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K. B. Lam A transient finite element simulation is developed for the two-dimensional thermoelastic

. contact problem of a stationary layer between two sliding layers, with frictional heat
E. Al Bahkali generation. The Petrov-Galerkin algorithm is used to discretize the sliding layers because
of the high Peclet numbers involved. The results in the linear, full contact regime were

J. R. Barber validated by comparison with the analytical predictions of Lee and Barber (1993). After
o o separation occurs, there is a non-monotonic transition to a steady state with the contact
University of Michigan, regions separated by the same wavelength. During the transition, the migration speed
Ann Arbor, MI 48109 exhibits values lower than those in either the linear regime or the final steady state. When

several wavelengths are unstable, the final steady state is generally that corresponding to
the longest unstable wavelength, even though other modes have more rapid growth rates
in the linear regime. [DOI: 10.1115/1.1353180

1 Introduction tact area remains in contact. Such steady states have been found

- L nalytically for some idealized cases where one material is a non-
Frictional heating in brakes and clutches causes thermoelasgb%ductoﬁ]’ but it remains an open question whether they exist

distortion of the contacting bodies and hence affects the contggt systems of two conductors and if so, whether the resulting
pressure distribution. The. resul_t!ng thgrmomephamcal Cou.p"%%ntact area migrates over the surface of both bodies or is station-
can cause thermoelastic instabilfyEl) if the sliding speed is ary with respect to one of them. Experimental observations of hot

sufficiently high, leading to non-uniform heatir{ghot spots”) : : . e
and low frequency vibration known as “hot juddef1]. zﬁ)c\):/s i;nitagégmzt';f al?lrake diskg] suggest that migration is very

Burton and his coworkerf2,3] showed that the stability of a In the present paper, we shall investigate these questions by

sliding system can be _detgrmlned by examining the Co.nd't'oﬂﬁ;ing numerical simulation. We discretize both the thermoelastic
under which a perturbation in the temperature and stress fields tact problem and the transient heat conduction problem using

grow exponentially in time. Thjs method was gsed by Lee afie finite element method. Early attempts at numerical simulation
Barber[4] to examine the stability of a layer sliding between W TE| in a disk brake were made by Kennedy and Liig).

half-plane.s—a'g(.aometry that can b.e rggarded asan idealiz.atiorb\%rkhin and Barbef9,10] developed solutions for the transient
a brake disk sliding between two friction pads. With realistic aupermoelastic Hertz problem, using Green's function and Fourier

tomotive friction material properties, they found that the modgansiorm techniques. ZagrodzKil] developed a transient ther-

with the lowest critical speed was always antisymmetric about th,e|astic simulation for axisymmetric deformation of a multi-

layer mid-plane, corresponding to hot spots alternating on the gy, ciutch. All of these papers were restricted to cases where
sides of the layer. Also, the wavelength of the first eigenmodenere was no migration of the thermoelastic disturbance in the
corresponding to the hot spot spacing—was approxmate!y $hding direction. In Kennedy’s and Zagrodzki’s analyses, the be-
times the layer thickness. Yi et af5] implemented BUrton's payior was assumed to be axisymmetric, making the sliding out-
method numerically for the limiting case where the friction padéf-plane, whereas in that of Azarkhin, one of the materials was
are non-conductors, in which case the perturbation is stationgfysymed to be a non-conductor. Simulation is more challenging
with respect to the disk. They examined more realistic descrigmen migration is present, since at least one of the materials then

tions of the disk brake geometry, but found that Lee’s idealizatigfyys through the frame of reference and the corresponding Peclet
gives a good approximation to the more exact behavior in magimpers are generally large.

cases.
When both materials are thermal conductors, the exponentiaﬂyModa
growing perturbation migrates with respect to both bodies. For
most braking systems, the conductivity of the disk is very much 2.1 Geometry. The sliding system is represented by the
greater than that of the pad, in which case the predicted migratinto-dimensional model shown in Fig. 1. Each component of the
speed over the disk is relatively slow, but it still has a significarlystem is elastic and thermally conducting. The two external
effect on the critical speed, since it reduces the magnitude of thecks 1 and 3 move in-the-plane with respect to the central layer
thermoelastic distortion associated with a given perturbation mat speed/. Blocks 1 and 3 represent the same material while the
heat input. central layer 2—a dissimilar material. Solutions of the ther-
If the system operates above the critical speed, an initial pertyitoelastic problem are assumed to be cyclically symmetric in the
bation will eventually grow sufficiently to cause separation to ogsliding directionx with wavelengthL =C/n, whereC represents
cur somewhere in the nominal contact area, at which point tlige circumference of the disk amdis an integer.
contact problem becomes non-linear, being governed by the uni-
lateral contact inequalities of non-negative contact pressure and-2 Heat Transfer. A common reference systefaxy for
non-negative gap. In most cases, we anticipate that the system Wiff Whole model is used. In general, each component of the model

tend to some steady state in which only part of the nominal cof@" move inx-direction with respect to this system. It is conve-
nient, however, to fix the system to a selected component. The
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y Additionally, on the boundaries=0 andx=L the following
conditions imposing cyclic symmetry are enforced
Vs 'y .
v Ti|x:O:Ti|x=L: i=1,2,3. (7)
H Qs 3 e
2.3 Method of Solving of Heat Transfer Problem. Equa-
y2 4 tion (1) has a dual, conductive-convective, nature. It implies seri-
) [Za 2 2 ous difficulties with numerical solution by either finite element or
v Contact finite difference methods. The standard Galerkin finite element
H Ql 1 — > Interfaces algorithm, which is of central-difference type, is suitable for dis-
0 cretizing the diffusive term in Eq1), but it does not provide an
x adequate discretization of the convective teviaT/dx. If this

L > term is significant, namely if the mesh Peclet numbger
=Vhc,p/K is greater than 2, whereis a characteristic element
length, the algorithm exhibits excessive numerical oscillations and
provides spurious solutiorj42]. Usually y> 100 for typical fric-
tion clutch/brake models. A scheme that is consistent with the
respect to each of them. If the materials are dissimilar, the speeafure of the convective term, is the one of backward-difference
of migration with respect to the material of higher thermal cortype. To handle convection dominated problems, a modified finite
ductivity is small comparing to the sliding speed. On the other element algorithm, called Petrov-Galerkin, has been developed
hand, the speed at which the perturbation moves with respec{1@,13,14. The algorithm uses an upwinding approach, which ba-
the reference system affects the time step in the numerical so$ically consists in replacing the central-difference scheme with a
tion of transient thermoelastic problem, and higher speed genBackward-difference scheme for both convective and diffusive
ally demands a shorter time step. Therefore, it is advantageoust®ims. This is obtained by using non-symmetric weighting func-
numerical efficiency that the reference system is fixed to the betti@ins in finite element formulation, while the shape functions are
conductor. In the model shown in Fig. 1, the layer 2 represerifde same as in conventional Galerkin formulation.
ferrous material, which is a good conductor, while the blocks 1 Simulation of a time-dependent convection dominated problem
and 3 represent friction material, which is usually a poor condutvolves an additional difficulty. Numerical dispersion occurs,
tor. Consequently the reference system is chosen to be fixed to gfieducing phase errors, varying with the wavelength. Yu and
layer 2. Heinrich[13,14] show that this effect can be controlled by using
Note that only components that are continuous in thepecially designed time-space finite elements with weighting
x-direction can be treated as moving. In a sliding system wiftinctions linear in space and quadratic in time.
contact surfaces that are not coextensive in the sliding direction,n this work we use a commercial finite element package
like an automotive disk brake, the geometry would dictate that tA&aqus/HKS[15], equipped with the Petrov-Galerkin algorithm
reference system be fixed to the pads regardless of relative cbased or{13,14. Before solving the actual problem, we broadly
ductivity of materials. tested the algorithm by solving a trial thermoelastic contact prob-
The heat transport in moving components 1 and 3, Fig. 1, igm for which analytical solution is known.
described by a conduction-convection equation of the form

Fig. 1 Schematic of sliding system

2.4 Elastic Contact. A standard static elastic contact for-

5 aT; aTi\ . ) mulation is used which imposes continuity of normal displace-
KiVeTi=cpipi WJFVW in Q;, =13, (1) mentsu, across the contact interfaces if the contact condition is
satisfied.

Here,c,, p, andK denote specific heat, density, and conductivity, If (u,); denotes displacement componenttimregion(Fig. 1),
respectively,V is sliding speed and the operafér=d/dx+d/dy. the boundary conditions on the edges 0 andy=y; have the
The properties of materials 1 and 3 are the same,d85Cp;, form
p3=p1, andKz=K;.

The heat conduction in the layer 2 is described by the equation (Uy)aly=0=0 and (uy)sy—y,=const. ®)
aT, with the total external forc€, in they direction being controlled.
K2V2T2=cp2p2W in Q5. (2) On the edgex=0 andx=L, cyclic symmetry conditions
Heat generation at the contact interfagesy; (i =1, 2) is defined (Uilx=0= (Ux)ilx=r and (Uy)il=o=(Uy)ilx=r ':1'2'3(9)
by
_ are imposed.
a=fVpi, &) The elastic contact problem is also solved by the finite element

wheref is friction coefficient, andp; is contact pressure at themethod using Abaqus code.

interface. The interfacial boundary conditionsyny; depend on

the status of mechanical contact. If the surfaces are in contact, i.e2.5 Sequential Numerical Simulation of Thermoelastic
if the clearanceAu, =0, they are given implicitly by the energy Contact Problem. In the simulation procedure the thermal
conservation condition problem (Section 2.2 and elastic contact probletgSection 2.4
are solved sequentially in time.

aT, iy .
Ki ay STy =G, =12 4) 2.5.1 Finite Element Mesh. A typical practical combination
Y=Y Y=Y of mating materials in a brake or a clutch is that with dissimilar
and the temperature continuity condition materials. In this case the perturbation in contact pressure/
] temperature moves at relatively high speed, clos¥,twith re-
Ti|y=yi:Ti+l|y:yi:01 i=12. (5) spect to the poor conductor. A particular point on the surface of

this material experiences temperature oscillations at a frequency

If Auy=0, the separated surfaces are treated as adiabatic approximately equal to2V/L, wherelL is the length of the wave.

aT; dTi1 ) The character of the temperature distribution in the poor conduc-
Ty =0, =12 (6) tor in they direction normal to the surface can be estimated by
Y=Y Y=Y solving a one-dimensional transient heat conduction problem in
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Fig. 2 Character of temperature distribution in a skin layer of 8
poor conductor 5
g

half-infinite domain with an oscillatory boundary condition. For

the boundary conditioff ()|, o= Tscoswt, whereTs is the am- y
plitude of surface temperature, the solution has the @i

T(t,y) =Tsexp( — gy)cod wt — by), (10) X

where y=JwlZK is both the spatial frequency and the spatial
damping factor, ani=K/c,p is thermal diffusivity. For the prac-
tical range of parameters and k, the parameter) takes high
values, implying that the temperature distribution in the poor con-
ductor in the direction normal to the surface is represented by vetitection h, and flow speed, this condition imposes an upper
short wavelength and is strongly damped. Hence, a noticealilait on the time stepAt. The algorithm without dispersion
temperature variation occurs only in a thin skin at the surfaceontrol is unconditionally stable. However our tests indicate that
Figure 2 shows the solutiofl0) for an example set of realistic the accuracy that it provides for Cu substantially greater than 1
parameters (=5 m/s, L=0.05 m, k=2x10"¢ m?s™Y), for is not satisfactory. On the other hand, for<€u both algorithms

which ¢=1.772510* m~! and the corresponding wavelength 9ave practically the same results for the range of wavelengths

Fig. 3 Detall of finite element mesh

=27/=0.35 mm. under consideration. Hence, we chose the time step that satisfies
The finite element mesh must be designed to be capable léjrilthn‘]’v'thom preferring any of the two versions of the

reproducing this strong variation of temperature in the skin lay in the component 2, Fig. 1, pure conduction occurs. Also, in
of friction material. At the same time the mesh, which is commog ! ot : '

for th | and elasti bl t ad tel t omponents 1 and 3 the heat is transported in diregtiby con-
or thérmal and €fastic problems, must adequately represen tion only. It is known that a short time step in finite element

mechanical behavior of the system. In particular, @ meaningilf, i ms for conduction problems can produce numerical oscil-
strain variation is expected also at locations distant from the coflt

tact interface, and, therefore, the modeled area cannot be ConﬁB?’tfé)gsv%i]wgheené?;wrﬁ?ier? tc:)Or:flit(r:]tev\filtrEethsetelf)pgtlacrtitri?t gx ttﬁés
to the Sk'.n only. In the good conductor, with respect to Wh'Ch.t e step discussed above. Therefore, it is crucial to use a discreti-
perturbatlpn migrates slowly, much smaller temperature gradleQ ion scheme that provides oscillation-free solutions even for
in the y-direction are expected. Consequently, much larger elgér

d . A ) . y short time step. This feature is exhibited by the first order
ment sizeh, is used in this area with a uniform mesh, as shown iBnite elements with lumped heat capacity mafiix]. Although
Fig. 3. ;

The mesh in sliding direction is uniform in each component. the upwinding modifies the structure of the heat capacity matrix,

. introducing out-of-diagonal elements, the lumped structure in the
The smallest wavelength captured by the discrete model of ¢ oss-wind direction is preserved, and our tests showed lack of

vective problem is B, [17]. However, the accuracy .Of Wave- , niiceable oscillation of solution with the mesh size and time step
lengths represented by small number of elements is poor an

therefore a finer mesh thc:m that_ resulting from this _condltlon The condition Cee1 enforces in practice a very short time
should be used. Note that in nonlinear range of operation of o o, For instancey=5 mis, h,=1-10-% m requires thatAt
system, with contact separation, the solution is no longer sinti=P: Pox q

- ) . . .
soidal in the sliding direction and it contains also higher Fourier 2 10~ s. Note that the elastic properties of the mating materi-

components. In this study we use a mesh in which the Wavelenitﬁ. l_JsuaIIy differ considerably. While the thermal_ expansion co-
L of the lowest mode is divided into 50 elements icients of the materials are of the same of magnitude, the modu-

We use quadrilateral bilinear elements. The skin layer of tHEs Of. elasticity of the friction mate_rial is typically o_rders of
poor conductor of thickness about O\ divided into several magnitude lower than that of the mating ferrous material. Conse-

elements iny-direction with very small sizé, , Fig. 3. The ele- quently, the solution of elastic contact problem is mostly governed
ments in this region have aspect ratig/h »3&’ o by the temperature field in the ferrous material. Since the pertur-
y>1.

bation migrates slowly with respect to this component, the evolu-
2.5.2 Time Step. The Petrov-Galerkin finite element algo-tion of the thermoelastic field there is relatively slow and the
rithm for solving convection dominated problems may includeharacteristic time of this process is much longer than the time
control of numerical dispersion. In this case the algorithm is costepAt required for thermal analysis in the whole system. Thus, it
ditionally stable with stability condition of the form Gul, where is reasonable to use in the elastic analysis a time Atgp-N
Courant number CaVAt/h, [13]. For given mesh size in flow -At, whereN is an integer. Practical values Nfwere determined
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by trial simulations for particular processes characterized by spe- 2.
cific growth rate and migration speed. Better than 1.5 percent
accuracy in these quantities was achieved with valud$ iof the
range 4 to 10, depending on the sliding speed.

In the thermal analysis, the heat flux at tilmenAt, wheret is
the time at which the solution is known ane-1,...N, is approxi-
mated byg! " "'= fVp! wherep! is the contact pressure at tirhe E
Then, after calculating®*N2t, the elastic contact problem at the & 1-
time t+NAt is solved.

3 Validation of Finite Element Model
t1 < tn

3.1 Growth Rate and Migration Speed of Perturbation.
In order to verify the simulation model against Lee and Barber’s 0.
analytical model[4], a transient solution corresponding to the 0 b'e L
single eigenmode is simulated. Basing on its behavior, the growth
rate is estimated. In fact, the simulated thermoelastic process kig. 4 Contact pressure distribution at a series of instants
cludes both the underlying process, corresponding to the constéing the stage with full contact
part of the contact pressure, and the overimposed perturbation.
Note that the underlying process is irrelevant to the stability as
long as the system is linear. The pressure on the contact interface

is expected to vary according to the equation 3.2 Comparison Against Lee and Barber Model. A se-
ries of simulations were run to validate the finite element model
P(X,t)= P+ Paoc0s 27(x+ct)/L]expbt), (11) against Lee and Barber([gl] analytical model of a layer sliding

. . between two half-planes. The Lee and Barber solutions for the
wherep,, is mean pressure, controlled by external force applied g?@d

itical sliding speed and migration speed of perturbation are re-
the system and the second term represents the pressure pert uced in Figs. 7 and 8, respectively, using friction coefficient
tion; pyo is its initial amplitude, and is the growth rate. The ¢_q 5 and the properties given in Table 1. These properties, ex-
mean pressure remains constant during the process. Denoting 486 for the Poisson’s ratios, are representative of steel and some
amplitude of the variable part of the pressure iyt), we can fiction materials used in clutch and brake applications. In the
write validation tests we neglected the mechanical effect of shear trac-
tions in order to reduce computation time, whereas these effects
IN[Pa(t)/Pml=In(Pao/pm) +bt. (12)  are included in Lee’s model. This approximation is exacw if
In the simulation, a particular mode of perturbation is triggered 0-2 for both material$18] and we therefore chose values iof
by perturbing the contact pressure in the initial step of therm&ioSe 0 0.5 in order to reduce the effect of this discrepancy be-
analysis. This initial condition reflects only the general pattern & /€€n the models. For other values nfshear effects may in-
the eigenmode of the interest and the actual mode forms gradu&fgase or decrease the critical speed depending on the material
during the initial stage of the simulation. After that initial phasgPfoperties, but the effect is generally quite modest when the con-
we observed that the pressure varies according to the formdiictivities of the sliding bodies are very differei].

(12), i.e., Ifpa(t)/py)] varies linearly in time. The wavenumber of the perturbatiomand the dimensionless
Figure 4 shows pressure distribution at a series of instants digvenumbei are defined
tained for the system parameters specified in Table 1 and wave- m=2x/L. A=ma, (14)

lengthL =0.025 m, sliding speed=23.6 m/s. Fig. 5 shows varia-
tion of In[p,(t)/pym] and the migration of the perturbation in slidingwherea is the half-thickness of the central layer. The dimension-
direction for two sliding speeds of 2.0 m/s and 3.6 m/s. The slopxess critical and migration speeds are defined by
of In[p,(t)/py] for the speed of 3.6 m/s is positive, thus the solu-
tion is unstable. Fo=2 m/s the solution is stable. Ve=Vealky, c*=calky, (15)
Figure 6 shows the part of the temperature distribution corre-
sponding to the perturbation only, extracted from the complef
solution. This temperature distribution corresponds to the stage
the process with steady-state growth, ruled by the(E®), hence
it represents the dominant eigenmode.
The growth rate is determined from the equation

spectively, where/., is the critical speedi.e., the speed at
ich the perturbation growth rate is zg¢ra is the migration
speed, andk, is the thermal diffusivity of the central layer.

In performing the validation, a set of discrete wavenumbers
from A=0.245 to 1.0 was selected, with a particular concentration
near the minimum of the curvéd = 0.245 represented the lowest
b=In[pa(t+At)/pa(t)]/At. (13) wavenumber at which higher-order perturbation modes remained

Table 1 Properties and geometry of blocks 1 and 3 and central layer 2

Conductivity X | Thermal Modulus of | Poisson’s Thermal Height H
(W/mK) Diffusivity k£ | Elasticity E Ratio v Expansion (m)
(x10°m/s?) | (x10°N/m?) Coefficient o
(x10°K™")

External 1.0 4.167 3.0 0.494 12.0 0.050
Blocks 1 & 3

Central Layer 42.0 11.91 210.0 0.494 12.0 0.010
2
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Fig. 7 Dimensionless critical speed determined by Lee and
Barber’'s analytical model and estimated by finite element

solution. To attain each discrete wave-

number, the length of the FE model was adjusted according to
Egs.(14) (L=2wal/A), and one wave of an initial pressure per-
turbation was imposed. The thickness of the external blocks was
kept constant aH =0.050 m. Simulations were then run at each
discreteA with sliding speed 5 percent above and below the Lee
critical V, for times sufficient for the perturbation growth rates to

As expected, it was observed that the growth rates were slightly
positive and negative, respectively, for the speeds 5 percent above

and belowV?, . Using linear interpolation, the speed at which the

Fig. 5 Change in amplitude and location of pressure perturba-
tion: p,—amplitude of pressure perturbation; p—mean pres-
sure; xo—location of maximum pressure along  x-axis
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FE model would be estimated to produce zero growth rate was
found for each discretd. These results are compared with Lee’s
curve in Fig. 7. It can be seen that the FE model generally slightly

e
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Fig. 8 Dimensionless migration speed determined by Lee and T[C] t=18s
Barber's analytical model and estimated by finite element
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model
— —] 2o

underestimates the critical speeds compared to Lee’s model. The 2
differences were for most of the simulated points less than 4 per- 80033, 2 BR%%

cent. However, for the lowest discrete wavenumhetr0.245, the

difference is about 7 percent. At this wavenumbe+0.13 m, so e
that the ratioH/L=0.38. Yi et al.[5] showed that ratios dfi/L e

<0.5 yielded reduced critical speeds relative to Lee’s model ——

(H/L— =), which explains the bigger discrepancy between Lee’s —

and our model at lowA. The FEM migration speed* at zero L

growth rate was also estimated at each dischetend is plotted y

6. B
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Fig. 9 Contact pressure distribution at a series of instants
during the stage with contact separation
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Fig. 10 Temperature contours at different instants

against the Lee solution in Fig. 8. Again, the agreement between
the two models is quite good—within 5 percent at each disdete
except atA=0.245, where it was 7 percent.

4  Transient Solution

4.1 Solution with Single Mode Unstable. The minimum
critical speed corresponds to wavenumBer 0.334 (the dimen-
sional wavelength it =0.09325 m), see Fig. 7. We simulated the
thermoelastic process for this wavelength for a series of sliding
speeds: 1.2%.,, 1.5V, and 2.0V, .

Figure 9 shows the contact pressure distribution at a series of
instants for speed/=1.5V., . Separation of contact starts &t
=4.7 s and is followed by rapid contraction of the contact area
and a corresponding increase in maximum contact pressure. Fig-
ure 10 shows the temperature fields at6 s, shortly after sepa-
ration begins, and dt=18 s. The corresponding temperature pro-
files along the upper contact interface are shown in Fig. 11. The
pattern of temperature distribution changes considerably during
the separation regime. A6 s, the mode retains approximately
the antisymmetric character of the full contact solution, whereas
thet=18 s, a second local maximum of temperature is developed
on the layer surface. This maximum is opposite to the hot spot on
the other sliding surface and results from heat penetration across
the layer.

Figures 12 and 13 show the evolution of the maximum contact
pressurep.x, contact lengthL, and migration speedg during
the transient process faf=1.5 V., . Figure 12 shows the early
part of the proces$0<t<16 9. During the initial full contact
phase, the perturbation in contact pressyg.(— pm) grows ex-
ponentially and the migration speed is constant, as predicted by
Lee’s theory. After separation begins, the migration speed de-
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Fig. 11 Temperature distribution along contact surfaces at dif-
ferent instants

creases significantly, as does the rate of increase of the maximumg, /e
contact pressure. However, the maximum contact pressure contin-

ues to grow and it reaches a very high value. The process appears

to be tending monotonically towards a steady state, but this is
illusory, as seen from Fig. 13, which extends the results out to

=450 s. In fact, the transient process overshoots the steady state
and there is a gradual return to a larger contact area and lower
maximum contact pressure. The form of the contact pressure dis-
tribution evolves during this process. Figure 14 shows the contact 0. 4. 8. 12. 16.
pressure at two instants- 6.3 s and =420 s before and after the t s}

extremum point respectively, chosen so as to have approximately

the same value g4 In this plot, one of the curves was movedFig. 12 Maximum contact pressure, contact length and migra-
in the x-direction in order to make the comparison easier. Notidéon speed: Py, pp—maximum and mean contact pressure,
that the curves have different shapes. The pressure distributiofegPectively; L —contact length; L—length of the interface;
t=420 s, close to the final steady state, is significantly asymmé&—migration speed; ~c—migration speed in the full contact
ric. This evolution of the form of the contact pressure distributioR"25¢-

is associated with a striking change in the migration spegd

which falls dramatically during the initial separation phase but

then returns to a value not far below that in the full contact phage?SeS ess regular patterns are obtained. These can result from a
gquentlal occurrence of hot spots in a series of applicaffjs

Large numbers of time steps are required for these long ti g . ’
g P q 9 I-ﬂpm geometric imperfections of the surfaces or from the simul-

simulations, but extrapolation at large time using exponenti I ; | diff des. In th
functions suggests that the final migration speed will be 89 pdfiN€ous excitation of several different modes. In the present sec-
on we shall explore the development of hot spots when more

cent of that in the full contact regime, in contrast to a minimum .
an one mode is unstable.

14.5 percent at about=20 s. The corresponding extrapolatec} o -

values for the maximum contact pressure and the contact Ien%tH:.Or a periodic system of finite length the wavelength must be

P/ Pry=3.4 andL . /L =0.44. n integer submultiple df, and, hen(_:e, the_ Wavenumk_)er can take
maxtEm ¢ only the valuesn=2n=/L, wheren is an integer. This is illus-
4.2 Solution with Multiple Unstable Modes. The most trated in Fig. 15, which also reproduces Lee’s solution for the

common sign of thermoelastic instability in clutches and brakesdsitical speed as a function of dimensionless wavenunthar

the occurrence of focal discolorations on the surface of the steelTdre lengthL was selected so that the critical speed of the mode of

cast iron disks after operatidi9,20. These often have a fairly wavelengthL is higher than that with wavelength/2. Simula-

regular pattern, reflecting a single eigenmd@8], but in other tions were performed at the three speeds lab®lgdV,, Vg, in

Journal of Tribology OCTOBER 2001, Vol. 123 / 705



450.

L/L

450.

150. 450.

t[s]

300.

Fig. 13 Maximum contact pressure, contact length and migra-
tion speed: pPnax . Pm—maximum and mean contact pressure,
respectively; L.—contact length; L—length of the interface;
cs—migration speed; c—migration speed in the full contact
phase

Fig. 15. Speed/, is slightly above the critical speed for the first>1.0

mode of wavelengthL, but significantly above it for the second
mode of wavelength./2. In addition, the amplitude of the initial

perturbation for the second mode was chosen to be ten times t
for the first mode. The resulting evolution of the pressure distr
bution is shown in Fig. 16. As expected, the second mode don
nates during the linear full contact phase which terminates afi
1.6 s. Separation now occurs, but the two pressure peaks tt
gradually become unequal and eventually there is a transition tc
state with a single contact region—in other words a first moc
solution with separation. Notice that the final state preserves t

usual quasi-antisymmetric property in that the hot spots are alt
nately located on the two opposing surfaces.

Similar results were obtained at spe¥d which exceeds the
critical speed for modes with wavelengthsL/2, andL/3. The

706 / Vol. 123, OCTOBER 2001

0.
0.15 L 0.85L
Fig. 14 Contact pressure distribution in the transient stage
with contact separation and in the quasi-steady state

initial perturbation was dominated by the short wavelength pertur-
bations, but once separation occurs, there is a gradual transition to
a final steady state with a single contact region.

Simulations were also performed at speédwhich is above
the critical speed for the second mdaeavelength_/2) but below
it for the first mode. As expected, only second mode disturbances
were observed throughout the transient process, culminating in a
steady state with two contact regions.

5 Conclusions

The two-dimensional transient simulation presented in this pa-
per confirms the analytical predictions of Lee and Baflgrand
extends our knowledge of the TEI process into the nonlinear re-
gime, where separation regions occur at the sliding interface.
When only a single wavelength of perturbation is unstable, there
is a transition to a steady state with the contact regions separated
by the same wavelength, but the transient process is not mono-
tonic. The migration speed in particular falls to significantly lower
values than those obtained in the linear regime and then recovers
to a steady state value. When several wavelengths are unstable,
our results show that the final steady state is generally that corre-

700

600

500

m/s)

Valk,

400

300

0.5+ 200
0.0 0.22 0.44 0.66 0.88
ma
i f |
L L2 L3
Wavelength
er-

Fig. 15 Dimensionless critical speed determined by Lee and
Barber's analytical model:  V,, V,, and V,;—sliding speeds used
in simulations
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4. rt=16s

— Surace y=y1]
p/p, ---- Surface y=y2

4. = 32s

4. t=256s

X

4.
P/p,

" =272s T

=288s i

=352s P

=1120s T

X L

Fig. 16 Contact pressure distribution at a series of instants from simulation with two unstable modes

sponding to the longest unstable wavelength, even though other c

modes have more rapid growth rates in the linear regime.

Nomenclature

a
A
b

half-thickness of central layer
dimensionless wavenumber
growth rate

Journal of Tribology

Cp
C
Cu
E

f

h

= migration speed

= specific heat

= circumference of the disk
= Courant number

= modulus of elasticity

= friction coefficient

= element length

OCTOBER 2001, Vol. 123 / 707
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Indices

a=
m =
cr =
s =

thickness of external layers
thermal diffusivity

thermal conductivity

length of modeled area
wave number

integers

contact pressure

Peclet number

heat flux

time

temperature

displacement

sliding speed

spatial coordinates

thermal expansion coefficient
mesh Peclet number

increment, step, or clearance, dependent on context

wavelength(in y-direction
Poisson’s ratio

density

spatial frequencyin y-direction
frequency

domain

Nabla operator

amplitude
mean
critical
surface
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