microslip occurs at the interface only during the first few cycles, after which
‘stick’ conditions apply throughout the contact area for all subsequent times.

There are clear parallels between frictional slip and plastic deformation in elastic–plastic solids. Both are
dissipative mechanisms that depend on the history but not the rate of loading. Analogies can also be found
between the phenomena of cyclic plasticity and ratchetting and corresponding phenomena in frictional con-
tact. For example, a rigid flat punch loaded by a constant tangential force and a periodic normal force is found
to ‘walk’ across an elastic half plane by a constant increment in each loading cycle, even though the global
friction limit is not exceeded at any time (Mugadu et al., 2004). The gradual monotonic rotation of bushings
in a conrod small end can probably be attributed to a similar mechanism (Antoni et al., 2007). These similar-
ities have caused tribologists to speculate (e.g., Churchman et al., 2006) as to whether it might be possible to
prove a frictional equivalent of the well-known theorem due to Melan regarding the conditions for shakedown
of an elastic–plastic body subjected to oscillatory loading (Melan, 1936).

Such a theorem might be enunciated as ‘‘If a set of time-independent tangential displacements at the interface

can be identified such that the corresponding residual stresses when superposed on the time-varying stresses due to

the applied loads cause the interface tractions to satisfy the conditions for frictional stick throughout the contact

area at all times, then the system will eventually shake down to a state involving no slip, though not necessarily to

the state so identified.’’

Drucker (1954) showed that although some simple one-degree-of-freedom frictional systems show analogies
with elastic–plastic behaviour, the non-associative nature of the flow rule for friction prevents the limit theo-
rems from being applied directly to the friction problem. Fredriksson and Rydholm (1981) argued that if the
normal traction at the interface is constant and prescribed, the flow rule essentially becomes associative in the
sense that its dependence of flow on pressure merely alters the effective yield criterion and the permitted slip
within the plane does satisfy the condition that it aligns with the direction of maximum tangential traction.
This requires both that there be no coupling between tangential displacements and normal tractions and that
the periodic component of the applied load does not generate a corresponding variation in normal traction.
These conditions are met in the simple example treated by Churchman et al. (2006). Note also that the theo-
rems and counter-examples of the present paper concern systems with Coulomb friction in contrast to prob-
lems involving the rather artificial so-called Tresca friction. For such systems one easily proves shakedown
theorems (Antoni et al., 2007), but no information is then provided as to when such theorems are also valid
for Coulomb frictional systems.

Necessary and sufficient conditions for shakedown in non-associated plasticity, which in principle can be
generalized to friction problems, where given by Maier (1969). However, Björkman and Klarbring (1987,
1988) pointed out that Maier’s sufficient condition, using the concept of a ‘reduced elastic domain’, is not use-
ful in case of friction since this domain then becomes just the half line of positive normal contact forces with
zero tangential forces, and the calculated lower bound for the load will usually be zero. The necessary condi-
tion of Maier, on the other hand, is the obvious statement that shakedown will never occur unless there exists
a residual stress state that prevents further slip. However, Björkman and Klarbring made numerical calcula-
tions that showed that the upper bound for the shakedown load that one gets by using this necessary condition
often gives considerably higher values than those obtained from direct quasi-static solutions.

In the present paper, we shall establish definitive rules for the conditions that must be met by a discrete
(e.g., finite element) formulation of an elastic frictional contact problem in order that Melan’s theorem should
apply, subject only to the restriction that the contact be ‘complete’ – i.e., that the contact area should remain
constant throughout the loading cycle.

2. The three-dimensional discrete system

We consider the general three-dimensional problem in which an elastic body is loaded by time-varying
external forces and makes frictional contact with one or more rigid obstacles. The body is discretized by
the finite element method in such a way that there are m nodes of which n (n < m) are contact nodes and
m � n are interior nodes. The deformation in the discrete solution is completely defined by the set of nodal
displacement vectors uj, j = 1, m. Reaction forces ri, i = 1, n will be generated at the contact nodes in response
to the external nodal forces Fj(t). From these reaction forces, we form the vector
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r ¼ ½rT
1 ; . . . ; rT

n �
T 2 R3n: ð1Þ
Also, from the displacement vectors ui, i = 1, n associated with the contact nodes only, we form a global con-
tact displacement vector
u ¼ ½uT
1 ; . . . ; uT

n �
T 2 R3n: ð2Þ
By a standard static condensation procedure, we can eliminate the displacements associated with the internal
nodes and write the reaction forces in the form
r ¼ rw þ ju; ð3Þ

where j is a contact stiffness matrix that is symmetric and positive semi-definite, but not necessarily non-sin-
gular (i.e., the structure can perform rigid-body displacements). The term rw = rw(t) in (3) represents the time-
varying reaction forces that would be generated at the contact nodes by the external forces if displacement at
these nodes were constrained to be zero – i.e., if the contact nodes were welded to the obstacle(s). The remain-
ing term ju represents the modification to these reactions resulting from the displacements of the contact
nodes.

2.1. The Coulomb friction law

To state the mathematical definition of the Coulomb friction law, we first define a unit normal vector ni for
each contact node pointing from the obstacle into the body. Nodal contact displacements and reaction forces
can then be decomposed into tangential and normal vectors
ui ¼ vi þ wini; vi � ni ¼ 0; ð4Þ
ri ¼ qi þ pini; qi � ni ¼ 0: ð5Þ
With this decomposition, vectors vi, qi are restricted to the local interfacial plane. Henceforth, these will there-
fore be considered as vectors belonging to R2, rather than R3.

Clearly pi = ri Æ ni and wi = ui Æ ni (no sum). In this paper, we shall restrict attention to ‘complete’ contact
problems in which the contact area is known a priori and no separation occurs as a result of the external
forces. We therefore require that
wi ¼ 0; pi P 0: ð6Þ

The Coulomb friction law for node i can then be stated as
jqij 6 fipi; ð7Þ
jqij < fipi ) _vi ¼ 0; ð8Þ
0 < jqij ¼ fipi ) _vi ¼ �kiqi; ki P 0; ð9Þ
where fi is the coefficient of friction and a superposed dot denotes the time derivative. Condition (7) states that
the reaction forces should belong to an admissible set known as the Coulomb friction cone and (8) states that as
long as ri is in the interior of this cone, there can be no slip. Condition (9) is the frictional analogue of the flow
rule in plasticity and states that during slip, the friction force qi must oppose the direction of slip _vi. Notice that
the inequality in (6) is implied by (7).

The quasi-static frictional contact problem consists of finding the time evolution of u = u(t) and r = r(t) for
a given history of external loading, such that (3) and (6)–(9) are satisfied at all times. Notice that the effect of
the external nodal forces Fj(t) on the problem appears only through the function rw(t). The problem is mean-
ingful only if initial conditions at time t = 0 are such that the contact forces r(0) belong to the friction cone –
i.e.,
pið0ÞP 0; jqið0Þj 6 fipið0Þ: ð10Þ

It is assumed in this paper that conditions guaranteeing existence of solution of the quasi-static contact prob-
lem are satisfied (Andersson, 1999; Andersson and Klarbring, 2000). Moreover, the conditions of our two the-
orems are such that they do, in fact, also guarantee uniqueness of solutions.
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2.2. Coupling coefficients

We denote by D the set of displacement vectors u such that wi = 0, i = 1, n. For each u 2 D, we calculate the
corresponding contact reactions through the equation r = ju, thereby defining a set of n functions
D 3 u 7! riðuÞ 2 R3: ð11Þ
We can then define a set of n real-valued functions gi(u) through
giðuÞ ¼
riðuÞ
jriðuÞj � ni if riðuÞ 6¼ 0;

0 if riðuÞ ¼ 0:

(
ð12Þ
Finally, we can define a coupling coefficient ci for each contact node as
ci ¼ max
u2D

giðuÞ: ð13Þ
Clearly ci 6 1 and since �u 2 D whenever u 2 D, the linearity of r = ju implies also that ci P 0. The limiting
case where ci = 0 for all contact nodes arises when tangential displacements at the contact area (slip) have no
effect on the normal component of the contact reactions – i.e., there is no normal–tangential coupling in the
contact problem. This occurs for example in continuum problems for the contact of two elastic half spaces if
Dundurs’ constant b = 0 (Barber, 2002).

We shall find that the coupling constants ci play a major role in determining when a frictional Melan’s the-
orem can be applied in contact problems. Notice that they are related to, but distinct from the constants intro-
duced by Andersson (1999) in his investigation of existence and uniqueness of the discrete frictional contact
problem.
2.2.1. The one-node two-dimensional system

The simplest case is that of a two-dimensional system with only one contact node. This system was studied
extensively by Klarbring (1990) and Cho and Barber (1998) with particular reference to the effect of coefficient
of friction on uniqueness and stability of solution. The displacement u then has only two degrees of freedom
u1, u2 corresponding to tangential and normal displacement at the contact node, respectively, and j is a 2 · 2
matrix. If the node remains in contact, u2 = 0. It follows from (12, 13) that the sole coupling coefficient c1 is
given by
c1 ¼
jj21jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2
11 þ j2

21

p : ð14Þ
Notice that since j is positive semi-definite, it follows that for a single node system, 0 6 c1 < 1.
2.2.2. Multi-node systems

By contrast, for almost all systems with normal–tangential coupling and more than one node, we shall find
that all the coupling coefficients are unity. In this section, we shall investigate what values of ci are to be
expected for the three-dimensional case, but the changes needed for covering the plane case are obvious.

Introducing the vectors
v ¼ ½vT
1 ; . . . ; vT

n �
T 2 R2n; w ¼ ½w1; . . . ;wn� 2 Rn;

q ¼ ½qT
1 ; . . . ; qT

n �
T 2 R2n; p ¼ ½p1; . . . ; pn� 2 Rn;
we may decompose j and write r = ju as
q ¼ Avþ BTw; p ¼ Bvþ Cw; ð15Þ
where A and C are symmetric and possibly non-singular matrices.
We restrict attention to sets of displacements u for which all the nodes remain in contact and hence w = 0.

A function ri(u) satisfying this condition, as in (11), can be represented by two rows from A, forming a 2 · 2n
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matrix Ai, and one row from B, forming a 1 · 2n matrix Bi. We may stack these submatrices on top of each
other to form a 3 · 2n matrix ji such that
qi ¼ Aiv; pi ¼ Biv() ri ¼ jiv: ð16Þ
If ji has the full rank three (the two rows of Ai and the one row of Bi are linearly independent), then any ri is a
result of some v and, in particular, we can always find a vector v such that ri has the same direction as ni, result-
ing in ci = 1. Thus, ci 5 1 requires ji to be of rank less than three. When it is of rank two or one, the range
space RðjiÞ of ji can be represented by a surface or a line, respectively, in R3.

Fig. 1 illustrates the case where ji is of rank two and RðjiÞ is a plane which contains the direction of all
possible vectors ri that can be obtained by substituting a tangential displacement vector v into Eq. (16).
The definition of ci (12, 13) then shows that
ci ¼ cos ai; ð17Þ
where ai is the smallest angle between a line in the plane RðjiÞ and ni. The special case ai = 90� (and hence
ci = 0) results when Bi = 0, which is the case where there is no normal–tangential coupling. Alternatively, if
RðjiÞ has rank one, corresponding to a line, then all possible vectors ri are parallel with this line and the def-
inition of ci then shows that ci = cosai, where ai is the angle between RðjiÞ and ni.

A classical result of linear algebra is that the null space of jT
i , denoted N ðjT

i Þ, is the orthogonal complement
of RðjiÞ. For the case illustrated in Fig. 1, N ðjT

i Þ is the normal to the plane RðjiÞ as shown. The symmetry of
A then implies that a nodal displacement vector u�i that belongs to N ðjT

i Þ is such that, if all other nodal dis-
placements are set to zero, the resulting full vector of tangential forces q is zero. In physical terms, it follows
that we shall obtain a value of ci < 1 only if there exist one or more directions for the nodal displacement ui

such that no tangential reactions are generated at any node.
To illustrate this, consider the two-dimensional two-node system of Fig. 2 in which tangential displacement

v1 of node 1 results in forces from the ‘self-influence’ spring KA and from the ‘coupling’ spring KB that have the
same direction. It then follows that (i) any tangential motion of node 1 will generate a force aligned with these
springs and equivalently (in view of the symmetry of the stiffness matrix j) (ii) displacement of node 1 in direc-
tion e perpendicular to the line of the springs generates no tangential component of reaction. Notice that the
springs at each node normal to the interface contribute only to matrix C and hence have no effect on ci. It then
follows that c1 = cosa1, which is of course a special case of (17).

However, we should emphasise that for n > 1, systems of this kind have to be very carefully tailored to give
values of ci that are not either zero or unity and are unlikely to result from, e.g., finite element discretization of
realistic elastic contact problems. We explore these special cases here, simply so as to ensure that the following
theorems have completely general applicability.

3. Shakedown theorems

A system is said to have reached a state of shakedown at time t0 if for all future times t > t0, _u ¼ 0 – i.e., no
further frictional slip occurs and all nodes remain in a state of stick. An obvious necessary condition for this to
occur is that there must exist a time-independent vector ~u such that the normal component ~w ¼ 0 and
Tκi( )

κi(   )

ni

αi

Fig. 1. The range space RðjiÞ for the case where ji is of rank two.
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Fig. 2. A two-dimensional two-node system for which 0 < c1, c2 < 1.
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j~qij 6 fi ~pi; i ¼ 1; n; ð18Þ

where
~r ¼ rw þ j~u: ð19Þ

We shall call the ~u a shakedown displacement vector. We shall also refer to ~u as a safe shakedown displacement
vector if the strict inequality is enforced in (18).

The fundamental question addressed in the present paper is to determine if and when the existence of such a
vector provides also a sufficient condition for the system to shake down. For this purpose, we first define a
modified definition of shakedown by introducing the norm
A ¼ 1

2
ð~u� uÞTjð~u� uÞP 0;
which is a measure of the difference between the instantaneous displacement vector u and the shakedown dis-
placement vector ~u. We shall consider the system to shakedown if _A < 0 whenever _u 6¼ 0 – in other words, any
slip that occurs causes the system to approach ~u in the sense of the norm A. Clearly _A ¼ 0 when _u ¼ 0 and
hence A is then a non-increasing function of time. This condition recognizes that the final shakedown state
of the system might differ from ~u, giving A > 0 and _A ¼ 0. It also places no restriction on the number of load
cycles or the time required to achieve shakedown, so the possibility of monotonic asymptotic approach to a
non-zero value of A is also open.

Theorem 1. Assume there exists a safe time-independent shakedown displacement vector ~u such that ~w ¼ 0 and

j~qij < fi~pi, i = 1,n, where ~r ¼ rw þ j~u. If ci = 0 for all i = 1,n, the actual displacement u will approach ~u in the

sense that _A < 0 whenever _u 6¼ 0.
Proof. The time derivative of the norm A is
_A ¼ �ð~u� uÞTj _u ¼ �
Xn

i¼1

ð~ri � riÞ � _ui:
Since ~u� u belongs to the set D, the condition ci = 0 and the definition of ci imply that ð~ri � riÞ � _ni ¼ 0. This
means that both ~ri and ri belong to the circle of radius fipi ¼ fi~pi formed by cutting the friction cone at the
common normal force level pi ¼ ~pi and in view of the strict inequality for a safe shakedown state, ~ri must
lie strictly inside this circle.

If _ui 6¼ 0, the Coulomb friction law (7)–(9) implies that (i) ri lies on the boundary of the circle and (ii) that
the direction of _ui coincides with the inward normal to the circle at the point ri, as shown in Fig. 3. It follows
that ð~ri � riÞ � _ui positive for all i. h

We conclude that Melan’s theorem applies for any discrete elastic system involving complete contact and in
which there is no coupling between tangential displacements and normal tractions.
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Theorem 2. Consider a coupled two-dimensional discrete elastic system and assume there exists a safe time-

independent shakedown displacement vector ~u such that ~w ¼ 0 and ~qi < fi~pi, i = 1, n, where ~r ¼ rw þ j~u. If
fi 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

i

p
ci

ð20Þ
for all i = 1, n, the actual displacement u will approach ~u in the sense that _A < 0 whenever _u 6¼ 0.

An alternative statement of the inequality (20) is
fi 6 tan ai; ð21Þ

where ai is defined in Fig. 1 and Eq. (17).

Proof. Since fi, ci are both positive, (20) implies that
ci 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
i

p : ð22Þ
Since ~u� u belongs to the set D, we also have
ci P
~ri � ri

j~ri � rij
� ni ð23Þ
from (12, 13) and hence
~ri � ri

j~ri � rij
� ni 6

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

i

p : ð24Þ
In Fig. 4, BAC defines the stick sector for the instantaneous value of pi. During slip _u 6¼ 0, ri must lie on one of
the lines AB, AC and in the figure is represented by the point D. The frictional flow rule (9) then demands that
the slip vector _u be directed into the stick sector as shown.

In view of the strict inequality for a safe shakedown state, the shakedown vector ~ri must be strictly inside
the sector BAC, but the inequality (24) also excludes it from the shaded sector BDE. We conclude that ~ri must
lie in the region EDAC, from which it is clear that ð~ri � riÞ � _ui is positive for all i. h

Notice that in the special case where there is only one node (n = 1), (20, 14) gives
fi 6
j11

j21

����
����; ð25Þ
u. i

ri ri
∼

=|iq| if  pi

Fig. 3. The vector ð~ri � riÞ must be directed into the circle from the point ri on the boundary.
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Fig. 4. The inequality (24) excludes ~ri from the shaded region BDE.
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which also defines the range of friction coefficients in which this system has a unique quasi-static solution
(Klarbring, 1990; Cho and Barber, 1998).
3.1. Three-dimensional coupled systems

The reader might reasonably ask why the proof of Theorem 2 cannot be extended to three-dimensional cou-
pled systems. For this case, the sectors in Fig. 3 are replaced by friction cones. We shall denote the stick cone
replacing BAC by S and the conical region excluded by the inequality (24) by R. The vector _ui is directed into
the circle obtained by intersecting S with a horizontal plane passing through ri. The vector ~ri is now restricted
to the region S �R that is inside S but outside R. This region contains points (out of the plane in Fig. 4) that
are to the left of a vertical line through D (the vertex of R) and for which ð~ri � riÞ � _ui is therefore negative.
Thus Theorem 2 cannot be proved for three-dimensional coupled systems. We shall show in the next section
that counter-examples to Melan’s theorem can be established in this case.
4. Counter-examples

In Section 3, we proved two theorems defining conditions under which the frictional Melan’s theorem
applies to elastic systems. In this section, we shall demonstrate by counter-example that these are the only con-
ditions under which the theorem holds. In other words, if a discrete elastic system does not fall under the terms
of one of our two theorems, there will always exist some loading scenarios under which the system does not
shake down, even though a safe shakedown vector can be identified. To establish this result, it is sufficient to
identify at least one loading scenario for any given system for which the predictions of Melan’s theorem can be
demonstrated to be false.

In preparation for these counter-examples, we consider the general n-node system subjected to a set of slip
displacements vi. The n � 1 nodes i 5 j are then subjected to time-independent external normal forces that are
sufficiently large to prevent further slip at these nodes during the subsequent loading scenario, so that the sys-
tem is effectively reduced to a one-node system (node j).
4.1. Cases where cj = 1

Consider the case where vi is chosen to be the set that maximizes cj as in Eq. (13). We denote this set of slip
displacements by v�i . We remarked in Section 2.2.2 that for almost all multi-node systems, cj = 1, in which case
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with this choice of vi, the reaction at node j will be a purely normal force pj. By imposing the slip displacementskv�i , where
k is a scalar multiplier of appropriate sign, we can generate a normal contact reaction pj > 0 of any given value.

Now suppose that we choose k = 0, so that the initial value of pj = 0, and we impose a periodic force at
node j only, such that some periodic slip occurs at node j (recall that the other nodes are being prevented from
slipping by sufficiently large time-independent external normal forces). In other words, the system does not
shake down. However, with the same periodic loading, a safe shakedown state can always be found by choos-
ing a sufficiently large value of k and hence of pj. Thus, Melan’s theorem fails for this case and hence for any
system in which cj = 1 at at least one node.

4.2. Cases where 0 < cj < 1

If 0 < cj < 1, we can still impose the tangential displacements kv�i , but the resulting reaction at node j will be
inclined to the normal at the angle aj defined in Fig. 1 and Eq. (17). Suppose at this stage we were to relax the
tangential component qj of this reaction, whilst keeping the remaining nodes i 5 j fixed. This could be done,
for example, by the thought example of temporarily making the contact at node j frictionless. This relaxation
process must also cause the normal reaction pj to go to zero, since if this were not the case, we would have
defined a new slip state vi at which cj = 1, contra hyp. It also follows that a reaction in the optimal direction
aj can be generated by displacement (in an appropriate direction) of node j only (since it is unloading in this
direction that constituted the relaxation). In other words, a possible choice for v�i comprises slip in this direc-
tion at node j only, with vi = 0, i 5 j.

It follows that if the nodes i 5 j are locked as above by sufficiently large external normal forces and if
fj > tanaj, it will be possible to ‘wedge’ node j (Barber and Hild, 2006). In other words, an appropriate tan-
gential displacement at node j will generate a sufficient normal and hence frictional reaction to prevent it from
relaxing back to the original position when the external force at node j is removed. Furthermore, the wedged
displacement can be chosen to be arbitrarily large and hence sufficient to define a safe shakedown state for any
conceivable periodic loading cycle at node j, thus providing a counter-example as in Section 4.1. It follows
that, Melan’s theorem fails for any system in which fj > tanaj at at least one node. Notice that this coun-
ter-example also applies to systems with only one contact node.

4.3. Three-dimensional systems with 0 < cj < 1 and fj < tanaj

The preceding counter-examples cover all cases not covered by our two theorems except three-dimensional
systems with 0 < cj < 1 and fj < tanaj. As in Section 4.2, these systems can be reduced to an equivalent one-
node system by locking the nodes i 5 j with sufficiently large external normal forces. It is therefore sufficient
to demonstrate a counter-example for the single node three-dimensional system with fj < tanaj.

For the one-node system, coupling between normal and tangential displacements is defined by a 3 · 3 stiff-
ness matrix j. Suppose that the loading vector is denoted by rw = {F1, F2, F3}T, with F2 being the component
in the direction normal to the contact interface. The contact reaction is then given by Eq. (3), with u = {u1, u2,
u3}T. If the node separates from the obstacle, there will be no contact reaction (r = 0) and hence
ju ¼ �rw ð26Þ
from (3). The gap between the node and the obstacle is u2 and this is zero if
n � j�1rw ¼ 0; ð27Þ
which defines a plane in (F1, F2, F3) space. Separation is possible only if u2 > 0, which defines the region on one
side of this plane. Cho and Barber (1999) analyzed this system and showed that the apex of the friction cone in
(F1, F2, F3) space must lie on the separation plane (27), but its position depends on the slip displacement
v = {u1, u3}T. They also identified a critical friction coefficient fcr such that for f > fcr the separation plane
and the friction cone intersect, defining a range of loads rw in which both stick and separation are possible.
In the terminology of the present paper, fcr = tana.

For f < fcr, the friction cone and the separation plane intersect only at the apex, the quasi-static solution is
unique, and wedging is not possible. The direction of the in-plane coordinates x1, x3 can always be chosen so
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as to ensure that there is no coupling between u3 and the normal reaction p and a cross-section of the resulting
diagram is shown in Fig. 5, with two possible locations for the apex of the friction cone being the points A, B.

Slip causes the apex of the stick cone to move about the separation plane. Suppose we load along the line
OP, after which F1, F2 are held constant, whilst F3 oscillates in time. If the amplitude of the periodic force is
sufficiently large to cause slip, the resulting displacement will tend to move the stick cone to the ‘optimum’
point where the apex of the cone is at A, vertically above P. If the amplitude is larger than the diameter of
the circle obtained by intersecting this cone with the horizontal plane CP, periodic slip will occur, with the
cone moving back and forth in the F3-direction.

Fig. 6 shows the cross-section of the diagram at the value of F2 corresponding to P. It is clear that the
amplitude of oscillation DE can be chosen such that it is larger than the diameter of the circle corresponding
to the apex being at A in Fig. 5, but that it is still contained within the circle corresponding to a different loca-
tion of the apex B. However, the direction of slip dictated by the flow rule does not permit the stick cone to be
moved in this direction. We therefore conclude that for this case there exists a safe shakedown state which
however cannot be reached by certain loading scenarios. Thus, the putative shakedown theorem is disproved
for the one-node thee-dimensional system. Since the multi-node system can be reduced to an equivalent one-
node system as explained above, it is also disproved for all multi-node three-dimensional coupled systems.

5. Conclusions

We conclude that Melan’s theorem, in the sense defined in Section 3, applies to the discrete complete fric-
tional contact problem:
C

D

E

P

Fig. 6. Cross-section through the plane CP in Fig. 5.
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(1) For any two or three-dimensional system in which there is no coupling between the tangential displace-
ment vector v and the normal reaction vector p – i.e., the matrix B of Eq. (15) is null.

(2) For a two-dimensional coupled system for which the nodal coefficient of friction fi satisfies the inequality
(20) at each node. In this context, we note that the critical nodal coefficient for a multi-node system dif-
fers from zero only if there exists a direction of displacement ui such that if all the other nodal displace-
ments are set to zero, all the reactions r have zero tangential component q = 0.

Counter-examples to the theorem can be established for all systems not falling into one of these categories.
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