
Effect of Tabor parameter on hysteresis losses during

adhesive contact

M. Ciavarellaa, J. A. Greenwoodb, J. R. Barberc,∗

aCEMEC-Politecnico di Bari, 70125 Bari - Italy.
bDepartment of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
cDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI

48109-2125, U.S.A.

Abstract

The Tabor p[arameter µ is conventionally assumed to determine the range of
applicability of the classical ‘JKR’ solution for adhesive elastic contact of a
sphere and a plane, with the maximum tensile force (the pull-off force) being
well predicted for µ > 5. Here we show that the hysteretic energy loss during
a contact separation cycle is significantly overestimated by the JKR theory,
even at quite large values of µ. This stems from the absence of long-range
tensile forces in the JKR theory, which implies that jump into contact is
delayed until the separation α = 0. We develop an approximate solution
based on the use of Greenwood’s ‘semi-rigid’ theory for jump in, and the
JKR theory for jump out of contact, and show that for µ > 5, the predicted
hysteresis loss is then close to that found by direct numerical solutions using
the Lennard-Jones force law. We also show how the same method can be
adapted to allow for contact between bodies with finite support stiffness.
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1. Introduction

When adhesive forces [e.g. van der Waal’s forces] are included in the
formulation of an elastic contact problem, the normal loading and unloading
curves can be different, implying hysteresis losses during a loading/unloading
cycle. This effect is most pronounced in small scale contacting systems such
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as the atomic force microscope [AFM]. In particular, if the AFM is oper-
ated in the tapping mode, hysteretic losses will be reflected in a phase shift
between the oscillation of the tip and driving excitation [1, 2, 3, 4].

Many analytical treatments of adhesive contact are based on the ‘JKR’
model [5], in which tensile tractions are allowed within the contact area, the
extent of which is then determined by minimizing the total energy, com-
prised of elastic strain energy, interface energy and potential energy of exter-
nal forces. This procedure is exactly analogous to the formulation of linear
elastic fracture mechanics [LEFM] [6], with the energy release rate here being
equated to the interface energy ∆γ. This implies a unique value of the mode
I stress intensity factor

KI = −
√

2π lim
s→0

p(s)
√

s =

√

2E∗∆γ , (1)

where p(s) is the contact pressure at a distance s from the boundary of the

contact area and E
∗

is the composite contact modulus.
Tabor [7] argued that the assumptions of the JKR theory are appropri-

ate for contact between a sphere of radius R and a plane when the ‘Tabor
parameter’

µ =
1

ε

(

R(∆γ)2

E∗ 2

)1/3

(2)

is sufficiently large, where ε is a length characterizing the range of interac-
tion of the adhesive forces. In particular, Muller et al. [8] showed that the
maximum possible tensile force (the ‘pull-off force’) is predicted within a few
percent if µ > 5. However, in this paper we shall show that the JKR theory
significantly overestimates hysteresis loss, even at quite high values of µ.

2. The JKR equations

The JKR solution for the adhesive contact of a sphere and a plane is
conveniently expressed in terms of the dimensionless variables

T̂ =
T

R∆γ
; α̂ =

β2α

R
; â =

βa

R
(3)

[9], where T is the applied force (tensile positive), α is the resulting normal
separation, a is the radius of the contact area, and β is a dimensionless
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parameter defined by

β =

(

E
∗
R

∆γ

)1/3

=

√

R

µε
. (4)

With this notation, the force-displacement relation is defined implicitly
by the relations

α̂ =
√

2πâ − â2 ; T̂ =
√

8πâ3 − 4â3

3
, (5)

and is plotted in Fig. 1.

Fig. 1: Loading and unloading of the JKR model.

We can also define a dimensionless measure of the work W done by the
force T as

Ŵ ≡ W

µεR∆γ
=

∫

T̂ dα̂ =

∫

T̂
dα̂

dâ
dâ =

8â5

15
+ πâ2 − 4

√
2πâ7

3
, (6)

where the final expression is obtained by substituting for T̂ , α̂ from equations
(5) and evaluating the resulting integral. The dimensionless work done in
traversing any finite segment of the curve in Fig. 1 can be obtained by
imposing appropriate limits on this indefinite integral.

Consider a scenario in which the bodies are initially widely separated, but
are caused to approach each other and subsequently separate under displace-
ment control [‘rigid grips’]. The approach phase must follow the positive
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α̂-semi-axis as far as the origin, since in the JKR solution no tractions are
implied between surfaces with a positive local separation. However, further
approach implies an unstable jump into contact at the point B in Fig.1. The
force-displacement relation then remains on this branch of the curve until an
unstable jump out of contact occurs at point C during the separation phase.

The parameter values at B and C can be determined from equations (5)
and the conditions

α̂B = 0 ;

(

dα̂

dT̂

)

C

= 0 , (7)

from which

âB =
3
√

2π ; T̂B =
4π

3
; α̂C =

3π2/3

4
; âC =

π1/3

2
; T̂C =

5π

6
. (8)

The work done by the force T during one approach-separation cycle is
defined by the area OBCDO in Fig. 1 and is therefore given by

ŴJKR =

(

8â5

15
+ πâ2 − 4

√
2πâ7

3

)âC

âB

= 7.092 . (9)

3. Effect of the Tabor parameter

For lower values of µ, the force-displacement relation is affected by the
precise form of the law defining the local relation between the tensile traction
σ and the gap h between the surfaces. Analytical solutions can be obtained
if this law has a suitably smple form [10, 11], but most authors agree that
the force law

σ(h) =
8∆γ

3ε

(

ε3

h3
− ε9

h9

)

, (10)

derived from the Lennard Jones 6-12 law for the potential between two
molecules [8], is appropriate for van der Waal’s interactions. The equilib-
rium condition (σ = 0) then occurs at h = ε and it is usual to assume that
compressive contact tractions cause no further reduction in h, so that σ < 0
implies h = ε.

Several authors [8, 12, 13, 14], have obtained numerical solutions to the
adhesive contact problem using the force law (10), a representative dimen-
sionless force-displacement relation for µ = 5 being shown as the red chain
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dotted line in Fig. 2. The JKR solution is shown as a black solid line for
comparison and confirms that at this value of µ, the pull-off force [i.e. the
maximum value of T̂ ] is very close to the JKR value T̂ = 1.5π.

0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

− α / (ε µ)

T
 / 

(R
 ∆

γ)

µ = 5

jkr

W / [R4∆γ5/ E*2]1/3 = 3.248

Fig. 2: The dimensionless force-displacement relation for µ = 5.

However, for µ = 5, jump into contact must occur at point A in Fig. 2,
and the hysteresis loss is now defined by the shaded area ABCDA between
the two branches of the curve. For this value of µ, we obtain Ŵ = 3.2482
which is much lower than the corresponding area (7.092) in the JKR solution,
principally because α̂A at the jump in point A is larger than the value α̂ = 0
at which jump in is predicted for the JKR solution. More generally, we shall
show in the next section that the precise value of α̂A has a major effect on
the hysteresis loss at high values of µ.

3.1. Numerical calculations

Numerical results for the full load-displacement curve [including that
shown in Fig. 2] were obtained using the method described by Greenwood
[15]. When µ is relatively large, a fine mesh is needed in the radial coordinate,
because the tensile tractions are confined to a very thin annulus near the edge
of the contact area. However, near the unstable jump-in point A, there is no
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contact area and the tractions are everywhere tensile and relatively smooth,
so numerical convergence is easy to achieve.

Fig. 3: Separation α at the jump-in point A as a function of the Tabor
parameter µ. The circles represent numerical calculations using the Lennard-
Jones force law (10), and the line is an approximation obtained from the
semi-rigid theory.

The circles in Fig. 3 shows the numerical values obtained for α̂A =
β2αA/R = αA/µε as a function of µ. For large values of µ, a reasonable
approximation to the pull-in point can be obtained using Greenwood’s ‘semi-
rigid’ theory [15], in which the tractions are determined under the assumption
that the bodies remain rigid. The elastic displacements due to these tractions
are then determined, and have the effect of increasing the separation between
the distant boundaries of the bodies. A similar calculation was performed
by Song and Komvopoulos [16], but was then combined with curve fits taken
from a finite element analysis.

3.2. The semi-rigid theory

If h0 is the minimum gap between a rigid sphere a rigid plane, the gap at
radius r is h(r) = h0 + r2/2R and the attractive force is

T = 2π

∫

∞

0

σ{h(r)}dr = 2πR

∫

∞

h0

σ(h)dh =
8πR∆γ

3

(

1

h̄2
0

− 1

4h̄8
0

)

, (11)

or equivalently

T̂ =
8π

3

(

1

h̄2
0

− 1

4h̄8
0

)

, (12)
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where h̄0 = h0/ε.
It is important to recall that contact occurs at h = ε and hence h̄0 = 1,

rather than at h = 0. Thus, if the bodies were rigid the separation would be
defined by α = h0 − ε. Elastic deformation of the then bodies increases the
separation of the distant regions of the bodies.

The elastic displacement at r = 0 due to the tractions σ{h(r)} can be
calculated as

u(0) =
2

E∗
∫

∞

0

σ{h(r)}dr = πε

√

2µ3

h̄0

(

1

h̄2
0

− 2145

4096h̄8
0

)

, (13)

[15], after which the separation α is estimated as

α = h0 − ε + u(0) or
α

ε
= h̄0 − 1 + π

√

2µ3

h̄0

(

1

h̄2
0

− 2145

4096h̄8
0

)

. (14)

The pull-in point D can then be determined from the condition

dα

dT
=

dα

dh̄0

/

dT

dh̄0

= 0 and hence
dα

dh̄0

= 0 , (15)

since dT/dh̄0 is always bounded. Song and Komvopoulos [16] used a finite
element model to estimate the value of h0 at the turning point A, but this
calculation can clearly be performed analytically by applying the condition
(15) to (14). The resulting relation is plotted parametrically as the dashed
line in Fig. 3 and lies quite close to the numerical values over the entire range
µ > 1. Also, calculations show that the eighth-power term in equation (14)
is completely negligible near αA for µ > 1, and if this term is dropped, the
condition (15) gives the closed-form expression

α̂A ≡ αA

µε
=

7

55/7

(

π2

2

)1/7

µ−4/7 − 1

µ
, (16)

which is indistinguishable from the dashed line in Fig. 3. We also note that
an excellent curve fit [better than 0.4% accuracy for µ > 2] to the numerical
values in this figure can be obtained by multiplying the first term in the
expression (17) by 0.95, giving

α̂A =
2.6460

µ4/7
− 1

µ
, (17)

7



3.3. Hysteresis loss

The numerical solution was used to determine the hysteresis loss in one
contact-separation cycle, corresponding [for example] to the shaded area in
Fig. 2. Results were obtained for values of µ up to µ = 5 and are shown
as circles in Fig. 4. This calculation requires the determination of the force-
displacement curve at least up to the point B in Fig. 2 and hence requires
an increasingly fine mesh to resolve the region of tensile traction at larger
values of µ. However, we shall show in the next section that for µ > 5, we
can obtain a good approximation to the hysteresis loss using an analytical
approximation.

Fig. 4: Dimensionless hysteresis loss Ŵ determined numerically (circles) and
using the ‘hybrid’ theory (solid line). The horizontal dashed line defines the
JKR dissipation from equation (9).

3.4. The ‘hybrid’ theory

We notice from Fig. 2 that even at µ = 5, the force-displacement curve
is quite close to the JKR limit throughout the upper branch, so that an
approximation to Ŵ for finite µ can be obtained by simply replacing the
lower limit in equation (9) by âA, where

α̂A =
√

2πâA − â2
A (18)

from (5) and α̂A is given by (17). This necessitates solving the quartic equa-
tion (18) for

√
âA, but this presents no serious computational challenge. The

resulting relationship is shown as the solid line in Fig. 4, and we note that
it is already very close [1.3% error] to the numerical value at µ = 5. As µ is
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increased, the force-displacement relation converges on the JKR solution, so
this hybrid theory can be expected to improve in accuracy at larger µ.

Fig. 4 shows that the JKR theory [equation (9)] significantly overesti-
mates the hysteresis loss even for large values of µ, the discrepancy being
almost entirely due to the effect of µ on the jump-in approach αA.

3.5. An adhesive length scale

Some insight into the reason that the Tabor parameter fails to characterize
the error of the JKR hysteresis prediction can be gained from the analogous
field of fracture mechanics, where the appropriateness of the LEFM criterion
(1) is conventionally assessed by the ‘small-scale yielding’ criterion [17]. This
argues that the elastic singular field characterizes the conditions at failure, as
long as the size of the region in which the stresses exceed the yield criterion
is sufficiently small, relative to the other geometric dimensions of the body.

An analogous criterion can be applied to the JKR solution by determining
the width s0 of the region in which the tensile traction −p(s) exceeds the
maximum value of the Lennard-Jones traction (10), given by

σ0 =
B∆γ

ε
where B =

16

9
√

3
= 1.0264 ≈ 1 . (19)

The stress-intensity factor (1) completely defines the traction field near the
edge of the contact, so we can define a universal adhesive length scale s0 by
the equation

σ0 =
KI√
2πs0

=

√

E∗∆γ

πs0

or s0 =
E
∗
∆γ

πσ2
0

=
E
∗
ε2

π∆γ
. (20)

We anticipate that the JKR solution will represent a good approximation
to an adhesive contact problem if the smallest linear dimension a of the
predicted contact area satisfies the condition s0 ≪ a. For example, this
criterion suggests that the JKR solution will give a good estimate for the
pull-off point C in Fig. 1 if aC/s0 ≫ 1. Substituting for aC from (8) and
using (2, 4) to simplify the result, we obtain the criterion

µ2 ≫ 2

π4/3
= 0.44 (21)

confirming the appropriateness of µ as a test of the JKR solution near pull-
off. However, at the pull-in point, there is no contact region, a = 0, and as
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we have seen, significant errors are involved even at very high values of µ.
We also note that µ contains the radius R and hence can be applied only to
the spherical contact problem, whereas the criterion s0 ≪ a can in principle
be applied to any contact geometry.

Systems with finite stiffness

The discussion so far is based on the assumption that the contact is
achieved under displacement control, which implies an infinitely stiff support
system. Clearly this does not apply in any practical case, and for the AFM
in particular, the supporting cantilever plays a critical rôle in the hysteretic
process. Fortunately, the above calculations are easily modified to allow for
a finite support stiffness k if µ ≫ 1.

We first note that the separation α is increased by the extension of the
spring support, so

α̂S(T̂ ) = α̂(T̂ ) +
T̂

k̂
where k̂ =

µεk

R∆γ
, (22)

where α̂(T̂ ) is the separation due to the force T̂ with an infinitely stiff support.
Jump-in and jump-out occur when dα̂S/dT̂ = 0 and hence

dα̂

dT̂
= −1

k̂
. (23)

For µ ≫ 1, the jump-out point occurs in a region adequately described by
the JKR theory, and hence can be determined from the condition

dα̂

dâ

/

dT̂

dâ
= −1

k̂
, (24)

where α̂, â are given by equations (5).
For the jump-in point, we can use the semi-rigid theory of Section 3.2,

writing

dα̂

dh̄0

/

dT̂

dh̄0

= −1

k̂
, (25)

and using equations (12, 14) for T̂ , α and noting that α̂ = α/µε. However,
as we see from Fig. 2, the slope changes very rapidly near A, so the jump-in
point is actually very close to (α̂A, 0), which is given by (17).
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Fig. 5: Loading and unloading path for a system with finite stiffness and
µ ≫ 1.

With this simplification, the loading-unloading curve will follow the path
shown in Fig. 5, with jump-in from A to B and jump-out from C to D. The
dimensionless hysteretic loss is given by

Ŵ =
(

Ŵ (âC) − Ŵ (âB)
)

+
T̂ 2

C − T̂ 2
B

2k̂
, (26)

where Ŵ (â) is defined by equation (6) and âB, T̂B, âC , T̂C are the values of
â, T̂ at points B,C respectively in Fig. 5, both of which lie on the JKR curve
defined by equation (5). In this expression, the first term represents the work
done by the force T̂ in the loading segment from A to B and comprises the
area below the curve between the dotted lines in Fig. 5, whilst the second
term defines the net energy loss in the spring at jump-in and jump-out. The
total hysteresis loss is defined by the area of the region ABCDA in Fig. 5.
The rersulting expression is shown as a function of k̂ in Fig. 6. As we should
expect, the hysteresis loss is asymptotic to the displacement-control limit as
k̂ → ∞ andit increases as the stiffness k̂ is reduced. For k̂ ≪ 1 most of the
energy is stored in the spring and the dimensionless hysteresis loss tends to

Ŵ =
T̂ 2

0

2k̂
, (27)

where T̂0 = 3πR∆γ/2 is the pull-off force in the JKR solution. This expres-
sion is shown as the inclined dashed line in Fig. 6.
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Fig. 6: Hysteresis loss as a function of support stiffness k̂ for several values
of µ. The inclined dashed line is defined by equation (27) and the horizontal
dashed lines represent the displacement-control values taken from Fig. 4.

4. Conclusions

We have shown that the JKR model seriously overestimates the hysteresis
energy loss during a contact-separation cycle for a spherical indenter, even
at quite high values of the Tabor number µ. In this range, the ‘contact’
portion of the force-displacement curve is well described by the JKR theory,
but jump into contact is not well described, because of the absence from JKR
of any interaction before contact. At jump-in the tractions are everywhere
tensile, and we find that a good approximation to the force-displacement
curve at this point can be obtained using Greenwood’s semi-rigid theory
[15] in which the elastic displacements are approximated as those due to the
tractions between two rigid bodies. Combination of this result with the JKR
force-displacement curve for the jump-out condition yields predictions for the
hysteresis loss that are very close to a full numerical solution for µ > 5.

The stiffness of the supporting structure has a significant effect on hys-
teresis and must be taken into account unless the dimensionless stiffness k̂ is
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large copmpared with unity. However, once again, a combination of a semi-
rigid approximation for the jump-in point and the JKR solution for the rest
of the force-displacement curve can be expected to give good results for large
µ.
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