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Nonlinear Transient Behavior of a
Sliding System With Frictionally
Excited Thermoelastic Instability
A transient finite element simulation is developed for the two-dimensional thermoe
contact problem of a stationary layer between two sliding layers, with frictional h
generation. The Petrov-Galerkin algorithm is used to discretize the sliding layers bec
of the high Peclet numbers involved. The results in the linear, full contact regime
validated by comparison with the analytical predictions of Lee and Barber (1993). A
separation occurs, there is a non-monotonic transition to a steady state with the co
regions separated by the same wavelength. During the transition, the migration s
exhibits values lower than those in either the linear regime or the final steady state. W
several wavelengths are unstable, the final steady state is generally that correspond
the longest unstable wavelength, even though other modes have more rapid growth
in the linear regime. @DOI: 10.1115/1.1353180#
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1 Introduction
Frictional heating in brakes and clutches causes thermoel

distortion of the contacting bodies and hence affects the con
pressure distribution. The resulting thermomechanical coup
can cause thermoelastic instability~TEI! if the sliding speed is
sufficiently high, leading to non-uniform heating~‘‘hot spots’’!
and low frequency vibration known as ‘‘hot judder’’@1#.

Burton and his coworkers@2,3# showed that the stability of a
sliding system can be determined by examining the conditi
under which a perturbation in the temperature and stress fields
grow exponentially in time. This method was used by Lee a
Barber@4# to examine the stability of a layer sliding between tw
half-planes—a geometry that can be regarded as an idealizatio
a brake disk sliding between two friction pads. With realistic a
tomotive friction material properties, they found that the mo
with the lowest critical speed was always antisymmetric about
layer mid-plane, corresponding to hot spots alternating on the
sides of the layer. Also, the wavelength of the first eigenmod
corresponding to the hot spot spacing—was approximately
times the layer thickness. Yi et al.@5# implemented Burton’s
method numerically for the limiting case where the friction pa
are non-conductors, in which case the perturbation is station
with respect to the disk. They examined more realistic desc
tions of the disk brake geometry, but found that Lee’s idealizat
gives a good approximation to the more exact behavior in m
cases.

When both materials are thermal conductors, the exponent
growing perturbation migrates with respect to both bodies.
most braking systems, the conductivity of the disk is very mu
greater than that of the pad, in which case the predicted migra
speed over the disk is relatively slow, but it still has a significa
effect on the critical speed, since it reduces the magnitude of
thermoelastic distortion associated with a given perturbation
heat input.

If the system operates above the critical speed, an initial pe
bation will eventually grow sufficiently to cause separation to o
cur somewhere in the nominal contact area, at which point
contact problem becomes non-linear, being governed by the
lateral contact inequalities of non-negative contact pressure
non-negative gap. In most cases, we anticipate that the system
tend to some steady state in which only part of the nominal c
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tact area remains in contact. Such steady states have been
analytically for some idealized cases where one material is a n
conductor@6#, but it remains an open question whether they ex
for systems of two conductors and if so, whether the result
contact area migrates over the surface of both bodies or is sta
ary with respect to one of them. Experimental observations of
spots in automotive brake disks@7# suggest that migration is very
slow, if it occurs at all.

In the present paper, we shall investigate these question
using numerical simulation. We discretize both the thermoela
contact problem and the transient heat conduction problem u
the finite element method. Early attempts at numerical simula
of TEI in a disk brake were made by Kennedy and Ling@8#.
Azarkhin and Barber@9,10# developed solutions for the transien
thermoelastic Hertz problem, using Green’s function and Fou
transform techniques. Zagrodzki@11# developed a transient ther
moelastic simulation for axisymmetric deformation of a mul
disk clutch. All of these papers were restricted to cases wh
there was no migration of the thermoelastic disturbance in
sliding direction. In Kennedy’s and Zagrodzki’s analyses, the
havior was assumed to be axisymmetric, making the sliding o
of-plane, whereas in that of Azarkhin, one of the materials w
assumed to be a non-conductor. Simulation is more challeng
when migration is present, since at least one of the materials
flows through the frame of reference and the corresponding Pe
numbers are generally large.

2 Model

2.1 Geometry. The sliding system is represented by th
two-dimensional model shown in Fig. 1. Each component of
system is elastic and thermally conducting. The two exter
blocks 1 and 3 move in-the-plane with respect to the central la
2 at speedV. Blocks 1 and 3 represent the same material while
central layer 2—a dissimilar material. Solutions of the th
moelastic problem are assumed to be cyclically symmetric in
sliding directionx with wavelengthL5C/n, whereC represents
the circumference of the disk andn is an integer.

2.2 Heat Transfer. A common reference systemOxy for
the whole model is used. In general, each component of the m
can move inx-direction with respect to this system. It is conv
nient, however, to fix the system to a selected component.
selection will be based on the expected behavior of pressure
turbation. It is known that for both mating materials being co
ductors, the perturbation migrates in the sliding direction w
-
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respect to each of them. If the materials are dissimilar, the sp
of migration with respect to the material of higher thermal co
ductivity is small comparing to the sliding speed@4#. On the other
hand, the speed at which the perturbation moves with respe
the reference system affects the time step in the numerical s
tion of transient thermoelastic problem, and higher speed ge
ally demands a shorter time step. Therefore, it is advantageou
numerical efficiency that the reference system is fixed to the be
conductor. In the model shown in Fig. 1, the layer 2 represe
ferrous material, which is a good conductor, while the block
and 3 represent friction material, which is usually a poor cond
tor. Consequently the reference system is chosen to be fixed t
layer 2.

Note that only components that are continuous in
x-direction can be treated as moving. In a sliding system w
contact surfaces that are not coextensive in the sliding direct
like an automotive disk brake, the geometry would dictate that
reference system be fixed to the pads regardless of relative
ductivity of materials.

The heat transport in moving components 1 and 3, Fig. 1
described by a conduction-convection equation of the form

Ki¹
2Ti5cpir i S ]Ti

]t
1V

]Ti

]x D in V i , i 51,3. (1)

Here,cp , r, andK denote specific heat, density, and conductivi
respectively;V is sliding speed and the operator¹5]/]x1]/]y.
The properties of materials 1 and 3 are the same, i.e.,cp35cp1,
r35r1, andK35K1.

The heat conduction in the layer 2 is described by the equa

K2¹2T25cp2r2

]T2

]t
in V2 . (2)

Heat generation at the contact interfacesy5yi ~i 51, 2! is defined
by

qi5 f Vpi , (3)

where f is friction coefficient, andpi is contact pressure at th
interface. The interfacial boundary conditions ony5yi depend on
the status of mechanical contact. If the surfaces are in contact
if the clearanceDuy50, they are given implicitly by the energ
conservation condition

Ki

]Ti

]y U
y5yi

2Ki 11

]Ti 11

]y U
y5yi

5qi , i 51,2, (4)

and the temperature continuity condition

Ti uy5yi
5Ti 11uy5yi

50, i 51,2. (5)

If Duy50, the separated surfaces are treated as adiabatic

]Ti

]y U
y5yi

5
]Ti 11

]y U
y5yi

50, i 51,2. (6)

Fig. 1 Schematic of sliding system
700 Õ Vol. 123, OCTOBER 2001
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i.e.,

Additionally, on the boundariesx50 andx5L the following
conditions imposing cyclic symmetry are enforced

Ti ux505Ti ux5L , i 51,2,3. (7)

2.3 Method of Solving of Heat Transfer Problem. Equa-
tion ~1! has a dual, conductive-convective, nature. It implies se
ous difficulties with numerical solution by either finite element
finite difference methods. The standard Galerkin finite elem
algorithm, which is of central-difference type, is suitable for d
cretizing the diffusive term in Eq.~1!, but it does not provide an
adequate discretization of the convective termV]T/]x. If this
term is significant, namely if the mesh Peclet numberg
5Vhcpr/K is greater than 2, whereh is a characteristic elemen
length, the algorithm exhibits excessive numerical oscillations
provides spurious solutions@12#. Usuallyg.100 for typical fric-
tion clutch/brake models. A scheme that is consistent with
nature of the convective term, is the one of backward-differe
type. To handle convection dominated problems, a modified fi
element algorithm, called Petrov-Galerkin, has been develo
@12,13,14#. The algorithm uses an upwinding approach, which b
sically consists in replacing the central-difference scheme wit
backward-difference scheme for both convective and diffus
terms. This is obtained by using non-symmetric weighting fun
tions in finite element formulation, while the shape functions a
the same as in conventional Galerkin formulation.

Simulation of a time-dependent convection dominated prob
involves an additional difficulty. Numerical dispersion occu
producing phase errors, varying with the wavelength. Yu a
Heinrich @13,14# show that this effect can be controlled by usin
specially designed time-space finite elements with weight
functions linear in space and quadratic in time.

In this work we use a commercial finite element packa
Abaqus/HKS@15#, equipped with the Petrov-Galerkin algorithm
based on@13,14#. Before solving the actual problem, we broad
tested the algorithm by solving a trial thermoelastic contact pr
lem for which analytical solution is known.

2.4 Elastic Contact. A standard static elastic contact fo
mulation is used which imposes continuity of normal displac
mentsuy across the contact interfaces if the contact condition
satisfied.

If ( uy) i denotes displacement component inith region~Fig. 1!,
the boundary conditions on the edgesy50 andy5y3 have the
form

~uy!1uy5050 and ~uy!3uy5y3
5const. (8)

with the total external forceFy in they direction being controlled.
On the edgesx50 andx5L, cyclic symmetry conditions

~ux! i ux505~ux! i ux5L and ~uy! i ux505~uy! i ux5L , i 51,2,3
(9)

are imposed.
The elastic contact problem is also solved by the finite elem

method using Abaqus code.

2.5 Sequential Numerical Simulation of Thermoelastic
Contact Problem. In the simulation procedure the therm
problem ~Section 2.2! and elastic contact problem~Section 2.4!
are solved sequentially in time.

2.5.1 Finite Element Mesh. A typical practical combination
of mating materials in a brake or a clutch is that with dissimi
materials. In this case the perturbation in contact press
temperature moves at relatively high speed, close toV, with re-
spect to the poor conductor. A particular point on the surface
this material experiences temperature oscillations at a frequenv
approximately equal to 2pV/L, whereL is the length of the wave.
The character of the temperature distribution in the poor cond
tor in the y direction normal to the surface can be estimated
solving a one-dimensional transient heat conduction problem
Transactions of the ASME
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half-infinite domain with an oscillatory boundary condition. F
the boundary conditionT(t)uy505Tscosvt, whereTs is the am-
plitude of surface temperature, the solution has the form@16#

T~ t,y!5Tsexp~2cy!cos~vt2cy!, (10)

where c5Av/2k is both the spatial frequency and the spat
damping factor, andk5K/cpr is thermal diffusivity. For the prac-
tical range of parametersv and k, the parameterc takes high
values, implying that the temperature distribution in the poor c
ductor in the direction normal to the surface is represented by v
short wavelength and is strongly damped. Hence, a notice
temperature variation occurs only in a thin skin at the surfa
Figure 2 shows the solution~10! for an example set of realistic
parameters (V55 m/s, L50.05 m, k5231026 m2 s21!, for
which c51.7725•104 m21 and the corresponding wavelengthl
52p/c50.35 mm.

The finite element mesh must be designed to be capabl
reproducing this strong variation of temperature in the skin la
of friction material. At the same time the mesh, which is comm
for thermal and elastic problems, must adequately represen
mechanical behavior of the system. In particular, a meanin
strain variation is expected also at locations distant from the c
tact interface, and, therefore, the modeled area cannot be con
to the skin only. In the good conductor, with respect to which
perturbation migrates slowly, much smaller temperature gradi
in the y-direction are expected. Consequently, much larger
ment sizehy is used in this area with a uniform mesh, as shown
Fig. 3.

The mesh in sliding directionx is uniform in each component
The smallest wavelength captured by the discrete model of c
vective problem is 2hx @17#. However, the accuracy of wave
lengths represented by small number of elements is poor
therefore a finer mesh than that resulting from this condit
should be used. Note that in nonlinear range of operation of
system, with contact separation, the solution is no longer s
soidal in the sliding direction and it contains also higher Four
components. In this study we use a mesh in which the wavele
L of the lowest mode is divided into 50 elements.

We use quadrilateral bilinear elements. The skin layer of
poor conductor of thickness about 0.75l is divided into several
elements iny-direction with very small sizehy , Fig. 3. The ele-
ments in this region have aspect ratiohx /hy@1.

2.5.2 Time Step. The Petrov-Galerkin finite element algo
rithm for solving convection dominated problems may inclu
control of numerical dispersion. In this case the algorithm is c
ditionally stable with stability condition of the form Cu<1, where
Courant number Cu5VDt/hx @13#. For given mesh size in flow

Fig. 2 Character of temperature distribution in a skin layer of
poor conductor
Journal of Tribology
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direction hx and flow speedV, this condition imposes an uppe
limit on the time stepDt. The algorithm without dispersion
control is unconditionally stable. However our tests indicate t
the accuracy that it provides for Cu substantially greater tha
is not satisfactory. On the other hand, for Cu<1 both algorithms
gave practically the same results for the range of waveleng
under consideration. Hence, we chose the time step that sat
Cu<1, without preferring any of the two versions of th
algorithm.

In the component 2, Fig. 1, pure conduction occurs. Also,
components 1 and 3 the heat is transported in directiony by con-
duction only. It is known that a short time step in finite eleme
algorithms for conduction problems can produce numerical os
lations @15#. The requirement for the time step dictated by th
effect would generally be in conflict with the upper limit on th
time step discussed above. Therefore, it is crucial to use a disc
zation scheme that provides oscillation-free solutions even
very short time step. This feature is exhibited by the first ord
finite elements with lumped heat capacity matrix@17#. Although
the upwinding modifies the structure of the heat capacity mat
introducing out-of-diagonal elements, the lumped structure in
cross-wind direction is preserved, and our tests showed lac
noticeable oscillation of solution with the mesh size and time s
used.

The condition Cu<1 enforces in practice a very short tim
step. For instance,V55 m/s, hx51•1023 m requires thatDt
<2•1024 s. Note that the elastic properties of the mating mate
als usually differ considerably. While the thermal expansion
efficients of the materials are of the same of magnitude, the mo
lus of elasticity of the friction material is typically orders o
magnitude lower than that of the mating ferrous material. Con
quently, the solution of elastic contact problem is mostly govern
by the temperature field in the ferrous material. Since the per
bation migrates slowly with respect to this component, the evo
tion of the thermoelastic field there is relatively slow and t
characteristic time of this process is much longer than the t
stepDt required for thermal analysis in the whole system. Thus
is reasonable to use in the elastic analysis a time stepDte5N
•Dt, whereN is an integer. Practical values ofN were determined

Fig. 3 Detail of finite element mesh
OCTOBER 2001, Vol. 123 Õ 701
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by trial simulations for particular processes characterized by s
cific growth rate and migration speed. Better than 1.5 perc
accuracy in these quantities was achieved with values ofN in the
range 4 to 10, depending on the sliding speed.

In the thermal analysis, the heat flux at timet1nDt, wheret is
the time at which the solution is known andn51,...,N, is approxi-
mated byqi

t1nDt5 f Vpt wherept is the contact pressure at timet.
Then, after calculatingTt1NDt, the elastic contact problem at th
time t1NDt is solved.

3 Validation of Finite Element Model

3.1 Growth Rate and Migration Speed of Perturbation.
In order to verify the simulation model against Lee and Barbe
analytical model@4#, a transient solution corresponding to th
single eigenmode is simulated. Basing on its behavior, the gro
rate is estimated. In fact, the simulated thermoelastic proces
cludes both the underlying process, corresponding to the con
part of the contact pressure, and the overimposed perturba
Note that the underlying process is irrelevant to the stability
long as the system is linear. The pressure on the contact inte
is expected to vary according to the equation

p~x,t !5pm1pa0cos@2p~x1ct!/L#exp~bt!, (11)

wherepm is mean pressure, controlled by external force applied
the system and the second term represents the pressure per
tion; pa0 is its initial amplitude, andb is the growth rate. The
mean pressure remains constant during the process. Denotin
amplitude of the variable part of the pressure bypa(t), we can
write

ln@pa~ t !/pm#5 ln~pa0 /pm!1bt. (12)

In the simulation, a particular mode of perturbation is trigger
by perturbing the contact pressure in the initial step of therm
analysis. This initial condition reflects only the general pattern
the eigenmode of the interest and the actual mode forms grad
during the initial stage of the simulation. After that initial phas
we observed that the pressure varies according to the form
~12!, i.e., ln@pa(t)/pm)] varies linearly in time.

Figure 4 shows pressure distribution at a series of instants
tained for the system parameters specified in Table 1 and w
lengthL50.025 m, sliding speedV53.6 m/s. Fig. 5 shows varia
tion of ln@pa(t)/pm# and the migration of the perturbation in slidin
direction for two sliding speeds of 2.0 m/s and 3.6 m/s. The sl
of ln@pa(t)/pm)] for the speed of 3.6 m/s is positive, thus the so
tion is unstable. ForV52 m/s the solution is stable.

Figure 6 shows the part of the temperature distribution co
sponding to the perturbation only, extracted from the comp
solution. This temperature distribution corresponds to the stag
the process with steady-state growth, ruled by the Eq.~12!, hence
it represents the dominant eigenmode.

The growth rate is determined from the equation

b5 ln@pa~ t1Dt !/pa~ t !#/Dt. (13)
Table 1 Properties and geometry of b
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3.2 Comparison Against Lee and Barber Model. A se-
ries of simulations were run to validate the finite element mo
against Lee and Barber’s@4# analytical model of a layer sliding
between two half-planes. The Lee and Barber solutions for
critical sliding speed and migration speed of perturbation are
produced in Figs. 7 and 8, respectively, using friction coefficie
f 50.2 and the properties given in Table 1. These properties,
cept for the Poisson’s ratios, are representative of steel and s
friction materials used in clutch and brake applications. In
validation tests we neglected the mechanical effect of shear t
tions in order to reduce computation time, whereas these eff
are included in Lee’s model. This approximation is exact ifn
50.5 for both materials@18# and we therefore chose values ofn
close to 0.5 in order to reduce the effect of this discrepancy
tween the models. For other values ofn, shear effects may in-
crease or decrease the critical speed depending on the ma
properties, but the effect is generally quite modest when the c
ductivities of the sliding bodies are very different@18#.

The wavenumber of the perturbationm and the dimensionless
wavenumberA are defined

m52p/L, A5ma, (14)

wherea is the half-thickness of the central layer. The dimensio
less critical and migration speeds are defined by

Vcr* 5Vcra/k2 , c* 5ca/k2 , (15)

respectively, whereVcr is the critical speed~i.e., the speed at
which the perturbation growth rate is zero!, c is the migration
speed, andk2 is the thermal diffusivity of the central layer.

In performing the validation, a set of discrete wavenumb
from A50.245 to 1.0 was selected, with a particular concentrat
near the minimum of the curve.A50.245 represented the lowes
wavenumber at which higher-order perturbation modes rema

Fig. 4 Contact pressure distribution at a series of instants
during the stage with full contact
locks 1 and 3 and central layer 2
Transactions of the ASME
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Fig. 5 Change in amplitude and location of pressure perturba-
tion: p a—amplitude of pressure perturbation; p m—mean pres-
sure; x 0—location of maximum pressure along x-axis
Journal of Tribology
stable according to Lee’s solution. To attain each discrete wa
number, the length of the FE model was adjusted according
Eqs. ~14! ~L52pa/A!, and one wave of an initial pressure pe
turbation was imposed. The thickness of the external blocks
kept constant atH50.050 m. Simulations were then run at ea
discreteA with sliding speed 5 percent above and below the L
critical Vcr* for times sufficient for the perturbation growth rates
converge.

As expected, it was observed that the growth rates were slig
positive and negative, respectively, for the speeds 5 percent a
and belowVcr* . Using linear interpolation, the speed at which t
FE model would be estimated to produce zero growth rate
found for each discreteA. These results are compared with Lee
curve in Fig. 7. It can be seen that the FE model generally slig

Fig. 7 Dimensionless critical speed determined by Lee and
Barber’s analytical model and estimated by finite element
model
Fig. 6 Temperature distribution representing dominant eigenmode
OCTOBER 2001, Vol. 123 Õ 703
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underestimates the critical speeds compared to Lee’s model.
differences were for most of the simulated points less than 4
cent. However, for the lowest discrete wavenumberA50.245, the
difference is about 7 percent. At this wavenumber,L50.13 m, so
that the ratioH/L50.38. Yi et al.@5# showed that ratios ofH/L
,0.5 yielded reduced critical speeds relative to Lee’s mo
(H/L→`), which explains the bigger discrepancy between Le
and our model at lowA. The FEM migration speedc* at zero
growth rate was also estimated at each discreteA and is plotted

Fig. 9 Contact pressure distribution at a series of instants
during the stage with contact separation

Fig. 8 Dimensionless migration speed determined by Lee and
Barber’s analytical model and estimated by finite element
model
704 Õ Vol. 123, OCTOBER 2001
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against the Lee solution in Fig. 8. Again, the agreement betw
the two models is quite good—within 5 percent at each discretA,
except atA50.245, where it was 7 percent.

4 Transient Solution

4.1 Solution with Single Mode Unstable. The minimum
critical speed corresponds to wavenumberA50.334 ~the dimen-
sional wavelength isL50.09325 m!, see Fig. 7. We simulated th
thermoelastic process for this wavelength for a series of slid
speeds: 1.25Vcr , 1.5 Vcr , and 2.0Vcr .

Figure 9 shows the contact pressure distribution at a serie
instants for speedV51.5Vcr . Separation of contact starts att
54.7 s and is followed by rapid contraction of the contact a
and a corresponding increase in maximum contact pressure.
ure 10 shows the temperature fields att56 s, shortly after sepa-
ration begins, and att518 s. The corresponding temperature pr
files along the upper contact interface are shown in Fig. 11.
pattern of temperature distribution changes considerably du
the separation regime. Att56 s, the mode retains approximate
the antisymmetric character of the full contact solution, wher
the t518 s, a second local maximum of temperature is develo
on the layer surface. This maximum is opposite to the hot spo
the other sliding surface and results from heat penetration ac
the layer.

Figures 12 and 13 show the evolution of the maximum cont
pressurepmax, contact lengthLc and migration speedcs during
the transient process forV51.5 Vcr . Figure 12 shows the early
part of the process~0<t<16 s!. During the initial full contact
phase, the perturbation in contact pressure (pmax2pm! grows ex-
ponentially and the migration speed is constant, as predicted
Lee’s theory. After separation begins, the migration speed

Fig. 10 Temperature contours at different instants
Transactions of the ASME
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creases significantly, as does the rate of increase of the maxim
contact pressure. However, the maximum contact pressure co
ues to grow and it reaches a very high value. The process app
to be tending monotonically towards a steady state, but thi
illusory, as seen from Fig. 13, which extends the results outt
5450 s. In fact, the transient process overshoots the steady
and there is a gradual return to a larger contact area and lo
maximum contact pressure. The form of the contact pressure
tribution evolves during this process. Figure 14 shows the con
pressure at two instantst56.3 s andt5420 s before and after th
extremum point respectively, chosen so as to have approxima
the same value ofpmax. In this plot, one of the curves was move
in the x-direction in order to make the comparison easier. Not
that the curves have different shapes. The pressure distributio
t5420 s, close to the final steady state, is significantly asymm
ric. This evolution of the form of the contact pressure distributi
is associated with a striking change in the migration speedcs ,
which falls dramatically during the initial separation phase b
then returns to a value not far below that in the full contact pha
Large numbers of time steps are required for these long t
simulations, but extrapolation at large time using exponen
functions suggests that the final migration speed will be 89 p
cent of that in the full contact regime, in contrast to a minimum
14.5 percent at aboutt520 s. The corresponding extrapolate
values for the maximum contact pressure and the contact le
pmax/pm53.4 andLc /L50.44.

4.2 Solution with Multiple Unstable Modes. The most
common sign of thermoelastic instability in clutches and brake
the occurrence of focal discolorations on the surface of the ste
cast iron disks after operation@19,20#. These often have a fairly
regular pattern, reflecting a single eigenmode@20#, but in other

Fig. 11 Temperature distribution along contact surfaces at dif-
ferent instants
Journal of Tribology
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cases less regular patterns are obtained. These can result fr
sequential occurrence of hot spots in a series of applications@20#,
from geometric imperfections of the surfaces or from the sim
taneous excitation of several different modes. In the present
tion we shall explore the development of hot spots when m
than one mode is unstable.

For a periodic system of finite lengthL, the wavelength must be
an integer submultiple ofL, and, hence, the wavenumber can ta
only the valuesm52np/L, wheren is an integer. This is illus-
trated in Fig. 15, which also reproduces Lee’s solution for
critical speed as a function of dimensionless wavenumberma.
The lengthL was selected so that the critical speed of the mode
wavelengthL is higher than that with wavelengthL/2. Simula-
tions were performed at the three speeds labeledV1, V2, V3, in

Fig. 12 Maximum contact pressure, contact length and migra-
tion speed: p max , p m—maximum and mean contact pressure,
respectively; L c—contact length; L—length of the interface;
c s—migration speed; c—migration speed in the full contact
phase.
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Fig. 15. SpeedV1 is slightly above the critical speed for the fir
mode of wavelengthL, but significantly above it for the secon
mode of wavelengthL/2. In addition, the amplitude of the initia
perturbation for the second mode was chosen to be ten times
for the first mode. The resulting evolution of the pressure dis
bution is shown in Fig. 16. As expected, the second mode do
nates during the linear full contact phase which terminates a
1.6 s. Separation now occurs, but the two pressure peaks
gradually become unequal and eventually there is a transition
state with a single contact region—in other words a first mo
solution with separation. Notice that the final state preserves
usual quasi-antisymmetric property in that the hot spots are a
nately located on the two opposing surfaces.

Similar results were obtained at speedV2 which exceeds the
critical speed for modes with wavelengthsL, L/2, andL/3. The

Fig. 13 Maximum contact pressure, contact length and migra-
tion speed: p max , p m—maximum and mean contact pressure,
respectively; L c—contact length; L—length of the interface;
c s—migration speed; c—migration speed in the full contact
phase
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initial perturbation was dominated by the short wavelength per
bations, but once separation occurs, there is a gradual transitio
a final steady state with a single contact region.

Simulations were also performed at speedV3 which is above
the critical speed for the second mode~wavelengthL/2! but below
it for the first mode. As expected, only second mode disturban
were observed throughout the transient process, culminating
steady state with two contact regions.

5 Conclusions
The two-dimensional transient simulation presented in this

per confirms the analytical predictions of Lee and Barber@4# and
extends our knowledge of the TEI process into the nonlinear
gime, where separation regions occur at the sliding interfa
When only a single wavelength of perturbation is unstable, th
is a transition to a steady state with the contact regions separ
by the same wavelength, but the transient process is not m
tonic. The migration speed in particular falls to significantly low
values than those obtained in the linear regime and then reco
to a steady state value. When several wavelengths are unst
our results show that the final steady state is generally that co

Fig. 14 Contact pressure distribution in the transient stage
with contact separation and in the quasi-steady state

Fig. 15 Dimensionless critical speed determined by Lee and
Barber’s analytical model: V1, V2, and V3—sliding speeds used
in simulations
Transactions of the ASME



Fig. 16 Contact pressure distribution at a series of instants from simulation with two unstable modes
sponding to the longest unstable wavelength, even though o
modes have more rapid growth rates in the linear regime.

Nomenclature

a 5 half-thickness of central layer
A 5 dimensionless wavenumber
b 5 growth rate
Journal of Tribology
ther c 5 migration speed
cp 5 specific heat
C 5 circumference of the disk

Cu 5 Courant number
E 5 modulus of elasticity
f 5 friction coefficient
h 5 element length
OCTOBER 2001, Vol. 123 Õ 707
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H 5 thickness of external layers
k 5 thermal diffusivity
K 5 thermal conductivity
L 5 length of modeled area
m 5 wave number

N, n 5 integers
p 5 contact pressure

Pe 5 Peclet number
q 5 heat flux
t 5 time

T 5 temperature
u 5 displacement
V 5 sliding speed

x,y 5 spatial coordinates
a 5 thermal expansion coefficient
g 5 mesh Peclet number
D 5 increment, step, or clearance, dependent on contex
l 5 wavelength~in y-direction!
n 5 Poisson’s ratio
r 5 density
c 5 spatial frequency~in y-direction!
v 5 frequency
V 5 domain
¹ 5 Nabla operator

Indices

a 5 amplitude
m 5 mean
cr 5 critical
s 5 surface
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