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Quasi-static frictional contact problems for bodies of fairly general profile that can be represented as half
planes can be solved using an extension of the methods of Ciavarella and Jdger. Here we consider the tan-
gential traction distributions developed when such systems are subjected to loading that varies period-
ically in time. It is shown that the system reaches a steady state after the first loading cycle. In this state,
part of the contact area (the permanent stick zone) experiences no further slip, whereas other points may
experience periods of stick, slip and/or separation. We demonstrate that the extent of the permanent
stick zone depends only on the periodic loading cycle and is independent of the initial conditions or of
any initial transient loading phase. The exact traction distribution in this zone does depend on these fac-
tors, but the resultant of these tractions at any instant in the cycle does not. The tractions and slip veloc-
ities at all points outside the permanent stick zone are also independent of initial conditions, confirming
an earlier conjecture that the frictional energy dissipation per cycle in such systems depends only on the
periodic loading cycle. We also show that these parameters remain unchanged if the loading cycle is
changed by a time-independent tangential force, provided this is not so large as to precipitate a period
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1. Introduction

If an engineering system comprises elastic components with
frictional interfaces, the instantaneous state generally depends
on the previous loading history. In particular, if the system is sub-
jected to loads that are periodic in time, the steady state may de-
pend on the initial conditions or on an initial transient loading
phase. As a result, the effective damping in the system and/or dam-
age due to fretting may exhibit variability due to differences in
assembly procedures (Barber, 2011).

It has recently been established that a frictional version of
Melan’s theorem (Melan, 1936) applies to such systems if and only
if the tangential and normal contact problems are uncoupled
(Barber et al., 2008). In other words, if a change in slip displace-
ments has no effect on the normal contact tractions, and if there
exists a set of initial conditions such that the entire contact region
can remain in a state of ‘stick’ without the tractions violating the
limiting Coulomb friction conditions at any point, then the system
will shake down to such a state regardless of the initial conditions.
For coupled systems, counter examples can always be found in
which there exists such a ‘safe shakedown state’ for a given set
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of periodic loads, which however is not reached from certain com-
binations of initial conditions (see for example, Ahn et al., 2008).

One conclusion of the frictional Melan’s theorem is that if there
exists a safe shakedown state, the steady-state response of an
uncoupled frictional system depends on the initial conditions only
to the extent of a set of locked-in slip displacements in the contact
zone. It is conjectured (Barber, 2011) that this is a special case of a
more general but unproven result that even above the shakedown
limit the steady-state response depends on the initial conditions
only to the extent of a similar set of slip displacements that are
now restricted to a unique ‘permanent stick zone’ - i.e. a part of
the contact area that does not slip during the steady state. This
could be seen as the frictional counterpart of the theorem in asso-
ciative plasticity that the time-varying terms in the stresses and
strains and the extent of the zone experiencing cyclic plasticity
are independent of the pre-existence of any self-equilibrated state
of residual stress (Polizzotto, 2003).

In this paper, we shall establish this conjecture for all two-
dimensional frictional elastic contact problems for which the
bodies may be adequately described as half planes subjected to
periodic remote loading and for which the normal and tangential
contact problems are uncoupled, meaning that the normal contact
tractions are uninfluenced by the relative slip displacements. We
shall also develop techniques for determining the extent of micro-
slip zones and tangential tractions in fairly general periodic loading
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problems of this class and establish an additional general result
that these quantities are independent of the mean tangential load
as long as this does not cause gross slip (sliding) at any time during
the cycle.

We should first remark that though Klarbring (1999) has estab-
lished a condition under which the discrete quasi-static frictional
contact problem is well posed, no such result is available for the
corresponding general continuum problem. However, for the re-
stricted class of problems comprising the frictional contact of
two elastic half planes, the contact tractions and displacements
are related by Cauchy singular integral equations (Hills et al.,
1993) and the evolutionary solution can be shown to exist and
be unique for all values of the coefficient of friction, using the prop-
erties of the solutions of these integrals. Also, the solution proce-
dure outlined in the present paper will be shown to generate a
traction and displacement field satisfying the Coulomb friction
law for half planes of arbitrary profile and any loading scenario,
so existence is effectively proved for this class of problems by
exhaustion.

The Cauchy integral formulation can also be used to show that
the normal and tangential contact problems are uncoupled in the
sense defined above as long as Dundurs’ bimaterial constant
B =0, since, for example, the integral equation satisfied by the nor-
mal contact tractions then depends only on the applied normal
load and the initial profile of the contacting bodies and is unaf-
fected by tangential contact tractions (Barber, 2010, Section
12.7). This condition is satisfied by virtue of symmetry if the mate-
rials of the contacting bodies are similar.

1.1. The Cattaneo-Mindlin problem

Investigation of problems of this class dates back to a seminal
paper by Cattaneo (1938) [see also Mindlin (1949)], who gave a
solution for the problem in which a classical Hertzian contact is
first loaded by a normal force P and then by an increasing tangen-
tial force Q. The resulting tangential tractions can be written as the
superposition of the ‘full slip’ tractions over the entire contact area
and a similar distribution over a smaller central stick area.
Ciavarella (1998a) and Jdger (1997, 1998) showed that this form
of superposition is not restricted to Hertzian contact, but applies
to all two-dimensional contact problems provided the bodies can
be approximated as half planes and p=0. A brief explanation of
the basis of their argument is given in Section 2 below.

A generic problem of this class is illustrated in Fig. 1. However,
notice that the Ciavarella-Jdger theorem imposes no restrictions
on the profiles of the contacting bodies and that the resulting con-
tact area need not necessarily be connected. For example, the the-
orem applies equally to the contact of rough surfaces of specified
profile, where contact will occur in a set of microscopic ‘actual con-
tact areas’ (Dini and Hills, 2009). It also applies in an approximate
sense when the contact is three-dimensional (the same approxi-
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Fig. 1. A generalized plane contact problem.

mation applies to Cattaneo and Mindlin’s original three-dimen-
sional solutions.

The Cattaneo traction distribution is restricted to the case
where the normal and tangential loads are applied in sequence,
but similar techniques can clearly be applied to at least some other
cases. Mindlin and Deresiewicz (1953) considered a range of cases
where a further finite increment of loading is applied and showed
that full stick would occur if the increments AP, AQ in normal and
tangential force respectively satisfied the condition |AQ| < fAP,
where fis the coefficient of friction. In other cases, the traction dis-
tribution can be obtained by a further superposition of a Cattaneo-
Mindlin distribution for the loading increment. This technique was
extended to general geometries by Jager (1998), who also devel-
oped an algorithm for considering more general loading scenarios
as a sequence of straight line segments in PQ-space.

1.2. Periodic loading

We consider the case where the contact is subject to a combina-
tion of mean and periodic loading, typically as a result of externally
driven vibration. For example, the loading might take the form

P(t) = Py + Py cos(t); Q(t) = Qo + Q; cos(wt + ¢), (1)

where t is time and ¢ is a relative phase angle.

This scenario will be represented as an ellipse in PQ-space, as
shown in Fig. 2. The entire periodic loading cycle must lie between
the limiting lines Q = * fP if there is to be no gross slip (sliding). We
also assume that the system starts from the unloaded condition
P=Q=0 and hence some initial loading phase OA is needed to
reach the periodic state. We shall show later that this initial phase
affects the tangential tractions in the permanent stick zone - i.e. in
that part of the contact area that does not slip during the steady
state — but it has no other effect on the steady-state problem and
in particular does not affect the frictional dissipation process.

In the special case where ¢ = 0, the ellipse in Fig. 2 will collapse
to a straight line. If in addition |Q,| < fP;, the contact will remain in
a state of stick throughout the loading phase dP/dt > 0 and also dur-
ing the unloading phase, since the system then passes through the
same set of equilibrium states as was traversed during loading. In
this case there will therefore be no frictional dissipation and one
might expect wear and fretting damage to be negligible. By con-
trast, any non-zero phase lag between the normal and tangential
loading is sufficient to ensure that slip occurs at least during the
unloading period when dP/dt < 0.
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Fig. 2. Periodic loading cycle in PQ-space.
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2. Evolution of the traction distribution

Since the materials are similar (or Dundurs constant = 0), the
normal contact problem is independent of the tangential tractions.
In particular, the extent of the contact area A and the distribution
of normal contact pressure p(x) depend only on the instantaneous
normal load P, where x is a coordinate defining position in the con-
tact area. We shall indicate this dependence explicitly by defining
the functions p(x, P), A(P). These functions depend only on the pro-
files of the contacting bodies and the composite elastic modulus
and can be determined by various classical methods, including
reduction to a Riemann-Hilbert problem and solution by Cauchy
integral equations (Muskhelishvili, 1963, Section 119; Hills et al.,
1993), Green’s functions (Johnson, 1985) or Fourier series (Barber,
2010, Section 12.5). In this paper, we shall assume that the normal
contact problem has been solved and that p(x,P), A(P) are known
functions of P. They are non-decreasing functions of P in the sense
that A(P;) € A(P;) if P, > P; and p’(x,P) > O for all x (Barber, 1974),
where we introduce the notation

pix )= PRL) @)

In terms of these functions, Ciavarella (1998a) and Jdger (1997,
1998) showed that if two solutions of the normal contact problem
are identified with the loads Py, P, with P, > Py, then the tangential
traction distribution

q(X):fp(X,Pz) _fp(X7P1)7 (3)

satisfies the conditions for slip in x € A(P;) \ A(P;) and for stick
(zero relative tangential displacement) in x € A(P,).

The traction distribution (3) clearly satisfies the first of these
conditions, since the second term makes no contribution in the slip
region A(P;) — A(P1). The proof that the stick conditions are satis-
fied in A(P;) depends on the fact that the Green’s function for nor-
mal and tangential loading of the half plane are identical (see for
example Johnson (1985) Section 2.2 and 2.3). It follows that the
tangential surface displacement due to the traction distribution
(3) is equal to the normal surface displacement due to the differ-
ence between the normal traction distributions p(x,P,) and
p(x,P;) multiplied by f. This normal traction distribution represents
the change in normal traction as P is increased from P; to P, and
since the region .A(P;) is in contact throughout this process, it fol-
lows that the normal displacement must be capable of accommo-
dation by a relative rigid body approach and hence must be
independent of x. Thus, the tangential surface displacements due
to the distribution (3) are also independent of x in .A(P;) and hence
capable of accommodation by a tangential relative rigid body dis-
placement. Furthermore, considerations of the asymptotic stress
and displacement fields at the transitions between stick and slip
(Dundurs and Comninou, 1979) demand that the tangential trac-
tions be bounded at these points, which in combination with the
Cauchy integral equation formulation for the tangential problem,
ensures that this solution is unique.

2.1. Tangential traction distribution during full stick

In the periodic loading scenario of Fig. 2, the full stick condition
|AQ| < fAP is satisfied for all infinitesimal loading increments in the
segment BC between the two points B, C where the tangent has
slope Ff respectively implying dQ/dP =  f. Throughout this seg-
ment, the tangential contact problem must be solved
incrementally.

We first note that the change in normal tractions during a small
increase in load AP can be written

Ap(x,P) = p'(x, P)AP. (4)

Now during this infinitesimal loading increment, the tangential
force must change by

AQ:Z%AP

and the increment in tangential tractions must ensure that no slip
occurs anywhere in the instantaneous contact area A(P). It is clear
from the arguments underlying the Ciavarella-Jdger theorem (or
alternatively from the equivalence between the normal and tangen-
tial Green’s functions for the elastic half plane) that the tangential
traction distribution satisfying this condition is proportional to
the incremental normal traction distribution and hence
. e py dQ

Aq(x.P) = p'(x, P)AQ = P/ (x. P) 75 AP. (5)
If the solution of the normal contact problem is known and the
loading scenario is defined as a time-directional relation between
Q and P, Eq. (5) defines an explicit expression for the increment in
tangential tractions during the stick phase. The additional tangen-
tial tractions accumulated during the finite stick phase BC (or any
other full stick segment, such as OA in Fig. 2) can therefore be writ-
ten down as the integral

a0 -0 = [ pixp)GRap )

2.1.1. Partial slip solution

Once we pass the point Cin the trajectory of Fig. 2, the condition
d|Q|/dP > fis violated and we must anticipate the development of a
region of microslip from the edges of the contact area. Suppose the
instantaneous load is represented by a point X on the ellipse of
Fig. 2 and that the corresponding contact area and normal traction
distribution are A(Px), p(x, Px) respectively. We shall demonstrate
that the tangential tractions can be expressed as the sum of (i)
the tangential tractions gqy(x) that occurred at some earlier stage
Y during the preceding full stick phase such that Py < Px and (ii) a
generalized Cattaneo-Mindlin distribution, as in Eq. (3) with
P2 = PX and P1 = Py.

For the first loading cycle, we have chosen an initial loading
path that remains in full stick at all times, so our hypothesis is that
the tangential tractions at X are defined by

a0 = [ PP GRAP Il )~ ol Py ™)

where we used (6) to determine qy(x). The unknown normal load Py
is determined from the condition that the resultant tangential force
be equal to Q. In fact, this condition gives

Qx =Qy +fPx — fPy, and hence Qy — fP, = Qx — fPy (8)

and the points X, Y must both lie on the same line Q — fP = C where C
is a constant. We can therefore identify Y by drawing such a line on
the loading figure and extending it to cut the initial full stick trajec-
tory, as shown in Fig. 3.

The last two terms in (7) comprise a Cattaneo-Mindlin distribu-
tion and hence produce no slip in the region A(Py), so the stick
boundary condition in this region is satisfied. In the slip region,
the tractions are given by q(x) = fp(x) and this is correct provided
that the slip velocities have the correct sign in this region. We also
require that regions that have once slipped should continue slip-
ping [i.e. that we don’t have ‘advancing stick zones’ as defined by
Dundurs and Comninou (1981, 1983)] and hence that
dA(Py)/dt < 0. Since A is a non-decreasing function of P, this is
equivalent to the condition dPy/dt <0 and it is clear from the
geometry of Fig. 3 that this latter condition is satisfied from C all
the way around to the point E, where the tangent has slope f, since
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Fig. 3. Geometric construction for determining Py in Eq. (7).

as we move X around the loop, the point Y moves continually to the
left until X reaches E.

To determine the direction of slip in the postulated slip regions,
we first note that at any given stage in the loading process, the
incremental tangential tractions during a small loading increment
are obtained by differentiating (7) as

5a() =P Pr) G| APy -+ POAPY I (xPOAPr. (9)

The second term in this expression is proportional to the normal
pressure distribution under a flat punch of planform A(Px) and
hence produces a uniform tangential displacement throughout this
area which can be accommodated by a rigid-body displacement
without slip. The remaining two terms can be grouped as

d
p/(xv PV) <d_%

and, since Py lies in a full stick phase where dQ/dP < f, the incremen-
tal tractions will be positive (and hence produce a positive addi-
tional slip) if and only if APy<0, which remains true up to but
not beyond the point E. Thus, the slip direction inequality leads to
the same criterion as the prohibition on advancing stick. We also
note that as we reach the point E the expression (10) goes to zero
for all values of . It follows that the slip rate due to the incremental
shear tractions will go to zero throughout the slip region and hence
the entire slip region will transition simultaneously at E to a state of
stick.

—f) APy (10)
Py

2.2. Reverse slip phase (EB)

Although the system sticks instantaneously at point E, it cannot
remain in this state for a finite load interval, because P is decreas-
ing at E and hence the condition d|Q|/dP < fis not satisfied. Instead,
starting from E, a region of reverse slip will extend from the edges
of the contact area. To analyze this phase of the process, we first
note that the tangential tractions at E are defined by

Pz
0= [ PP 3PSt o)~ ol o) (11

from (7) with X replaced by E. Notice that at this point the only
‘memory’ of the initial loading phase OA is contained in the first
and last terms, which are non-zero only in the region A(Pz) corre-

sponding to the point Z where the tangent line at E crosses the ini-
tial loading line OA. This memory is never erased and hence the final
steady state is influenced by the shape of the load trajectory in the
range OZ. However, this effect occurs only in the ‘residual’ tractions
inside the permanently stuck zone in the steady state and we shall
see later that it has no effect on the frictional slip and hence on dis-
sipation or frictional damage. Furthermore, the total tangential
force associated with the first and last terms in (11) is Q; — fP,
and this represents the intercept between the tangent line at E
and the Q-axis which is independent of the initial loading path.

At a general point between E and B, the corrective tractions
(eorr(x) must (i) cancel the term fp(x,Pg) in (11) in the region
A(Pg) \ A(P) (since this region loses contact as P decreases), (ii) sat-
isfy stick conditions in an as yet undetermined stick region 4s, and
(iii) convert the tractions to backward slip tractions —fp(x,Pg) in
A(P) \ As. Notice that if Pg > Pg, there will be points in EB for which
satisfied.

These conditions are all satisfied by the sum of two Cattaneo-
Mindlin distributions defined as

Georr(X) = —[fP(X, Pe) — fp(X, Ps)] — [fp(x, P) — fp(x, Ps)], (12)

where Ps is a load to be determined that defines the stick region Ag
through the relation As = A(Ps). Notice that in (12), both terms sat-
isfy the stick condition in A(Ps), the first term cancels the term
fp(x,Pg) in Eq. (11) and the second establishes the required reverse
slip tractions —fp(x,P) in A(P) \ A(Ps). The tractions at a general
point between E and B are therefore obtained by adding (11), (12) as

Pz
q(x) :/O p’(x,P)z—%dP—fp(x,P) +2fp(x,Ps) — fp(x. Pz). (13)

As before, Ps and hence Ag is determined from the corresponding
tangential equilibrium condition

Q=Q,—fP+2fPs—fP, or P5:1<9+P—%+Pz>. (14)

2\f f

This load can also be given a simple geometrical description as
shown in Fig. 4. If we extend a line of slope —f from the point
(P,Q) it will cut the P-axis at G, where P¢ = P + Q/f. Similarly, the line
EZ cuts the P-axis at F, where Pr = P; — Q/f. It follows that Ps is mid-
way between F and G and hence is defined by the P-coordinate of

Fig. 4. Geometric construction for determining the stick zone during the reverse
slip phase EB.
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the intersection point S in Fig. 4. This construction shows that
P > Ps > P, for all points between E and B, so the tangential displace-
ments locked in the region A(P;) are not changed during this pro-
cess. Also, Ps and hence the stick zone A(Ps) continually decrease
as we move from E to B, as required if we are to avoid a situation
with advancing stick. An argument exactly parallel to that used in
the forward slip phase can be used to show that the slip direction
in A(P) \ A(Ps) is consistent with the assumed frictional tractions
(13) and once again we find that as we reach the tangent point B,
the entire slip zone sticks simultaneously.
At this point, the traction distribution is

/ x. Py SEdP — fo(x Py) + 2p(x.Pr) — fo(x.P2).  (15)
where the point T is defined in Fig. 4.
2.3. The second cycle

Between B and C, we shall once again have full stick and the
incremental tractions can be obtained by integration as before,
giving

* dQ
a0 = a5 + [ px.P) g, (16)
Jpy
In particular, when we reach C for the second time, we have

Py d
:/0 p’(x,P)d—%dPJr/ p( xP dP fp(x,Pp)

+2fp(x, Pr) — fp(x, Pz), (17)

from (15), (16).

As in the first cycle, partial slip will start at C and the corrective
traction is constructed in the same way as in (7), except that the
point Y defining the stick area through .A(Py) is now obtained from
an intersection with the segment BC rather than with the initial
loading line OAC. With this interpretation, the traction distribution
in the segment CH in Fig. 5 can be written

Pz Py
a0~ [ pourGRar [y G oo
_fp(XaPY) _fp(X7P3)+2fp(X7PT) _fp(xvpl)' (18)
A
0
0 I

Fig. 5. Tractions accumulated during the reverse slip phase start to be erased after
point H.

However, this distribution applies only as long as A(Py) > A(Pg) and
hence Py > Pg. Once we pass the point H on the second cycle, the slip
zone starts to erase the reverse slip tractions locked in at B and a
new solution is necessary.

2.4. The phase HE

At the point H, the second integral term in (18) goes to zero,
Y - B and we have

Py , dQ
W) = [P P) G dP-+ ol Pa) — 2fp(x.Pa) + 2p(x. Pr) ~ o(x.Pr).

(19)

During the phase HE, the contact area is shrinking and we anticipate
forward slip will continue near the edges of this region, surrounding
a shrinking stick zone. However, the extent of this stick zone cannot
now be found by intersecting a line of slope f with the other side of
the load loop, because reverse slip was accumulating during the
phase EB.

Suppose that the stick area can be expressed as A(Pk), where P
is some as yet unknown normal load in the range Pr< Px < Pg. An
immediate correction for the reduced size of the contact area can
be made by subtracting the Cattaneo-Mindlin distribution
fp(x,Py) — fp(x,P), giving the traction distribution

/pxP —=dP + fp(x, P) — 2fp(x, Pg) + 2fp(x, Pr) — fp(x, Pz).

This satisfies the stick condition in A(Pk) and the forward slip con-
dition in A(P) \ A(Pg), but the slip condition in A(Pg) \ A(Pk) is not
satisfied because of the term —2fp(x,Pg). However, we can correct
this whilst preserving the remaining boundary conditions by adding
a further Cattaneo-Mindlin term 2fp(x, Pg) — 2fp(x, Px), giving

2fp(X)PK) +2fp(X7PT) 7fp(X$PZ)

(20)

for the tractions during the phase HE. As before, the unknown force
Py is obtained from the equilibrium condition

P, ) dQ
:./0 p(x,P)d—PdP+fp(x,P) -

Q = Qg + fP — 2fPy + 2fP; — fP,,

or

_p L p Q p &

PK—PT+2<P 7 Perf) (21)

and the term in brackets must be positive, since the point (P,Q) lies
to the right of the tangent line EZ implying that P — Q/f > P; — Qg/f. It
follows that Py > Pras assumed and also that the two become equal
when we reach E. At this point, the forward slip zone has com-
pletely erased the tractions accumulated during the reverse slip
phase EB and the traction distribution is identical to that at the
same point during the first cycle, being given by Eq. (11). It follows
that all subsequent loading cycles will follow the same path, so the
steady state is reached after one cycle of periodic loading.

2.5. The permanent stick zone

Reviewing the first complete steady-state cycle, starting and
ending at point E in Figs. 3-5, we note that the smallest extent of
the stick zone is represented by .A(Pr), where the point T is identi-
fied in Fig. 4 as the intersection of two tangents of slope +f respec-
tively to the load loop. It is clear that this point is independent of
the initial loading path OA and hence that the extent of the perma-
nent stick zone is unique. As remarked earlier, the tractions locked
into the permanent stick zone are influenced by the initial loading
path, but the total tangential force transmitted through this zone at
any given point in the cycle depends only on the periodic loading
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cycle. For example, at point E, the tangential tractions are given by
Eq. (11) and the sum of the tractions in the permanent stick zone
A(Pr) is

/ Qe(x)dx = Q, — P, + f / p(x. P)dx. (22)
A(Pr) A(Pr)

The last term in this equation is independent of the initial loading
path and we already remarked that the first two terms define the
intercept of the tangent line at E with the Q-axis, which clearly de-
pends only on the periodic part of the loading.

We also note that the values of Pr, Pr and hence A(Pr) would be
unchanged if the load loop were to be displaced in the Q-direction
whilst preserving its shape and orientation, always assuming that
this displacement did not violate the ‘no-sliding’ condition that
the entire loop lie between the bounding lines Q = £fP. In other
words, the extent of the permanent stick zone is independent of
Qo in (1) subject to this restriction. It also follows that the last term
in (22) is independent of Qo, but the intercept defined by the first
two terms will increase by the increment in Q. Thus, changing
the mean tangential load merely causes the tractions locked into
A(Pr) to increase by an equal amount, whilst the tangential trac-
tions outside A(Pr) are always independent of Qo, even during peri-
ods of stick.

2.6. Energy dissipated in friction

During periods of microslip, work will be done by the tangential
tractions in the slip regions, moving through the corresponding slip
displacements u(x). The dissipation rate can be written

W= /A(P) q(x)i(x)dx, (23)

where the dot denotes differentation with respect to time. Now the
slip displacement can be written down as an integral of the tangen-
tial tractions, and its time derivative t(x) depends only on the time
derivative of these tractions, which we have established is indepen-
dent of the initial conditions. It follows that the energy dissipated in
friction per cycle depends only on the periodic loading cycle and is
also independent of Qp in Eq. (1)

2.7. More general load cycles

Most practical loading cycles will result from machine vibration
at a dominant frequency and will therefore be quasi-elliptical, as
defined by Eq. (1). However, it is clear that the arguments here
developed apply to any scenario in which the corresponding loop
has a monotonically turning tangent. In fact, more sinuous curves
can also be allowed without a change in the procedure as long as
they do not precipitate an additional change from forward slip to
backward slip, or slip to stick, and this condition will be satisfied
as long as the load loop has just four points of tangency with lines
of slope f.

If there are more than four points of tangency, a complete
description of the resulting traction distributions will require a de-
tailed accounting each time such a point is passed, but the argu-
ments of the preceding sections are easily adapted to such cases.
For example, in the scenario of Fig. 6, reverse slip will occur be-
tween E; and By, with a maximum slip zone defined by A(Pr,), ex-
actly as in the phase BE of Section 2.1.1. Stick tractions will
accumulate between B; and Cy, but these and then the reverse slip
tractions from E;B; will be erased by a growing forward slip zone
between C; and G. At this point, all memory of the side loop is
erased, the cycle continues in forward slip to E, sticks instanta-
neously and experiences a growing reverse slip zone to the point
B as in Section 2.1.1. The permanent stick zone is given by A(Pr)

Fig. 6. A more complex load cycle.

as in the simpler scenario and this appears to remain true for all
deviations from the quasi-elliptical path. In other words, the per-
manent stick zone is always defined by the intersection of the
two tangents that give the minimum value Pr at the intersection
point.

3. Three-dimensional problems

The results established in this paper are exact in the context of
two-dimensional elasticity, provided that the bodies are suffi-
ciently large to be representable as half planes and Dundurs’ con-
stant g =0. However, the original papers by Cattaneo (1938) and
Mindlin (1949) also discussed the three-dimensional Hertzian con-
tact geometry under the simplifying assumption that the frictional
tractions are everywhere aligned with the applied tangential force.
This assumption leads to a solution consistent with the Coulomb
friction law if and only if the resulting slip displacements are also
so aligned and for unidirectional loading, this is the case only in
the special case where (for similar materials) Poisson’s ratio
v = 0. Ciavarella (1998b) showed that in this special case the same
superposition can be carried over to general three-dimensional
geometries. It follows immediately that all the results of the pres-
ent paper apply equally to the three-dimensional problem of sim-
ilar materials, provided that v=0 and the tangential load has
always the same direction, though possibly alternating in sign. In
particular, the contact area function A(P) will now be a an area
(not necessarily connected) in the interfacial plane, and deter-
mined from the solution of the normal contact problem.

For all other values of v, tangential forces produce tangential
surface displacements that are inclined to the direction of the force
and this can be shown to lead to a violation of the Coulomb law
even in the simple Cattaneo-Mindlin case. The extent of this error
was examined by Munisamy et al. (1994) using a numerical solu-
tion and shown to be generally quite small. Thus, one might expect
the present results to apply in some approximate sense to more
general three-dimensional problems where v # 0.

4. Conclusions

We have shown that if two two-dimensional elastic bodies are
subjected to far-field periodic loading, the following properties of
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the steady-state frictional behaviour are independent of the initial
conditions or an initial transient loading phase, provided the tan-
gential and normal contact problems are uncoupled:-

(i) The extent of the permanent stick zone, comprising points
that do not slip or separate during the steady state.
(ii) The tractions at all points outside the permanent stick zone.
(iii) The slip velocities at all such points.
(iv) The energy dissipated per loading cycle due to friction.

This last result can be seen as a generalization of an earlier proof
that a frictional Melan’s theorem applies to uncoupled frictional
elastic systems. We deduce that the effective damping of the con-
tact and the tendency to damage by fretting fatigue should be inde-
pendent of the way (for example) in which the joint was
assembled. We also find that all the above parameters remain un-
changed if the loading cycle is modified by the addition of a time-
independent tangential force, provided this is not so large as to
precipitate a period of gross slip (sliding).

The tractions inside the permanent stick zone will generally de-
pend on the initial conditions, but the resultant of these tractions
at any given point in the loading cycle will not. These results apply
to bodies of completely general profile, subject only to the require-
ment that they be capable of approximation by half-planes for the
purposes of the elastic contact problem. For example, they apply
equally to the contact of rough surfaces of specified profile, where
contact will occur in a set of microscopic ‘actual contact areas’.

The techniques here described also provide a simple algorithm
for determining the extent of the permanent stick zone and the
traction distributions at all points during the loading cycle.
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