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Abstract
I provide a simple introduction to the use of propensity score reweighting to
assess the effect of changes in covariates on the distribution of an outcome (such as
wages). I relate this to the literature on estimating “average treatment effects” and
Blinder/Oaxaca decompositions as well as discuss some of the limitations and uses
of reweighting.

I. Introduction

A large literature in labor economics has been interested in the question: what would the
distribution (mean/median/etc) of wages (or other outcome) look like if the covariates were
different than they actually are. For instance, what would the (mean) wage for women be
if women had the same distribution of human capital characteristics as men? (I.e. Blinder
(1973) and Oaxaca (1973))

In this short, non-technical introduction I discuss the use of the propensity score as
weights as an alternative to regression techniques, although such weights can also be used in
other regression-based decomposition techniques such as those suggested by Juhn, Murphy
and Pierce (1993). ! In particular, I wish to describe the method proposed by DiNardo,
Fortin and Lemieux (1996) (henceforth DFL) to analyze the effect of covariates on the
distribution of wages and relate it to the literature on the use of the propensity score
to analyze average treatment effects (Rosenbaum and Rubin (1983) Hirano, Imbens and
Ridder (2000)) in part to highlight the limits of such methods.

*Prepared for the Latin American Meeting of the Econometrica Society
1See Lemieux (2002) for a discussion.




II. Three Types of Decompositions

The class of problems we will be concerned with will involved two “states” (s,t) and one
continuous outcome, y, which will be a function of a set of exogenous covariates. As will
be discussed in great detail below, I will consider three procedures:

1. The Blinder/Oaxaca method which involves running two separate regressions of y
on x — one for each group, s, and t. Counterfactuals are constructed by using the
coefficients from these two regressions and applying them to the x variables from
either group s or group ¢t depending on the question of interest.

2. The DFL method which involves using functions of the estimated propensity score?
as weights in weighted kernel density estimation.

3. The use of weighted means to generate estimates of “average treatment effects” as
suggested by Rosenbaum and Rubin (1983).

The procedures differ in one of two ways:
1. Are “counterfactual” weights used? (as in DFL and Rosenbaum and Rubin (1983))

2. Is the focus of interest a particular mean (as in Rosenbaum and Rubin (1983) and
in the Blinder/Oaxaca procedure) or the entire distribution (as in DFL)?

The following table shows some illustrative cases from the empirical literature.

2As will be discussed below, the estimated propensity score is merely the predicted value from a binary
dependent variable model where the dependent variable is 0 or 1 as a given observation is in group s or
group t.



Some Illustrative Examples

Question: Focus Paper S t
How would the wage distribution  Distribution DFL (1996), 1973 1993
at time t have looked if the

distribution of covariates was

as it was in time s

What would the wages of Women Mean Blinder (1973) Men Women
be if they had the human capital Oaxaca (1973)

characteristics of Men?

What would the wealth of Blacks Mean and Barsky, Bound, Whites Blacks
be if they had the demographic Distribution Charles, Lupton

characteristics of whites? JASA (Forthcoming)

What is the Average Treatment Mean Rosenbaum Treatment Control
Effect (ATE) and Rubin (1983)

What was the effect of Distribution Hyslop and 1983-1986 1995-98
changes in household Maré (2000)

structure and changes

in returns on

household inequality?

How did the transition Distribution Daly and Manufacturing Services

to services effect
wage inequality?

Valletta (2000)

In choosing these examples, I have deliberately restricted myself to less “sophisticated”
structures — some of which use some sort of weighting procedure as an intermediate step,
others which avoid weighting altogether and provide very different approaches to the same
sorts of questions: some examples include, Francois Bourguignon, Francisco Ferreira and
Leite (2002), Donald, Green and Paarsch (2000), Lemieux (2002), Manacorda (1999),
Teulings (2000), Lee (1999), Machado and Mata (2001). While I will not discuss the
advantages and disadvantages of weighting to these methods, most of the address some
aspect of the limitations of weighting, a subject I will address.



ITI. Blinder/Oaxaca Decomposition as a reweighting
technique

The simplest case of a Blinder/Oaxaca “decomposition” involves a continuous outcome
(say wages) and a single categorical variable. A question which this approach is designed
to answer is:

What would average wages look like today (2002), if the distribution of characteristics
(say schooling, experience, etc.) were held to their level in 19797 For now, assume random
sampling, although sample weights can be dealt with easily.

We will focus on the case of a single covariate which can take on any one of k € (1...k)
values. This is slightly more general than might appear at first: if there are multiple
categorical covariates, one should think of the list of categories for the single variable case
as referring to all permutations of the multiple categorical variables. For example, if there
are two genders and two education categories (high and low), the single variable takes
on one of 4 values — male and low education, male and high education, female and low
education, female and high education.

The Blinder/Oaxaca decomposition starts from a simple regression of y; on a set of
dummy variables for the different categories (where D;; =1 if x; =14 and 0 otherwise):

k
Jij =YDy (1)
where ¢;; is the “predicted” wage from a regression of wages in 2002 on a complete set of
dummy variables and where B are the associated OLS coefficients.

In this (trivial) case, the average wage that would have prevailed given the 2002 wage
structure and the distribution of z that prevailed in 2002 is merely the average predicted
wage for all observations in 2002. Moreover, this average wage can be expressed as the
weighted sum of the k group averages, where the weights are the proportions of type ¢ in
the 2002 population:
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Observe that Bl is merely the average wage of workers in 2002 with characteristic .
Therefore this can also be written as a weighted sum of group averages 3% = 7% where
the weights 692 are merely the 2002 sample fraction of observations in group i:
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where Ny, is the number of observations in 2002, and Y, is the actual sample average.

Likewise, we can compute the average wage that would have prevailed in 1979 given
the distribution of x that prevailed in 1979 by taking the average predicted wage — using
the 1979 coeflicients for the 1979 observations. Noting that N Y jero Dij = 07°, this of
course, yields the actual 1979 wage:
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The object of the Blinder/Oaxaca method is to compute the counterfactual “the average
wage that would have prevailed given the distribution of characteristics observed in 1979.”
This is accomplished simply by plugging 1979 sample of = variables, computing a “predicted
counterfactual” using the 2002 coefficients, and then taking the average across all the
observations in the 1979 sample. In our simple illustration, note that these predicted
counterfactual wages are merely the mean wages in 2002 for our k£ groups. In notation, the
average wage that would have prevailed if the distribution of x across individuals was as
it was in 1979, but with the 2002 wage structure:

1
ygg = N z : : :ﬁ02DU (6)
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Observe that this is identicial to the actual 2002 mean wage, with 67° replacing 692.

The effect of the changing “wage structure” (or to use a more popular term, the “price”
of ability) on average wages is merely the difference between the actual mean wage and
the counterfactual mean wage.

Effect = 703 — 705 (10)

For my purposes, a useful observation about the Blinder/Oaxaca method is that in
this simple case, it can be viewed as a “reweighting” method (and indeed in this case is
identical to the method proposed by DFL which I discuss below.)

We have already noted that the actual mean wage — y3 is a weighted sum of the
2002 group means, where the weights are merely the proportion of each group in the 2002
sample. The key observation is that the Blinder/Oaxaca counterfactual wage — the 2002
wage structure and the 1979 x characteristics is also a weighted mean of the individual
wage observations in the 2002 data.

Summarizing the above developments:

“Counterfactual” 7% = N79 Z ZﬁOQDm (11)
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Inspection of the two equations above suggests that it will be useful to define a “weight”
which is the ratio of the fraction of type ¢ in the two time periods:
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Indeed, weighting each observation in the 2002 sample by this weight yields the same
counterfactual wage as in equation (9):
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In this simple case, inspection was enough to suggest the correct weighting factor,
although the appropriate weighting factor can be easily derived and we will do so below.

IV. The Use of Weights to Generate Counterfactual
distributions

While the Blinder/Oaxaca is suitable for many applications, it is less well suited to the
case of examining either the entire distribution of wages or moments other than the mean.
After briefly defining a kernel density estimator, I describe the estimator used by DiNardo
et al. (1996) to generate counterfactual distributions.

The kernel density case is merely a histogram of sorts where the bins are not mutually
exclusive and one takes a weighted (instead of unweighted) average of points in a bin.

To introduce the notion of weights, consider the usual case where each observation has
a known weight (usually the inverse of the sampling probability) w; consider the definition
of a kernel density estimator at the point .

h

where K is some kernel. The choice of kernel — a simple weighting function — is usually of
little consequence. In the simple histogram, for example, this function is a constant for each

paly) = Sy K4 ) 22)
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observation in a given bin and zero for observations outside the bin. For various reasons,
including efficiency and the need for smooth derivatives, a variety of other functions are
generally used. Many of these have the property that the weight an observation is given is
a declining function of its distance from the center of the bin. The use of sample weights,
(normalized so that Z;V:l w; = 1) is a straightforward extension of a kernel density estimate.

The key parameter in the density estimate, like in the histogram, is the “bandwidth”
(or bin width in the case of the histogram). The wider the bandwidth, the smoother the
density estimate. Indeed, there is a trade-off — the variance of the estimator declines with
the bandwidth but the bias increases. In words, since it is easier to smooth with the eye
than to unsmooth for many purposes it is better to err on the side of too small a bandwidth.

A Weighting with the propensity score

The DFL procedure can be derived fairly easily from the definition of conditional proba-
bility. Consider the two actual distributions:

[Py = [ PGl = 19)de (23)

[ 12wy = [ 12l = 02)de (24)

Now consider the counterfactual distribution “the distribution of wages in 2002 if the
distribution of x was as in 1979 and compare it to the actual distribution of wages in 2002:
Counterfactual foa(y) = /fOQ(y|x)h(x|t =79)dx (25)

Actual fB(y) = [ f2(gla)h(elt = 02)ds (26)

The important observation is that the counterfactual described differs from its actual
counterpart in what set of x variables are to be “integrated over.” While this is easily com-
puted in this case, in general h(x) will have several explanatory variables and integrating
over several, possibly hundreds of covariates would be impossible.

As in the Blinder/Oaxaca case, the key will to be define a weight w such that:

/f°2(y|x)h(x\t — 79)dz = /wf°2(y|x)h(x\t = 02)dz

If we can find such a weight, we have transformed a potentially impossible problem —
integrating over many covariates — with a simple one — weighting the 2002 distribution.
To do so, it will help to consider pooling the 1979 and 2002 data and observe that by
definition:



h(z;|t = 79)Prg
P(t =179|x; = x0)

h(z;|t = 02) Py
P(t = 02|z; = z0)

(28)
where Prg = P(Observation is from 1979) and

p”(z) = P(t = 02|x; = )

p"”(z) = P(t = 79|x; = )

are the propensity scores associated with being either in 2002 or 1979. The utility of
these expressions comes from the fact that it is much more difficult to integrate over
a term like h(z;|t = 02) which requires multi-dimensional integration than a term like
P(t = 79|xz; = x) which looks like a standard binary dependent variable model like the
logit or probit. This latter term is called the propensity score. It is a number between 0
and 1 and in this case can be interpreted as the probability I will given observation will be
from 2002 (1979) given a set of characteristics. To use the language of experiments, the
“treatment” is exposure to the 2002 (1979) wage structure and the propensity score is the
probability I have been exposed given my characteristics. For instance, if the characteristic
of interest is “has a college degree”, and this has been rising over time:

p*%(Has college degree) > p”?(Does not have college degree)

One does not observe the propensity score in general, but fortunately, an estimate of
p™(x), for example, can easily be generated by:

1. Pooling the 2002 and 1979 data.

2. Define a binary variable T" such that T = 1 if the observation is from the 1979 sample
and 0 otherwise.

3. Run a logit or other estimator using 7' as the dependent variable with a flexible
specification of the relevant exogenous covariates. The predicted probability from
the logit is an estimate of the propensity score.

As we noted above, observe that the the actual and counterfactual distributions differ
only in the term h(z|t = 79 or 02) Simple manipulations with equations (27) and (28)
reveal that the weight is a simple function of the propensity score and two constants:



Counterfactual fog(y) = /f02 ylx)h(z|t = 79)dx

/( (9235)) (22) P ylz)h(xlt = 79)dz  (29)
= [wrlon(elt = 02)ds (30)

In the expression above Prg (Py2) are merely the fraction of the pooled sample that
comes from 1979 (2002) and does not vary by observation. This term can essentially be
ignored since most packages appropriate renormalize the weights to sum to 1.

To apply this to actual data with known sampling weights w;, (where > w; = 1)
DiNardo et al. (1996) proposed going from the expression in equation (30) directly to
density estimation by replacing p™ with an estimate of p™ from a logit or other binary
dependent model to construct @; and the product of this and the usual sampling weights
(normalized so that the sum of the weights is equal to 1) is used in the density estimation:

al L vi—Y
df E i—K(Z
p (y02> j:1w Nh ( h )
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(31)

NB: It is not necessary to actual do any kernel density estimation if only simple sample
statistics are necessary. For example, to compute the counterfactual mean

02
Yoo = Z W;Y;
j€02
02 ~
Y79 = Z WiW;y;
7€02

(32)

where the weights are suitably normalized as in the density case.

It remains to be shown that this is numerically identical to the Blinder/Oaxaca coun-
terfactual when there is only one categorical covariate. To do so, without loss of generality
let the sample weight be the same for every observation, —— so that we merely have to

No2
show that :
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When we have the case of one categorical covariate®, any appropriate estimator of the
binary dependent variable model will generate the numerically equivalent weight.* To see
this, consider the 1979 propensity score — the predicted probability that an observation

from the pooled 1979 and 2002 sample comes from 1979. I.e., the predicted value associated
with an observation z; such that z; = j:

" (zi|lz; = j) = Pr(observation i from 79 sample|z; = j)
B ﬁ(observation i from 79 sample A x; = j)
Pr(z; = j)

Ziem Dij

— N79+No2
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It is now straightforward to observe equation 33 holds and where (1 —p™(z)) = p%(z)
so that

02
ﬁo =R 02 POer
P07 + Pooty?

So:

79 P796;9
o Do p791 p.-n02
P - Prg01°+Po20;

ﬁ02 - P020§?2

. P790]7'9 (35)
Pos7
3We are also assuming that their are no empty cells — i.e. that their are individuals of type j in both
samples. This can be a problem in some contexts. Barsky, Bound, Charles and Lupton (2002) for example,
in their analysis of black/white wealth distributions observe that while one can generally find whites to
“match” with any black in a sample, the reverse is not the case.
4For a proof in a different context see Davidson and MacKinnon (1993), page 234, for example.
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and and the equality in equation (33) follows.

In the case when the covariates can be described by a set of dummy variables, the Blin-
der/Oaxaca and DFL methods are numerically equivalent. When this is not the same, the
two methods will not be numerically equivalent, but should be “close” if the specification
of the binary choice model is sufficiently flexible.

B Reweighting for Estimates of Average Treatment Effects

Having now shown that the Blinder/Oaxaca estimate of the counterfactual mean is numer-
ically equivalent to using “DFL” weights in the simple case it may be useful to relate DFL
to the literature that uses the propensity score to compute “average treatment effects. ”
Consider the evaluation of a randomized experiment where T = 1 if the person gets the
treatment and zero otherwise. Again, let the outcome y depend on some covariates so we
have the distribution of outcomes in the treatment group and the distribution of outcomes
in the control group (7' = 0).

[ wdy = [ P @lonElT = 1)de (36)
[ 17wy = [ F@l)hT = 0)de (37)

In that literature, the focus of much attention has been on average treatment effect
which is merely the treatment effect averaged over all “types” which is given by x

ATE = [yf'yl)h@)de = [ yf* (ylo)h()da (38)

In general, the simple difference between the treatment and control group means will
not be the average treatment effect. Denote this simple difference in means as the “usual”:

Usual = /yfl(y\x)h(x\T — 1)da — /ny(y|x)h<xyT — 0)da (39)

The key is that, in general, h(z|T = 1) # h(z) and likewise for the control group so
that the estimates in equation 38 and equation 39 will generally not be equal.

From the perspective of DiNardo et al. (1996) ATE is actually the difference between
two counterfactuals:

1. The average outcome using the “structure of outcomes under treatment” as if the
treatment had been given to both the treatment and the controls (i.e. the general
population)

12



2. The average outcome using the “structure of outcomes under control” as if the “con-
trol had been given” to both the treatment and the controls (i.e. the general popu-
lation)

Using the same trick as before, we can reweight the usual estimator so that both means
are averaged over the entire population and take the difference. Using the definition of
conditional probability and expressions like equations (27) and (28) we see that each term
on the right hand side of equation (38) are merely weighted versions of the actual means
of the treated and control groups:

Actual Treatment Mean = /yfl(y|x)h(x|T = 1)dz (40)

“CF” Treatment Mean = /yfl(y|x)h(x)dx (41)
P ) 1

= f(yle)h(z|T =1)d 42

[ (505 £ laintelr =1 (2

Actual Control Mean = /yfo ylz)h(z|T = 0)dx (43)

“CF” Control Mean = /yfo y]x h(z)dx (44)

ATE = /( g )) M yla)h(a|T = 1)da
— /(1_PO$> yf°(ylx)h(z|T = 0)dx (46)

ATE = YTy — Y aly, (47)

1€T 1eC

where P, is the fraction of treatment observations, F, is the fraction of control observations
and where

P,
~T 1
p'(x)
and
~C PO

o = ————
T ()

where plz is the predicted probability from a binary dependent variable model where the

dependent variable is equal to one when the observation is from the treatment group and
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zero otherwise. If the @ do not sum to one over their respective samples, they should be
normalized so that they do.

Indeed the weighting estimator proposed by Rosenbaum and Rubin (1983) and Hirano
et al. (2000) is this estimator.

C Effect of the Treatment on the Treated (TOT)

Likewise the same type of estimator can be used to estimate other outcomes. One might
be interested, for example, in the effect of the treatment on the treated:

Actual Treatment Mean = / yf (yla)h(z|T = 1)dz (48)
Actual Control Mean = / yfO(yle)h(z|T = 0)dz (49)
CF Control Mean = / O (yla)h(z|T = 1)dz (50)

TOT = [ yf (yla)h(a|T = 1)da -
[ I @l)hT = 1)do (51)

= [y Wle)h(IT = 1)dz -
[ v @laph(alT = 0)de (52)

where

w':%% (53)

where as before the term £2 is merely a constant and the weight can be renormalized to

Py
sum to one.
That is, the effect of the treatment on the treated is merely the treatment mean less
the reweighted control group mean.

D Other Uses of Propensity Score Weighting

While the results here are not new (Hirano et al. (2000) for example show that these
weighted versions are more efficient that “regression — on — covariates”) one observation
that has not been made is that the propensity score weighting techniques can be used to

14



learn about other aspects of the treatment besides its effect on the mean. Since the use of
weights allows for the estimation of the entire distribution, any statistic can be computed.

For example, one could compute a counterfactual variance that would correspond to
the variance if the distribution of x were as it were in the entire sample:

Z @i(yz‘ - Q)Q

where § = Y @,y and the form of & would be the normalized version of &+ and the effect
of the treatment on the variance — the “variance” treatment effect — would be given by
the difference between this and the appropriate “counterfactual” control variance (i.e. the
variance among the controls that would have obtained if the distribution of x in the control
group were the same in the pooled distribution of z as above.)

Lemieux (2002), for example, observes that this can be applied to the type of decom-
position proposed by Juhn et al. (1993), where

y=XB+e (54)

where®, the variance of y is decomposed into a part due to the observables X B and a
part due to the unobservables e. In this framework, Juhn et al. (1993) propose to treat
increases in the variance of e over time as evidence that the “price” of unobservables has
risen. Lemieux (2002) observes that under the assumptions of this framework, however, the
variance of e will in general depend on the distribution of X, so that merely comparing the
variance of unobservables over two time periods is not sufficient to judge whether the price
has risen over time — one has to hold fixed the distribution of X in the population. Lemieux
(2002) proposes using propensity score weighting as a simple expedient to accomplish this
goal.

V. Implications for the use of Weighting

Several limitations of weighting become immediately apparent when one views applica-
tions such as DiNardo et al. (1996) as either extensions of propensity score weighting in
Rosenbaum and Rubin (1983) and Hirano et al. (2000) or as variant of the Blinder/Oaxaca
decomposition method. Indeed, the both literatures have identified the substantial limita-
tions of such approaches and I mention only a few here.

1. Implicit in our discussion has been the following model:

yi = 07 () + B (z:)T; + € (55)

5Ignoring the fact that the residual e contains sampling error in addition to the unobservable error term
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where the heterogeneity in the treatment effect is reflected in the fact that g is now a
random variable and quite importantly ¢; is assumed to be independent of assignment
to the treatment. In particular, assignment to treatment is assumed to depend only
on the observables. However, if individuals “select in” to treatment on the basis
of factors not observed by the econometrician, an important literature, pioneered
by James Heckman shows that the proposed estimators can be seriously biased.
Intuitively, propensity score reweighting is about averaging the difference between
treated and untreated individuals who are identical in all observable respects save
the treatment across individuals so paired. However, if we observe two individuals
who are identical in a long list of observables, save the fact that one receives the
treatment and the other does not, in many contexts it is not appropriate to assume
that the individuals are identical in ways not observed by the econometrician.

Using similar notation as above, the Heckman selection framework can be written
yi = B} (i, &) + B} (x5, &) T + € (56)

It is therefore clear that this propensity score reweighting is merely a special case of
the Heckman selection framework. Moreover, it is not clear that “average treatment
effects” are always of interest. For some recent work, see Heckmand and Vytlacil
(2001) and Heckman and Vytlacil (2001) and Heckman, Tobias and Vytlacil (2001).5

2. In principle, if the propensity score takes on small finite number, and one is interested
only in averages these reweighting exercises could be accomplished by regression or
matching techniques. One expedient, for example would involve running separate
regressions for each value of the propensity score. While Hirano et al. (2000) observe
that weighting is (asymptotically) more efficient regression or matching, convenience
seems more important.

3. A related point is that reweighting methods are “methods of ignorance” in the sense

that we are not being explicit about why treatment effects vary across individuals.
In an analysis of union wage effects, Card (1992), for example, divides the sample
into 5 groups, not on the basis of a propensity score, but on a predicted wage. Since
are a priori grounds for believing that the effect of unionization depends in part on
what wage you would have received in the non—union sector.

4. For propensity score weighting to be appropriate the x variables have to be exogenous.
This rules out any sort of endogeneity or interactions. Francois Bourguignon et al.
(2002) and Teulings (2000) are two examples that address these issues.

SFor further discussion of the evaluation problem in this more general framework see Heckman, LaLonde
and Smith (1998b), Heckman and Hotz (1989), Heckman and Robb (1984), Heckman, Ichimura, Smith
and Todd (1998a), and the references cited therein and above.
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5. Extremely low (or high) values of the propensity score are a potential problem. In-
tuitively, if the propensity score for having received the treatment is very small,
this means that there are none (or few) treatment observations that “look like” the
corresponding “control” observation.

6. A related point is that the weights are often of the form ﬁ or #@). In this case,

small errors in estimating p(x) can produce potentially large errors in the weights.

Since the weight is a nuisance parameter from the viewpoint of estimating a density

or a specific moment of the distribution, this is not a straightforward problem.

7. In the context of density estimation, very little work has been done on estimating
standard errors. In part, this is because of a problem in the literature on density
estimation.

Given such negatives, is there anything good to say about propensity score reweighting
methods?

1. It’s easy.
2. It’s usually an interesting “base” case.

3. It is often a helpful descriptive tool.
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