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Nonparametric Density and Regression 
Estimation 

John DiNardo and Justin L. Tobias 

ven a cursory look at the empirical literature in most fields of economics 
reveals that a majority of applications use simple parametric approaches 
such as ordinary least squares regression or two-stage least squares accom- 

panied by simple descriptive statistics. The use of such methods has persisted 
despite the development of more general nonparametric techniques in the recent 
(and perhaps not-so-recent) statistics and econometrics literatures. 

At least two possible explanations for this come to mind. First, given the 
challenges-or lack of-provided by economic theories with empirical content, the 
parametric toolkit is more than sufficient. Where serious first-order problems in 
nonexperimental inference exist, they are in the inadequacy of the research design 
and data, not in the limitations of the parametric approach. Second, the predom- 
inant use of parametric approaches may reflect the lack of sufficient computational 
power or the difficulty of computation with off-the-shelf statistical software. Given 
the recent advances in computing power and software (as well as the development 
of the necessary theoretical foundation), only the first point remains an open 
question. The purpose of this article is to make the case that nonparametric 
techniques need not be limited to use by econometricians. 

Our discussion is divided into two parts. In the first part, we focus on "density 
estimationn-estimation of the entire distribution of a variable or set of variables. 
In the second part, we discuss nonparametric regression, which concerns estima- 
tion of regression functions without the straightjacket of a specific functional form. 

m John DiNardo is Professor of Economics and Public Policy, University of Michigan, Ann 
Arbor, Michigan. While writing this paper, he was on leave at the University of Calijornia, 
Berkeley, California. Justin Tobias is Assistant Professor of Economics, University of Califor- 
nia at Iruine, Iruine, Calijornia. Their e-mail addresses are (jdinardo@umich.edu) and 
(jtobias@uci.edu), respectively. 
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Why Nonparametrics?An Application 

Consider the observation that that wage "inequality" among women grew from 
1979 to 1989. One frequently employed metric of this inequality is the standard 
deviation of log wages, which increased 25 percent from 0.41 in 1979 to 0.50 in 
1989.l 

One way to get a handle on the economic importance of this change is to 
consider what such a change means when the logarithm of wages is distributed 
normally. We draw the functions under this assumption in the top half of Figure 1. 
In principle, the two probability density functions describe everything we need to know 
about the wages of women in 1979 and 1989. For example, the area under the curve 
between two different levels of the wage gives you the probability that a randomly 
chosen woman will have a wage between the two values. Under the assumption that 
log wages are distributed normally, the mean and standard deviation-the two 
parameters of the normal distribution-are all we need to describe everything about 
the log wage distributions. 

Parametric restrictions are powerful and important. With just two numbers, we 
can, in principle, answer any question about the probability density function of log 
wages (or wages) ifour assumption of normality is correct. However, if the distribution 
isn't normal (or from a certain class of distributions), then two parameters aren't 
enough. Indeed, when the key of assumption of the parametric model (in this case, 
normality) is wrong, our answers can be seriously misleading. Consider this case: 
given the visual display in the top half of Figure 1, we might speculate on the causes 
of this increased inequality: international trade? organizational change? computers 
and skill-biased technical change? Judging from the variances of the parametric 
densities, it would be hard to say. 

One of the likely culprits, however, does manifest itself when we consider a 
nonparametric estimate of the density-that is, we no longer assume a specific 
function like the normal distribution and instead let the data completely tell us 
what the distribution looks like. This nonparametric estimate tells a specific story. 
To make the point clearly, we have superimposed a line that is at the value of the 
legal minimum wage in real terms in 1979 and 1989. As the large "spike" makes 
evident, in 1979, the modal wage (the most common hourly wage) is the minimum 
wage! By 1989, however, the minimum wage had fallen so dramatically in real terms 
that it was no longer binding for most women. Evidently, the approximate trunca- 
tion induced by the binding minimum wage in 1979 helps to explain the growing 
"inequality" among women from 1979 to 1989. 

This example highlights a possible problem with parametric techniques-when 

'The source for these numbers is the Monthly Outgoing Rotation Group Files of the Current Popula- 
tion Survey. The curious reader might wonder why we are referring to the natural logarithm of wages. 
One frequently cited reason is that log of wages is "roughly normally distributed." Indeed the log of 
wages is "more normal" than the level of wages, but as we will shortly see, not "normal enough"! 
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Figure 1 
The Minimum Wage and Wage Inequality 
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the assumptions of the parametric approach are violated, the answers can be quite 
misleading. 

Nonparametric Density Estimation 

Most readers are already familiar with a nonparametric density estimator of 
sorts-the venerable histogram, a bar chart that shows the proportion of observa- 
tions at different values. Indeed, for many applications, it is more than adequate. 
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A nice historical illustration of the histogram in practice can be found in the 
work of Louise-Adolphe Bertillon, as discussed in Stigler (1986). In 1863, Bertillon 
published an analysis of the heights of 9,002 French conscripts from an area called 
Doubs. Bertillon created a histogram of the data, and Figure 2 is generated from his 
analysis. To generate the histogram, Bertillon first took his original data (which had 
been recorded to the nearest centimeter) and converted them to inches. After 
creating one cell for all observations with heights less than 4'10", Bertillon grouped 
the data into 1-inch bins: those with heights from 4'10" to 4'11", from 4'11" to 5' 
and so on, up to a bin that contained the relative frequency of conscripts with 
heights ranging from 5'1 0" to 5'1 1". 

What captured Bertillon's fancy in gazing at this data was the appearance of two 
humps, or "modes," in his histogram, instead of the single-humped "normal" proba- 
bility density functions that seemed to characterize so much other data. The two humps 
reappeared even when he took subsets of the data-those conscripted between 1851 
and 1855 or just those men conscripted between 1856 and 1860, for example. Given 
such a robust finding, it is no surprise that social science was quick to come up with a 
"theory." The inhabitants of Doubs came from two different "races"-the Celts and 
Burgundians. The Celtic race tended to be tall, healthy and "true to their word," 
whereas the feckless Burgundian race was composed of shorter persons neither "so 
robust, nor temperate, nor obliging." The bimodality arose, it was alleged, because 
there were really two underlying distributions with different means, not one. 

Twenty-six years (!) later, Livi (1896) noted that, among other things, even if 
the underlying data had one hump, Bertillon's method of constructing the histo- 
gram would have produced two humps anyway. Livi noted that the "dip" that 
appears in Bertillon's histogram at the bin containing the relative frequency of 
conscripts with heights between 5'1" and 5'2" contains only two centimeter classes, 
while the bins to the left and right, from 5'0" to 5'1" and from 5'2" to 5'3", 
contained three such centimeter classes. 

Bertillon's method for estimating the distribution of conscript's heights can be 
regarded as a simpler form of a popular modern estimator of the probability 
density function: the kernel density estimator. The key distinction between the 
kernel and histogram estimators is that a histogram separates the data into distinct 
nonoverlapping "bins." In a histogram, the height of each bar-the proportion of 
observations falling in a bin-can be viewed as an estimate of the probability 
density function at the horizontal midpoint of the bin. For instance, the height of 
the bin that contains observations between 58 inches and 59 inches can be viewed 
as an estimate of the probability density function at 58.5 inches by observing that it 

1 1is also the proportion of observations xisuch that (58.5 - 2 < xi5 58.5 + 2 ) .  
Using more helpful notation, Bertillon's estimator of the probability density 

function at x, can be written in the following way: 
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Figure 2 
Doubts About the Doubs: Bertillon's Histogram of the Heights of 9,002 Conscripts 
from Doubs 

Height in Inches 

where the function I(.) is equal to one if the statement is true and zero otherwise, 
and x, represents the bin midpoint. Once it is written this way, the problem with 
the histogram becomes clearer. The shape of the histogram can potentially be influenced 
by where you place the bin centers. Moreover, with a histogram, choosing the width of 
the bins and the location of the first bin also determines the choice of bin centers. 
In Bertillon's case, he "chose" to estimate his probability density function at the 
points 58.5 inches, 59.5 inches, 60.5 inches, . . . Suppose he had estimated his 
probability density function at 58 inches, 59 inches, 60 inches, . . . instead? Would 
it matter? Figure 3 (with simulated data generated to approximate Bertillon's 
original data) illustrates the potential problem. Note that consistent with our 
viewing the histogram as an estimate of the probability density function for the 
center of the bins, we have dropped the usual bars and have labeled the axis 
suitably. As in Bertillon's case, the choice of bin centers clearly matters: with our 
simulated data, a possibly more precise conversion from centimeters to inches, and 
bin centers at the inch, the middle hump disappears. 

The modern kernel density estimator differs from Bertillon's histogram esti- 
mator as described in the previous equation in two key ways. First, in a typical kernel 
density estimator, the bins are allowed to "overlap." This severs the link between bin 
size and bin centers that characterizes the histogram and is one reason to prefer the 
more sophisticated kernel density estimator. 

Second, kernel density estimators typically place diminishing weight on 
data points as they move farther away from our point xo,while the histogram 
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Figure 3 
The Sensitivity of the Histogram to Alternate Bin Centers 
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assigns equal weight to all points falling in the bin. On this latter point, note 
that the indicator function in the earlier equation simply serves to count the 
number of data points lying in the bin, while potentially one could assign 
differing weights to points falling in the bin depending on their "closeness" to 
%. Before formally describing the relationship between these two estimators, we 
first define two terms that are key ingredients in a kernel density estimator: the 
bandwidth and the kernel. 

What is a bandwidth? In a histogram, the bandwidth is the width of the bin 
divided by two. The bandwidth tells you how far to look to the left and to the right 
of x, when computing the probability density function at x,. A bandwidth of i inch, 
for example, would typically say that to estimate the probability density function at 
xo, you would consider all points that are within inch of x,. Bertillon's 1-inch bins 
imply a i inch bandwidth. More generally, one can think of a bandwidth as simply 
a parameter used to determine the size of the "neighborhood" around xo-large 
bandwidths define large neighborhoods, and small bandwidths define small ones. 
In the histogram, points falling outside the neighborhood receive zero weight, 
while those falling in the neighborhood receive constant weight. 

What is a kernel? It is merely a smoothing or weight-assigning function. 
Bertillon's kernel (the kernel used in any histogram) is today called a rectan- 
gular kernel-so-called because it treats all points in a bin the same. In modern 
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notation, we would write the general kernel probability density estimator func- 
tion as follows: 

where the function K(.) is called the kernel, and the symbol h denotes the 
bandwidth. Bertillon's histogram estimator at x, can be seen as a particular (rect- 
angular) kernel density estimator where 

- i f lx l<l  
K(x)= i * 0 otherwise. 

A little manipulation shows that this is virtually identical to our previous expression 
for Bertillon's estimator when h (the bandwidth or bin size) is i .  

In fact, this particular choice of K has been termed "the na'ive estimator" 
(Silverman, 1986, p. 12), and we can improve on it a bit. The first thing to notice 
is that the rectangular kernel merely assigns the same weight- 21-to all points in 
a bin no matter how far they are away from the center of the bin. A more intuitive 
approach, however, is generally to let the weight decline the further the observation 
is from x,. Indeed, the most commonly used kernel functions have this property. 

Some of these common kernel functions (where we have included the rect- 
angular kernel used in the histogram for reference) are displayed in Table 1. A 
typical kernel density estimator proceeds by using the formula for the general 
kernel density where the function K(.) is replaced by one of the functions in this 
table. To illustrate how this works, consider using the normal kernel with a 
bandwidth of i inch instead of the rectangular kernel that Bertillon used. Instead 
of the Bertillon estimator, then, we would have 

1 " l  

pdJ(xo) = --- C --- exp 


N($ +I  F 


If we were estimating the probability density function of conscripts at 57 inches in 
height, this function-quite sensibly-assigns the most weight to individuals whose 
height is exactly 57 inches. To see this, note that the value of this kernel is 
maximized when xi= x,. Because the "support" of this kernel is the entire real line, 
we use all the data to estimate the probability density function at xo = 57. Note, 
however, that as a practical matter, the weight we assign far away observations with 
a normal kernel is quite small, With a bandwidth of i, an observation exactly at 
57 inches would get a weight almost 3,000 times as great as an observation at 
55 inches. Different kernels merely change the relative weights. Using the same 



18 Journal of Economic Perspectives 

Table 1 
The Rectangular Kernel and Some Popular 
Alternatives 

Kernel K ( x )  Suppod 

Rectangular 1 1x1 5 1 
2 

3 1 
Epanechnikov -gX2 )  1x1 5 v-5 

15Biweight 16(1 - x2)2 1x1 5 1 

Triangular 1 - 1x1 1x1 5 1 

Normal or "Gaussian" 1e- 5s - m < x < m
fi 

bandwidth, and estimating the probability density function at 57 inches, an obser- 
vation at slightly less than 55 inches-that is, more than two inches away from the 
bin center-would get zero weight with a biweight or triangular kernel, but get a 
small weight with the Epanechnikov kernel in Table 1. 

Also note that the particular kernel employed imposes nothing on the shape 
of the probability density function we estimate. For example, using a normal kernel 
doesn't restrict the resulting probability density function estimate to looking nor- 
mal. One property of all these kernels is that the resulting density estimates will 
typically have a less "jagged" appearance than a histogram. Moreover, since kernel 
density estimates are often "inputs" to other econometric procedures that require 
computing derivatives, nonrectangular kernels are clearly useful. 

As the above suggests, the choice of kernel appears to be relatively unimpor- 
tant in practice; that is, choosing any of the kernel functions listed in Table 1will 
typically produce a similar-looking estimate of the probability density function. 

More important is the choice of bandwidth. Choice of bandwidth essentially 
involves a tradeoff between bias (misreporting the shape) and variance (lack of 
precision) of the estimates. Intuitively, the larger the bandwidth, the "smoother" 
the resulting estimates (lower variance), but we may have oversmoothed the true 
density and thus obtained a biased estimate of that density. Note that this is a 
problem for histograms as well; for example, if Bertillon had chosen very wide 
5-inch bins, he would also have somewhat mischaracterized the data, though he 
probably wouldn't have mischaracterized the Burgundians! 

Despite a huge literature, however, bandwidth choice remains largely an art. In 
practice, if a visual display of the data is all that is needed, the eyeball method-start 
with a rule-of-thumb value and then assess the sensitivity of the resulting estimate 
to somewhat smaller or somewhat larger bandwidths until the data do not appear 
either oversmoothed or undersmoothed-produces a perfectly adequate band- 
width. One can, of course, choose the bandwidth "optimally" using some criterion 
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for evaluating the tradeoff between bias and variance. Silverman (1986) has sug- 
gested a frequently used rule-of-thumb bandwidth-h, = 0.9(min{B, 1QR/ 
1.341) N - ' I 5 ,where IQR is the interquartile range (the difference between the 
75th and 25th percentile) and 6 is the sample standard deviation of x-which is 
often a good starting point whether or not the underlying data are normally 
distributed. Like all desirable bandwidth selection procedures, this bandwidth gets 
smaller as N-the number of observations-increases, but does not go to zero "too 
fast." 

The kernel density estimator generalizes easily to two (or more) dimensions. 
One of the earliest uses of bivariate kernel density estimation was Sir Francis 
Galton, a contemporary of Bertillon. Interestingly, both were interested in provid- 
ing methods for the police to help identify criminals; Galton's fingerprint classifi- 
cation system eventually came to dominate the once-popular system devised by 
Bertillon, which comprised a large set of bodily measurements. Galton's (1886) 
focus was the relationship between the height of adult children and their "midpar- 
ent" (the average of the mother's height times 1.08 and the father's height), and 
he collected data on 928 offspring of 205 parents. Galton observed that if a parent 
grew to be taller than average, the adult offspring's height would tend to be closer 
to the mean, and hence smaller than the parent. The same was true in reverse. 
Galton coined the word "regression" to explain this phenomenon. The term 
"regression" then evolved to describe the ordinary least squares technique that was 
frequently used to analyze this relationship. An abridged version of Galton's tabular 
display of the data appears as Table 2.' This data could readily be displayed as a 
three-dimensional histograph, a sort of checkerboard pattern, with squares rising 
up from each midparent height-child height combination to represent how many 
times that outcome occurred. 

After explaining how he produced the cross-tabulation of the heights of 
midparents and their offspring, Galton (1886) goes on to say 

I found it hard at first to catch the full significance of the entries in the table, 
which had curious relations that were very interesting to investigate. They 
came out distinctly when I smoothed the entries in the table, by writing at each 
intersection of a horizontal column with a vertical one, the sum of the entries 
in the four adjacent squares and using these to work upon. I then noticed that 
lines drawn through entries of the same value formed a series of concentric 
and similar ellipses. 

To illustrate Galton's calculation, consider the point (67 inches, 63.7 inches) 

'The data in this table are from Galton (1886),"Regression Towards Mediocrity in Hereditary Stature." 
In what follows, however, we use Galton's actual data, which (although they yield similar results) are 
difficult to reconcile with the table in the article. Our thanks to the University of College London Rare 
Manuscripts Collection for their permission to use the data. Thanks to Jo Blanden, London School of 
Economics, for her help in tracking down the data, as well as to Steve Machin for his assistance in making 
this possible. 
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Table 2 
Galton's 1886 Data 

Height of Midparent (inches) 
Height of Adult 
Children(inches) Below 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 Above 

Below 
62.2 
63.2 
64.2 
65.2 
66.2 
67.2 
68.2 
69.2 
70.2 
71.2 
72.2 
73.2 
Above 

(a 67-inch midparent and a 63.7-inch child), which corresponds to the vertices in 
Table 2 between midparent heights 66.5 inches and 67.5 inches and child heights 
63.2 inches and 64.2 inches. The average of these points is (3 + 5 + 5 + 14) and 
becomes the smoothed value for (67 inches, 63.7 inches). With the minor addi- 
tional step of converting his estimates from the number of persons at given heights 
to the percentage of persons at given heights, Galton's smoother-like the histo- 
gram-can be shown to be a simple kernel density estimator using a rectangular 
kernel! Today, Galton's ellipses are called "contour" plots and are often a useful 
way to display an inherently three-dimensional figure. Figure 4 displays the contour 
plots generated by Galton's estimator. 

The illustration of the bivariate case is also instructive for illuminating the 
"curse of dimensionality." Going from one dimension to two greatly exacerbates the 
difficulties of computation and presentation. Had Galton tried a much smaller 
bandwidth, many of the resulting cells would have been empty-only by having 
information on many more individuals would a smaller bandwidth be appropriate.3 
For this reason and others, it is often more useful to step away from considering the 
entire distribution of all variables and instead to consider the simpler relationship 
between an explanatory variable (or variables) and the expected value of y (the 
dependent variable). This is the case of regression analysis, to which we now turn. 

For a particularly nice and accessible explication and application of kernel density estimation to real 
economic problems, including the bivariate case, see Deaton (1997). A nice, earlier discussion at a 
slightly more technical level can be found in Deaton (1995). 
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Figure 4 
Galton's Original Smoother-Contour Plots: Contours after Galton Smoother 

Height of Midparents in Inches 

Nonparametric Regression 

A standard ordinary least squares regression imposes an assumption of linear- 
ity. This framework can be adapted, with the use of logarithms and quadratics, for 
example, to allow for some curvature, but in all of these cases, the researcher brings 
a particular underlying functional form to the data. In nonparametric regression, 
the data is given flexibility to characterize its own shape. This section is devoted to 
describing a procedure for estimating regression functions nonpararnetrically, 
providing applications of the procedure, and illustrating how this flexible approach 
can provide remarkably accurate estimates even when the underlying regression 
function is quite nonlinear. 

Local Linear Regression 
There is a huge literature on flexible methods for estimating regression 

functions. Here, we focus on local linear regression (for example, Fan, 1992; Fan and 
Gijbels, 1996).4 Our goal is to describe a method for estimating the function m in 
the regression equation 

A well-known cousin of local linear regression is local constant regression, as discussed, for example, in 
Nadaraya (1964) and Watson (1964). Local linear regression estimates offer several improvements over 
local constant regression, including improved performance at the boundaries and a reduction in bias. 
In general, there is a preference for o&rderpolynomial fits: see Ruppert and Wand (1994) and Fan 
and Gijbels (1996) for further discussion. 
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where xi, our independent variable, is assumed to be a scalar for simplicity. Clearly, 
this generalizes the standard linear regression model, where it is assumed that 
m( xi) = xiP. 

As with most nonparametric regression methods, this approach provides a 
method for obtaining pointwise estimates. That is, the researcher chooses an arbi- 
trary point, say x,, and then uses the local linear regression method to obtain an 
estimate of the regression function at that point. This procedure is then repeated 
for a variety of different choices of the arbitrary point x,, and, in this way, an 
estimate of the entire function can be obtained. 

The local linear regression approach proceeds by running several "local" 
regressions. Start by picking an arbitrary point x, and a bandwidth that controls the 
distance (or neighborhood size) around the point x,. Then carry out a weighted 
least squares regression, where the data points farther away from the arbitrary 
starting point x, receive less weight than data points closer to x,. As with density 
estimation, the weighting of the points is done through a kernel function, and, as 
a consequence, this procedure is often called kernel regression.5 

Just as in the nonparametric density case, the choice of which kernel to use for 
a given bandwidth-which amounts to the choice of how to diminish the weight of 
more distant points-has a relatively small effect on the outcome of a nonpara- 
metric regression. However, the choice of bandwidth has a larger effect on results. 
Moreover, it remains true that bandwidths that are too large produce "over-
smoothed" estimates, while bandwidths that are too small generally produce esti- 
mates that appear excessively bumpy or that are undersmoothed. 

To provide an application of nonparametric regression, consider how two 
independent variables, cognitive ability and education, affect our dependent vari- 
able, log hourly wages. We obtain our wage, ability and education data from the 
National Longitudinal Survey of Youth (NLSY) . Our measure of cognitive ability is 
a test score constructed from the Armed Services Vocational Aptitude Battery 
(ASVAB) tests given to the NLSY participants. This ability measure is standardized 
to have mean zero and unit variance. The education variable used is the highest 
grade completed by the respondent in 1990, and our dependent variable repre- 
sents the log of 1990 hourly wages. 

Since the education variable is discrete, we proceed by estimating separate 
nonparametric regressions for five education groups: from nine to twelve years of 
education; completed twelve years; completed more than twelve years but less than 
16 years; completed 16 years; and completed more than 16 years. For the ability 
variable, we create a grid of 20 evenly spaced points denoting those individuals lying 
0.3 standard deviations above the mean of the ability distribution to those lying 

"ormally, the local linear regression estimator of m(xo)  is given as the a:, which minimizes the 
weighted least squares problem: mzn,o,,, Cr='=l[ ( y, - a. - al( x, - x0)) ' K ( ( x, - x0) / h,) 1, with K 
denoting the kernel and h,, the bandwidth. 
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1.5 standard deviations above the mean. Five nonparametric regressions are then 
carried out that describe the relationship between ability and (the log ofl hourly 
wages within each of the five education groups. These five estimates are then pieced 
together to plot the conditional expectation of log wages over the ability-education 
space. 

Results of this analysis are provided in Figure 5 .  The first figure is obtained 
using local linear regression and an optimally chosen smoothing parameter within 
each education To illustrate sensitivity to bandwidth choice, the right-hand 
panel of Figure 5 chooses a small bandwidth so that the surface is quite bumpy 
(undersmoothed) relative to the left-hand panel. 

The left-hand panel of Figure 5 reveals some interesting results. First, wages are 
generally increasing across the education cells at all points in the ability distribu- 
tion. The noticeable exception is that those in the highest education group (more 
than 16 years of education) have lower earnings than those in the second-highest 
education group (exactly 16 years of education) at the left tail of the ability 
distribution. This result may be attributable to the fact that the regression function 
is very poorly estimated at the left-tail of the ability distribution for the highest 
education group, since we observe very few highly educated individuals with low 
values of the ability index. 

Second, for the highest education groups, the log wage surface is generally 
increasing in measured ability. Note, however, that for the lowest two education 
groups, the ability-log wage relationship actually decreases as we move into the right 
tail of the ability distribution. For the highest two education groups, the relation- 
ship of ability to log wages is increasing over the full range of ability, and the slope 
tends to be greatest at the right tail of the ability distribution. This suggests 
increasing returns to ability for those who are highly educated, while this relation- 
ship does not appear to exist for those with less education. Further, this analysis 
suggests some evidence that returns to schooling are concentrated among the more 
able, since the gain in log wages from moving to the next education group is 
generally highest at the right tail of the ability distribution.' 

Extension to the Partially Linear Model 
While nonparametric regression is flexible in recovering the true shape of the 

regression curve, it has certain limitations. The most obvious limitation is that it is 

An initial optimal bandwidth was obtained using the pilot bandwidth selector of Fan and Gijbels (1996, 
section 4.2). The results in the figure are slightly oversmoothed relative to the bandwidth obtained from 
this procedure. 
'A similar result is reported in Blackburn and Neumark (1993) using a fully parametric approach. Such 
a result should, however, be interpreted with caution. Heckman and Vytlacil (2001) find that returns to 
schooling have risen over time for those in the highest ability quartile, and they point out that sorting 
by ability into higher education creates problems for identifymg the return to schooling over the full 
range of ability. Tobias (2000) uses partially linear regression techniques to examine these issues and 
obtains pointwise standard errors the estimates of the regression f~~nct ion.  associated with As in 
Heckman and Vytlacil (2001), his results suggest that we are not able to estimate returns to schooling 
accurately for the most or least able without extrapolating based on particular functional forms. 
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Figure 5 
Nonparametric Estimates of the Effect of Ability (A) and Education (Ed) on Log 
Wages: Two Different Bandwidths 

difficult to include many variables. One problem is computational: each additional 
variable increases the number of calculations that need to be done in a geometric 
way, which can become unmanageable. An even more fundamental problem is the 
curse of dimasionality-the rate at which the nonparametric estimator "collapses" 
around the true value of the regression function depends in a dramatic way on the 
number of independent variables included in the problem. 

To combat these problems, a potentially useful approach in many situations is 
to remain nonparametric about a certain key variable of interest, but take a 
parametric stance about the other variables. Specifically, we might specify a model 
of the form 

where z contains all of the other variables we would like to control for. This model 
is called the partially linear or semilinear regression model. Estimators of this model 
are often called semiparametric, since they provide both parametric estimates (of 
p)  and nonparametric estimates (of m)  . 
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A procedure for estimating this model can be given as follows: 
1) Sort the data by ascending values of the x variable (the variable you wish to 

treat in nonparametric fashion). Calculate first differences of all the sorted data. 
2) Compute an ordinary least squares estimate of the P parameters using the 

differences of the z and y variables. That is, run a regression of the differenced y's 
on the differenced z's. 

3) Now adjust the original dependent variable y by "purging" it of the effects 
of the z variables that enter in a linear fashion. This can be done by taking each 
value of y and subtracting from it the sum of all the coefficients from the previous 
regression in step 2 multiplied by the values of z for the given observation (that is, 
of the form y - z p )  . 

4) Finally, perform a local linear regression using the new "purged dependent 
variable from step 3 and the independent variable x to obtain an estimate of m. 

This procedure is based on the simplest form of differencing, and it is 
important to note that Yatchew (1997) suggests the use of higher order (that is, 
longer) differencing and optimal differencing weights to increase the efficiency of 
this estimator. He suggests replacing step 2 with a regression of a higher-order 
optimally differenced y variable on a similarly higher-order optimally differenced z 
variable.' 

To illustrate how the partially linear model is estimated, and to show further 
the power of the nonparametric approach, consider the following experiment. We 
generate 300 data points from a regression model that includes both parametric 
and nonparametric components.g The true nonparametric function and the scat- 
terplot of points generated from it are presented in the upper left-hand corner of 
Figure 6, labeled 6 ~ . "  

From Figure 6A, we immediately see that attempts to capture this relationship 
with a pure linear regression would be hopeless. However, the second panel, Figure 
6B, goes even further and shows that the function m is not well estimated even after 
including a quadratic and a quartic polynomial in x. 

The third panel, Figure 6C, presents two local linear regression estimates using 
different choices of the bandwidth. When we choose a bandwidth equal to 10, the 
result is oversmoothed, and when we set the bandwidth to 0.06, the result is 
undersmoothed. However, the undersmoothed estimate still appears to do a rea- 
sonable job at reproducing the overall shape of true regression function. 

The final panel, Figure 6D, uses an optimal choice of smoothing parameter. 

Such a procedure does not significantly affect the computational complexity of the problem. See 
Speckman (1988), Robinson (1988) and Green and Silverman (1994) for alternate approaches. 

Specifically, we generate 300 observations from the model y = 22, + z, + m(x) + E ,  where m(x) = 

0.3exp[-4(x + 1)" + 00.7exp[-16(x- 1)" a n d &- N(0, 0.011,). Wegenerate xuniformlyon the 
interval [-2,  21, zli - N(0.5xi, I ) ,  and z, independently from a standardized student-t distribution 
with four degrees of freedom. Both the coefficients on z, and z, and the function m are estimated in this 
example. 
loTo focus on estimation of the nonparametric portion, we present the scatterplot of the y, - 2z,, -
z,, values against x, 
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Figure 6 
Partially Linear and Ordinary Least Squares Estimates of Regression Function m(x) 
Using Generated Data 
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Fig. 6C: Local Linear Estimates Fig. 6D: Local Linear Estimate - Optimal h ,  

To obtain this figure, the dependent variable was first "purged" of the linear 
variables through a process of higher-order differencing, and a new "adjusted" 
dependent variable was created. Finally, a local linear regression was performed. 
Clearly, this estimated function captures the shape of the true regression curve in 
the first graph remarkably closely, and certainly it does a better job than an 
ordinary least squares regression even after including a variety of powers of the x 
variable. 

Conclusion 

The reader may be curious about drawbacks of these methods for the applied 
empirical researcher. In our estimation, the biggest limitations for the applied 
researcher at the moment are two: the lack of a commonly accepted method to 
choose an appropriate bandwidth and the lack of a simple way to compute reliable 
standard errors. 
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The root cause of the first problem is that typical expressions for an "optimal" 
bandwidth involve unknown properties of the function we are trying to estimate. 
Since the true shape is never known in practice (why use these techniques if you 
already know the true shape of the function!), econometricians have devised 
numerous bandwidth selector techniques. We have discussed some of these selector 
techniques here, including Silverman's rule-of-thumb bandwidth selector for den- 
sity estimation, as well as pilot bandwidth selection for regression problems (for 
example, Fan and Gijbels, 1996, section 4.2). A variety of other bandwidth selection 
rules are available. 

In this paper, we did not discuss the second limitation, and the calculation of 
pointwise standard errors associated with nonparametric density and regression 
estimates remains a source of uncertainty for the empirical practitioner. Several 
techniques are often used, including bootstrapping (Hardle, 1990, section 4.2; 
Simonoff, 1996; Horowitz, 2001, section 4.2), as well as other, more "direct" 
methods (in the regression context, see, for example, Fan and Gijbels, 1996, 
sections 4.3-4.6). 

The good news is that the procedures described here are pretty easy to 
implement-even if one isn't using the estimates as part of a more complicated 
statistical procedure. Further, these techniques often prove to be very useful in 
visualizing and describing the data, and thus they can help to avoid drawing some 
potentially foolish inferences. 

For more on nonparametric density estimation, see Silverman (1986). One 
application of nonparametric density estimation can be found in DiNardo, Fortin 
and Lemieux (1996). For more on nonparametric regression, see the survey articles 
by Blundell and Duncan (1998) and Yatchew (1998) or the texts by Hardle (1990), 
Fan and Gijbels (1996) and Simonoff (1996). Applications of such methods have 
appeared in Hausman and Newey (1995), Subramanian and Deaton (1996), Chev- 
alier and Ellison (1997), Heckman et al. (1998) andYatchew (2000), among others. 
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