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Abstract

Capsules are a clean representation of the state of a computation in higher-order programming
languages with effects. Their intent is to simplify and replace the notion of closure. They naturally
provide support for functional and imperative features, including recursion and mutable bindings,
and ensure lexical scoping without the use of closures, heaps, stacks or combinators. We present
a comparison of the use of closures and capsules in the semantics of higher-order programming
languages with effects. In proving soundness of one to the other, we give a precise account of how
capsule environments and closure environments relate to each other.
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1 Introduction

This paper compares Capsules and Closures. Capsules are a representation
of the state of a computation for higher-order functional and imperative lan-
guages with effects, and were introduced in [1]. Many authors have studied the
state of a computation, for example [2–14]. However, capsules are intended to
be as simple as possible, and they correctly capture lexical scoping and handle
variable assignment and recursion without any combinators, stacks or heaps,
and while keeping everything typable with simple types.

Closures were first introduced by Peter J. Landin along with the SECD ma-
chine [13], and first implemented in the programming language Scheme [15].
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The early versions of Lisp implemented dynamic scoping, which did not fol-
low the semantics of the λ-calculus based on β-reduction. By keeping with
each λ-abstraction the environment in which it was declared, thus forming a
closure, closures were successful at implementing static scoping efficiently.

In [1], capsules are shown to be essentially finite coalgebraic representations of
regular closed λ-coterms. Because of recursion and therefore of possible cycles
in the environment, the state of computation should be able to represent
all finite λ-terms and a subset of the infinite λ-terms, also called λ-coterms.
Capsules represent all the regular λ-coterms, and that is enough to model
every computation in the language. λ-coterms allow to represent recursive
functions directly, without the need for the Y-combinator or recursive types.

The language we introduce is both functional and imperative: it has higher-
order functions, but every variable is mutable. This leads to interesting inter-
actions and allows to go further than just enforcing lexical scoping. In partic-
ular, what do we expect the result of an expression like (let x = 1 in let f =
λy.x in x := 2; f 0) to be? Scheme (using set! for :=) and OCaml (using refer-
ences) answer 2. Capsules give a rigorous mathematical definition that agrees
and conservatively extends the scoping rules of the λ-calculus. Our seman-
tics of closures also agrees with this definition, but this requires introducing a
level of indirection, with both an environment and a store, à la ML. Finally,
recursive definitions are often implemented using some sort of backpatching;
this construction is known as “Landin’s knot”. We build this directly into the
definition of the language by defining let rec x = d in e as a syntactic sugar for
let x = a in x := d; e, where a is any expression of the appropriate type.

There is much previous work on reasoning about references and local state;
see [16–19]. State is typically modeled by some form of heap from which
storage locations can be allocated and deallocated [9–12]. Others have used
game semantics to reason about local state [20–22]. Mason and Talcott [2–4]
and Felleisen and Hieb [5] present a semantics based on a heap and storage
locations. A key difference is that Felleisen and Hieb’s semantics is based
on continuations. Finally, Moggi [8] proposed monads, which can be used to
model state and are implemented in Haskell.

This paper is organized as follows. In section 2, we formally introduce a
programming language based on the λ-calculus containing both functional and
imperative features. In section 3, we describe two semantics for this language,
one based on capsules and the other on closures. In section 4, we show a very
strong correspondence (Theorem 4.5) between the two semantics, showing that
every computation in the semantics of capsules is bisimilar to a computation in
the semantics of closures, and vice-versa. In section 5, we show (Propositions
5.1–5.4) that closure semantics retains some unnecessary information that
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capsule semantics omits, attesting of the simplicity of capsules. We finish
with a discussion in section 6.

2 Syntax

2.1 Expressions

Expressions Exp = {d, e, a, b, . . .} contain both functional and imperative fea-
tures. There is an unlimited supply of variables x, y, z, . . . of all (simple) types,
as well as constants f, c, . . . for primitive values. () is the only constant of type
unit, and true and false are the only two constants of type bool. In addition,
there are functional features

• λ-abstraction λx.e

• application (d e),

imperative features

• assignment x := e

• composition d; e

• conditional if b then d else e

• while loop while b do e,

and syntactic sugars

• let x = d in e (λx.e) d

• let rec x = d in e let x = a in x := d; e

where a is any expression of the appropriate type.

Let Var be the set of variables, Const the set of constants, and λ-Abs the set of
λ-abstractions. Given an expression e, let FV(e) denote the set of free variables
of e. Given a partial function h : Var ⇀ Var such that FV(e) ⊆ domh, let h(e)
be the expression e where every instance of a free variable x ∈ FV(e) has been
replaced by the variable h(x). As usual, given two partial functions g and h,
g ◦h denotes their composition such that for all x, g ◦h(x) = g(h(x)). Given a
function h, we write h[x/v] the function such that h[x/v](y) = h(y) for y 6= x
and h[x/v](x) = v. Given an expression e, we write e[x/y] the expression e
where all free occurrences of x have been replaced by y.

Throughout the paper, we focus on the features directly involving variables:
variable calls x, λ-abstractions λx.e, applications (d e) where d reduces to a
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λ-abstraction, and assignment x := e. Most differences between capsules and
closures arise using these features.

2.2 Types

Types α, β, . . . are built inductively from an unspecified family of base types,
including at least unit and bool, and a type constructor→ such that functions
with input type α and return type β have type α → β. All constants c of
the language have a type type(c); by convention, we use c for a constant of
a base type and f for a constant of a functional type. We follow [23] in
assuming that each variable x is associated with a unique type type(x), that
could for example be built into the variable name. Γ is a type environment, a
partial function Var ⇀ Type. As is standard, we write Γ, x : α for the typing
environment Γ where x has been bound or rebound to α. The typing rules
are standard:

Γ ` c : α if type(c) = α Γ, x : α ` x : α
type(x) = α Γ, x : α ` e : β

Γ ` λx.e : α→ β
Γ ` d : α→ β Γ ` e : α

Γ ` (d e) : β

Γ ` x : α Γ ` e : α

Γ ` x := e : unit

Γ ` d : unit Γ ` e : α

Γ ` d; e : α
Γ ` b : bool Γ ` d : α Γ ` e : α

Γ ` if b then d else e : α

Γ ` b : bool Γ ` e : unit

Γ ` while b do e : unit

3 Semantics

We present two different semantics that have a strong correspondence:

• The semantics on capsules is a simplified version of the semantics on closure
structures introduced in [24]. It has previously been described in [1];

• The semantics on closures is the semantics usually used and taught for
functional languages. A level of indirection for variables has been added to
support imperative features, à la ML.

All the expressions we consider in this section are supposed well-typed with
the rules of section 2.2.

3.1 Capsules

3.1.1 Definitions

An irreducible term is either a constant or a λ-abstraction. A capsule envi-
ronment is a partial function from variables to irreducible terms.
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Let i, j, k, . . . denote irreducible terms and γ, δ, ζ, η, . . . capsule environments.
Let Irred = Const + λ-Abs be the set of irreducible terms. Thus we have:

γ : Var ⇀ Irred Irred = Const + λ-Abs

A capsule environment γ is valid if and only if

∀x ∈ dom γ, FV(γ(x)) ⊆ dom γ

3.1.2 Semantics

A capsule is a pair 〈e, γ〉. A capsule is valid if and only if FV(e) ⊆ dom γ and
γ is valid. We only consider valid capsule environments and valid capsules.

An irreducible capsule is a capsule 〈i, γ〉 where i ∈ Irred. Let us define a big
step semantics where the operator ⇓ca relates capsules to irreducible capsules.
The semantics of features directly involving variables is given by:

〈x, γ〉⇓ca〈γ(x), γ〉 〈λx.e, γ〉⇓ca〈λx.e, γ〉
〈e, γ〉⇓ca〈j, ζ〉

〈x := e, γ〉⇓ca〈(), ζ[x/j]〉

〈d, γ〉⇓ca〈λx.a, ζ〉 〈e, ζ〉⇓ca〈j, η〉 〈a[x/y], η[y/j]〉⇓ca〈i, δ〉 (y fresh)
〈d e, γ〉⇓ca〈i, δ〉

and the remaining semantics is:

〈c, γ〉⇓ca〈c, γ〉
〈d, γ〉⇓ca〈f, ζ〉 〈e, ζ〉⇓ca〈c, δ〉

〈d e, γ〉⇓ca〈f(c), δ〉

〈d, γ〉⇓ca〈(), ζ〉 〈e, ζ〉⇓ca〈i, δ〉
〈d; e, γ〉⇓ca〈i, δ〉

〈b, γ〉⇓ca〈true, ζ〉 〈d, ζ〉⇓ca〈i, δ〉
〈if b then d else e, γ〉⇓ca〈i, δ〉

〈b, γ〉⇓ca〈false, ζ〉 〈e, ζ〉⇓ca〈i, δ〉
〈if b then d else e, γ〉⇓ca〈i, δ〉

〈b, γi〉⇓ca〈true, δi〉 〈e, δi〉⇓ca〈(), γi+1〉, 0 ≤ i < n, n ≥ 0

〈b, γn〉⇓ca〈false, δn〉
〈while b do e, γ0〉⇓ca〈(), δn〉

3.1.3 Examples

The following examples show that lexical scoping and recursion are handled.

Example 3.1 (let x = 1 in let f = λy.x in let x = 2 in f 0)⇓ca1
5
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Proof. For simplicity, we just show the different capsules of the computation.

let x = 1 in let f = λy.x in let x = 2 in f 0 [ ]

let f = λy.x′ in let x = 2 in f 0 [x′ = 1]

let x = 2 in f 0 [x′ = 1, f = λy.x′]

f 0 [x′ = 1, f = λy.x′, x′′ = 2]

(λy.x′) 0 [x′ = 1, f = λy.x′, x′′ = 2]

x′ [x′ = 1, f = λy.x′, x′′ = 2, y′ = 0]

1 [x′ = 1, f = λy.x′, x′′ = 2, y′ = 0]

2

Example 3.2 (let x = 1 in let f = λy.x in x := 2; f 0)⇓ca2

Proof.

let x = 1 in let f = λy.x in x := 2; f 0 [ ]

let f = λy.x′ in x′ := 2; f 0 [x′ = 1]

x′ := 2; f 0 [x′ = 1, f = λy.x′]

f 0 [x′ = 2, f = λy.x′]

(λy.x′) 0 [x′ = 2, f = λy.x′]

x′ [x′ = 2, f = λy.x′, y′ = 0]

2 [x′ = 2, f = λy.x′, y′ = 0]

2

Example 3.3 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0)⇓ca2

Proof.

let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0 [ ]

let f = λy.x in let x = 2 in f := λy.x; f 0 [x′ = 1]

let x = 2 in f := λy.x; f 0 [x′ = 1, f = λy.x′]

f := λy.x′′; f 0 [x′ = 1, f = λy.x′, x′′ = 2]

f 0 [x′ = 1, f = λy.x′′, x′′ = 2]

(λy.x′′) 0 [x′ = 1, f = λy.x′′, x′′ = 2]

x′′ [x′ = 1, f = λy.x′′, x′′ = 2, y′ = 0]

2 [x′ = 1, f = λy.x′′, x′′ = 2, y′ = 0]

2

Example 3.4 (let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3)⇓ca6
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Proof. In this example e stands for λn.if n = 0 then 1 else f(n− 1)× n.

let rec f = λn.if n = 0 then 1 else f(n− 1)× n in f 3 [ ]

f 3 [f = λn.if n = 0 then 1 else f(n− 1)× n]

if n1 = 0 then 1 else f(n1 − 1)× n1 [f = e, n1 = 3]

(f 2)× n1 [f = e, n1 = 3]

(if n2 = 0 then 1 else n2 × f(n2 − 1))× n1 [f = e, n1 = 3, n2 = 2]

(f 1)× n2 × n1 [f = e, n1 = 3, n2 = 2]

(if n3 = 0 then 1 else n3 × f(n3 − 1))× n2 × n1

[f = e, n1 = 3, n2 = 2, n3 = 1]

(f 0)× n3 × n2 × n1 [f = e, n1 = 3, n2 = 2, n3 = 3]

(if n4 = 0 then 1 else n4 × f(n4 − 1))× n3 × n2 × n1

[f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0]

1× n3 × n2 × n1 [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0]

6 [f = e, n1 = 3, n2 = 2, n3 = 1, n4 = 0]

2

3.2 Closures

3.2.1 Definitions

Closures were introduced in the language Scheme [15]. We present a version
of them using a level of indirection, allowing us to handle mutable variables.

There is an unlimited number of locations `, `1, `2 . . .; locations can be thought
of as addresses in memory. An environment is a partial function from variables
to locations. A closure is defined as a pair {λx.e, σ} such that FV(λx.e) ⊆
domσ, where λx.e is a λ-abstraction and σ is an environment that is used to
interpret the free variables of λx.e. A value is either a constant or a closure.
Values for closures play the same role as irreducible terms for capsules. A
store (or memory) is a partial function from locations to values.

Let u, v, w, . . . denote values, σ, τ, . . . environments and µ, ν, ξ, χ, . . . stores.
Let Val be the set of values, Loc the set of locations and Cl the set of closures.
Thus we have:

σ : Var ⇀ Loc µ : Loc⇀ Val Val = Const + Cl
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3.2.2 Semantics

A state is a triple 〈e, σ, µ〉. A state is valid if and only if

FV(e) ⊆ domσ codomσ ⊆ domµ

∀{λx.a, τ} ∈ codomµ, FV(λx.a) ⊆ dom τ ∧ codom τ ⊆ domµ

A result is a pair (v, µ). A result is valid if and only if either v ∈ Const,
or v = {λx.a, τ} ∈ Cl and the triple 〈λx.a, τ, µ〉 is valid. We only consider
valid states and results. Let us define a big step semantics where the operator
⇓cl relates valid states to valid results. The semantics of features directly
involving variables is given by:

〈x, σ, µ〉⇓cl(µ(σ(x)), µ) 〈λx.e, σ, µ〉⇓cl({λx.e, σ}, µ)

〈e, σ, µ〉⇓cl(v, ξ)
〈x := e, σ, µ〉⇓cl((), ξ[σ(x)/v])

〈d, σ, µ〉⇓cl({λx.a, τ}, ξ) 〈e, σ, ξ〉⇓cl(v, χ)

〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν)
(` fresh)

〈d e, σ, µ〉⇓cl(u, ν)

and the remaining semantics is:

〈c, σ, µ〉⇓cl(c, µ)
〈d, σ, µ〉⇓cl(f, ξ) 〈e, σ, ξ〉⇓cl(c, ν)

〈d e, σ, µ〉⇓cl(f(c), ν)

〈d, σ, µ〉⇓cl((), ξ) 〈e, σ, ξ〉⇓cl(u, ν)

〈d; e, σ, µ〉⇓cl(u, ν)

〈b, σ, µ〉⇓cl(true, ξ) 〈d, σ, ξ〉⇓cl(u, ν)

〈if b then d else e, σ, µ〉⇓cl(u, ν)

〈b, σ, µ〉⇓cl(false, ξ) 〈e, σ, ξ〉⇓cl(u, ν)

〈if b then d else e, σ, µ〉⇓cl(u, ν)

〈b, σ, µi〉⇓cl(true, νi) 〈e, σ, νi〉⇓cl((), µi+1), 0 ≤ i < n, n ≥ 0

〈b, σ, µn〉⇓cl(false, νn)

〈while b do e, σ, µ0〉⇓cl((), νn)

3.2.3 Examples

Example 3.5 (let x = 1 in let f = λy.x in let x = 2 in f 0)⇓cl1

Example 3.6 (let x = 1 in let f = λy.x in x := 2; f 0)⇓cl2
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Example 3.7 (let x = 1 in let f = λy.x in let x = 2 in f := λy.x; f 0)⇓cl2

Example 3.8 (let rec f = λn.if n = 0 then 1 else n× f(n− 1) in f 3)⇓cl6

4 Equivalence of the semantics

4.1 Definitions

There is a very strong correspondence between the semantics of closures and
capsules. To give a precise account of this correspondence, we introduce an
injective partial function h : Loc ⇀ Var with which we define four relations.
Each relation is between an element of the semantics of closures and an element
of the semantics of capsules that play similar roles:

• v
h→ i between values and irreducible terms;

• µ
h→ γ between stores and capsule environments;

• 〈d, σ, µ〉 h∼ 〈e, γ〉 between states and capsules;

• (v, µ)
h∼ 〈i, γ〉 between results and irreducible capsules.

One thing to notice is that nothing in the semantics of capsules plays the same
role as the environment σ in the semantics of closures: capsule environments
γ relate to memories µ, and environments σ have been simplified. Let us now
give precise definitions of those relations.

Definition 4.1 Given a value v and an irreducible term i, we say that h
transforms v into i, where h is an injective map h : Loc ⇀ Var, and we write

v
h→ i, if and only if:

• v = i when v ∈ Const, or

• codom τ ⊆ domh and (h ◦ τ)(λx.a) = i when v = {λx.a, τ} ∈ Cl

Definition 4.2 Given a store µ and a capsule environment γ, we say that h
transforms µ into γ, where h is an injective map h : Loc⇀ Var, and we write

µ
h→ γ, if and only if:

domh = domµ h(domµ) = dom γ

∀` ∈ domµ, µ(`)
h→ γ(h(`))

Definition 4.3 Given a state 〈d, σ, µ〉 and a capsule 〈e, γ〉, both valid, we
say that they are bisimilar under h, where h is an injective map h : Loc⇀ Var,
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and we write 〈d, σ, µ〉 h∼ 〈e, γ〉, if and only if

(h ◦ σ)(d) = e µ
h→ γ

Definition 4.4 Given a result (v, µ) and an irreducible capsule 〈i, γ〉, both
valid, we say that they are bisimilar under h, where h is an injective map

h : Loc⇀ Var, and we write (v, µ)
h∼ 〈i, γ〉 if and only if:

v
h→ i µ

h→ γ

4.2 Soundness of Capsules with respect to Closures

Now that we know how to relate each element of both semantics, theorem 4.5
shows that any derivation using capsules mirrors a derivation using closures,
and vice-versa:

Theorem 4.5 If 〈d, σ, µ〉 h∼ 〈e, γ〉 then 〈d, σ, µ〉⇓cl(u, ν) for some u, ν if
and only if 〈e, γ〉⇓ca〈i, δ〉 for some i, δ, and in that case we have

(u, ν)
g∼ 〈i, δ〉

where g is an extension of h, i.e., domh ⊆ dom g and h and g agree on domh.

Proof. We show the direct implication by induction on the big-step derivation
of 〈d, σ, µ〉⇓cl(u, ν) and the converse by induction on the big-step derivation
of 〈e, γ〉⇓ca〈i, δ〉.

In the interest of space, we only show the most interesting cases of the induc-
tion in the main text: variable call x, λ-abstraction λx.e, function application
of a λ-abstraction d e where d reduces to a λ-abstraction, and variable as-
signment x := e. In all these cases, both implications are very similar proofs,
therefore we only show the direct implication (⇒). The other cases, constant
c, function application of a constant function d e where d reduces to a constant
f , composition d; e, if conditional if b then d else e and while loop while b do e,
are detailed in the appendix.

Variable call

If d = x for some variable x then e = (h ◦ σ)(d) = y with y the variable such
that y = (h ◦ σ)(x).

(⇒) By definition of ⇓cl, (u, ν) = (µ(σ(x)), µ), and by definition of ⇓ca,
〈e, γ〉 = 〈y, γ〉⇓ca〈γ(y), γ〉. Moreover µ

h→ γ, therefore by definition of
h→,

10



Jeannin

µ(σ(x))
h→ γ(h(σ(x))) = γ(y). Therefore, with g = h, (u, ν) = (µ(σ(x)), µ)

g∼
〈γ(y), γ〉 which completes this case.

λ-Abstraction

If d = λx.a, then e = (h ◦ σ)(λx.a) which is a term α-equivalent to d, so
e = λx.b for some b. Indeed, the variable x does not change from d to e since
only the free variables of d are affected by h ◦ σ.

(⇒) By definition of ⇓cl, (u, ν) = ({λx.a, σ}, µ), and by definition of ⇓ca,
〈e, γ〉 = 〈λx.b, γ〉⇓ca〈λx.b, γ〉. But codomσ ⊆ domh and λx.b = (h◦σ)(λx.a),

therefore {λx.a, σ} h→ λx.b. Moreover we know µ
h→ γ and with g = h, we

get ({λx.a, σ}, µ)
g∼ 〈λx.b, γ〉 which completes this case.

Function application of a λ-abstraction

If d = d1 d2, then let e1 = (h◦σ)(d1) and e2 = (h◦σ)(d2). Since e = (h◦σ)(d)
means that e is α-equivalent to d, e = e1 e2, and we can easily check that

〈d1, σ, µ〉
h∼ 〈e1, γ〉 and 〈d2, σ, µ〉

h∼ 〈e2, γ〉.

(⇒) If 〈d1 d2, σ, µ〉⇓cl(u, ν) because

〈d1, σ, µ〉⇓cl({λx.a, τ}, ξ) 〈d2, σ, ξ〉⇓cl(v, χ) 〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν)

with ` fresh, then by induction hypothesis on the derivation of d1, there exist
k, ζ and h1 an extension of h such that

〈e1, γ〉⇓ca〈k, ζ〉 ({λx.a, τ}, ξ) h1∼ 〈k, ζ〉

The second condition implies that k = λx.b = (h1 ◦ τ)(λx.a) for some ex-

pression b, and that ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2, therefore

〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of d2, there

exist j, η and h2 an extension of h1 such that

〈e2, ζ〉⇓ca〈j, η〉 (v, χ)
h2∼ 〈j, η〉

As ` is the fresh location chosen in the derivation of ⇓cl for d, let y be a fresh
variable for the derivation of ⇓ca for e. Let h3 : Loc⇀ Var such that:

h3 : domh2 ∪ {`} → codomh2 ∪ {y}
`2 ∈ domh2 7→ h2(`2)

` 7→ y
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Lemma 4.6 〈a, τ [x/`], χ[`/v]〉 h3∼ (b[x/y], η[y/j])

Proof. First of all, λx.b = (h1 ◦ τ)(λx.a), h3 is an extension of h1 and
FV(λx.a) ⊆ domh1, therefore λx.b = (h3 ◦ τ)(λx.a). Now b[x/y] = ((h3 ◦
τ)[x/y])(λx.a) = (h3 ◦ τ [x/`])(λx.a) since h3(`) = y.

We further need to argue that χ[`/v]
h3→ η[y/j]. We already know that

domh3 = domh2 ∪ {`} = domχ ∪ {`} = domχ[`/v], and h3(domχ[`/v]) =
codomh2 ∪ {y} = dom η[y/j]. Let `3 ∈ domχ[`/v]. If `3 ∈ domχ, then

χ[`/v](`3) = χ(`3)
h2→ η(h3(`3)) = η[y/j](h3(`3)) by injectivity of h3, there-

fore χ[`/v](`3)
h3→ η[y/j](h3(`3)). Otherwise, `3 = ` and then χ[`/v](`) =

v
h2→ j = η[y/j](y) = η[y/j](h3(`)), therefore since h3 is an extension of h2,

χ[`/v](`)
h3→ η[y/j](h3(`)). This completes the proof of the lemma. 2

Using lemma 4.6 and by induction hypothesis on the derivation of a, there
exist i, δ and g an extension of h3 such that

〈b[x/y], η[y/j]〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl, 〈e1 e2, γ〉⇓ca〈i, δ〉 and (u, ν)
g∼ 〈i, δ〉, which

completes this case.

Variable assignment

If d = (x := d1) for some variable x and expression d1, then e = (h ◦ σ)(x :=
d1) = (y := e1) with y a variable such that y = (h◦σ)(x) and e1 = (h◦σ)(d1).

Therefore 〈d1, σ, µ〉
h∼ 〈e1, γ〉.

(⇒) The derivation of ⇓cl for d shows that (u, ν) = ((), ξ[σ(x)/v]) for some
v, ξ such that

〈e1, σ, µ〉⇓cl(v, ξ)

By induction hypothesis on the derivation of ⇓cl for d1, there exist j, ζ and g
an extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 (v, ξ)
g∼ 〈j, ζ〉

Lemma 4.7 ((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉

12
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Proof. The domain conditions are fulfilled since (v, ξ)
g∼ 〈j, ζ〉, dom ξ =

dom ξ[σ(x)/v] and dom ζ = dom ζ[y/j]. Let ` ∈ dom ξ[σ(x)/v] = dom ξ. If

` = σ(x) then ξ[σ(x)/v](`) = v
g∼ j = ζ[y/j](y) = ζ[y/j](g(`)) since g(`) =

(g ◦ σ)(x) = (h ◦ σ)(x) = y. Otherwise ξ[σ(x)/v](`) = ξ(`)
g∼ ζ(h(`)) =

ζ[y/j](g(`)) using that h is injective and g is an extension of h. Finally ()
g→ (),

which completes the proof of the lemma. 2

Using lemma 4.7 and by definition of ⇓ca, 〈x := e1, γ〉⇓ca〈(), ζ[y/j]〉 and 〈u, ν〉 =

((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉, which completes this case.

The other cases are proved in the appendix.

2

5 Capsules encode less information

When evaluating an expression using capsules, less information is kept than
when evaluating the same expression using closures. Intuitively, when using
closures, the state of the computation keeps track of exactly what variables
of a λ-abstraction are in scope, even if those variables do not appear in the
λ-abstraction itself and will therefore never be used. When using capsules
however, the capsule only keeps track of the variables that are both in scope
and appear in the λ-abstraction.

For example, let us evaluate the expressions d = (let x = 1 in let y = λy.0 in y)
and e = (let y = λy.0 in let x = 1 in y). Using the definitions of ⇓cl and ⇓ca,
we can prove that:

d⇓cl({λy.0, [x = `1]}, [`1 = 1, `2 = {λy.0, [x = 1]}])
e⇓cl({λy.0, [ ]}, [`1 = 1, `2 = {λy.0, [ ]}])
d⇓ca〈λy.0, [x′ = 1, y′ = λy.0]〉
e⇓ca〈λy.0, [x′ = 1, y′ = λy.0]〉

On this example, the result of evaluating d and e with ⇓cl keeps track of
whether x is in scope or not, but evaluating d and e with ⇓ca does not. This
information is completely superfluous for the rest of the computation and
suppressing it with capsules avoids some overhead. Propositions 5.1 to 5.4
give a more precise account of what is happening.

Proposition 5.1 If v
h→ i then given h, i can be uniquely determined from

v; the converse is not true.

13



Jeannin

Proof. If v
h→ i1 and v

h→ i2 then either:

• v ∈ Const and then v = i1 and v = i2 thus i1 = i2;

• v = {λx.a, τ} ∈ Cl and then i1 = (h ◦ τ)(λx.a) and i2 = (h ◦ τ)(λx.a) thus
i1 = i2.

However, {λy.0, [ ]} h→ (λy.0) and {λy.0, [x = `]} h→ (λy.0). 2

Proposition 5.2 If µ
h→ γ then given h, γ can be uniquely determined from

µ; the converse is not true.

Proof. If µ
h→ γ1 and µ

h→ γ2 then dom γ1 = h(domµ) = dom γ2. Moreover,

for all ` ∈ dommu, µ(`)
h→ γ1(h(`)) and µ(`)

h→ γ2(h(`)) therefore using
proposition 5.1, γ1(h(`)) = γ2(h(`)). This covers all the domain of γ1 and γ2
since dom γ1 = dom γ2 = h(domµ).

However, with h transforming ` in z, [` = {λy.0, [ ]}] h→ [z = λy.0] and

[` = {λy.0, [x = `]}] h→ [z = λy.0] 2

Proposition 5.3 If 〈d, σ, µ〉 h∼ 〈e, γ〉 then given h, 〈e, γ〉 can be uniquely
determined from 〈d, σ, µ〉; the converse is not true.

Proof. If 〈d, σ, µ〉 h∼ 〈e1, γ1〉 and 〈d, σ, µ〉 h∼ 〈e2, γ2〉, then (h ◦ σ(d)) = e1

and (h ◦ σ(d)) = e2 therefore e1 = e2. Moreover µ
h→ γ1 and µ

h→ γ2 therefore
using proposition 5.2, γ1 = γ2.

However, with h transforming ` in z,

〈x, [x = `], [` = {λy.0, [ ]}]〉 h∼ 〈z, [z = λy.0]〉

〈x, [x = `], [` = {λy.0, [x = `]}]〉 h∼ 〈z, [z = λy.0]〉

2

Proposition 5.4 If (v, µ)
h∼ 〈i, γ〉 then given h, 〈i, γ〉 can be uniquely de-

termined from (v, µ); the converse is not true.

Proof. The unicity of 〈i, γ〉 is a direct consequence of propositions 5.1 and
5.2. However,

({λy.0, [ ]}, [ ])
h∼ 〈λy.0, [ ]〉

({λy.0, [x = `]}, [` = 1])
h∼ 〈λy.0, [ ]〉

2

14
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The idea behind those propositions is that for every capsule, there are several
bisimilar states corresponding to different computations, and each keeping
track of a different set of superfluous information. Similarly, for every irre-
ducible capsules, there are several bisimilar results keeping track of superfluous
information. Capsules thus offer a much cleaner representation of the state of
computation.

6 Discussion

6.1 Capsules and Closures: a strong correspondence

Theorem 4.5 shows that capsules and closures are very strongly related. Not
only is there a derivation based on capsules for every derivation based on
closures, but these two derivations mirror each other. This is because each
rule of the definition of ⇓ca mirrors a rule of the definition of ⇓cl, and because
the proof of the theorem is a direct structural induction on the definitions
of ⇓cl and ⇓ca. Thus the computations are completely bisimilar, even though
definining computations for capsules is simpler.

6.2 Capsules allow to suppress the environment σ

When using closures, a state is a triple 〈d, σ, µ〉 whereas when using cap-
sules, it is just a capsule 〈e, γ〉. It they are bisimilar under h, it means that

(h ◦ σ)(d) = e and µ
h→ γ. Really, capsules eliminate the need for the envi-

ronment σ and thus suppress the indirection in closures that was needed to
handle imperative features. Moreover, the initial idea between the capsule en-
vironment γ was that it would replace the (closure) environment σ. However,
it is remarkable that γ is much closer to the store µ, while at the same time
eliminates the need for the (closure) environment σ.

6.3 A simple small-step semantics for capsules

When establishing theorem 4.5, we tried to build a small-step semantics for
closures and capsules. We only present here what happens on the rule for the
application (d e) when d has already been reduced to a λ-term and e to a
value, as all the other rules are reasonably straightforward.

Using closures, we are trying to take the next small step in the state
〈{λx.a, τ} v, σ, µ〉. We would like to write something like:

〈{λx.a, τ} v, σ, µ〉 →cl 〈a, τ [x/`], µ[`/v]〉 (` fresh)

15
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This rule is wrong: it drops the environment σ, but when this evaluation is
in context, σ has to come back once we finish evaluating a. One solution is
to write a rule involving several small steps, which is really a big step rule.
Another solution is to keep track of the whole stack of environments to come
back to the previous environment each time we get out of a scope (see [24]).

Using capsules however, the following rule comes very naturally:

〈(λx.a) i, γ〉 →ca 〈a[x/y], γ[y/i]〉 (y fresh)

Along with the other small-step rules, this shows that the capsule semantics
is fully relational and does not need any stack or auxiliary data structure.
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A Appendix: Proof of theorem 4.5

We include here the cases we have not included in the main text.

Variable call

(⇐) The converse is similar. By definition of ⇓ca, 〈i, δ〉 = 〈γ(y), γ〉, and

by definition of ⇓cl, 〈d, σ, µ〉 = 〈x, σ, µ〉⇓cl(µ(σ(x)), µ). Moreover µ
h→ γ,

therefore by definition of
h→, µ(σ(x))

h→ γ(h(σ(x))) = γ(y). Therefore, with

g = h, (µ(σ(x)), µ)
g∼ 〈γ(y), γ〉 = 〈i, δ〉 which completes this case.

λ-Abstraction

(⇐) The converse is similar. By definition of ⇓ca, 〈i, δ〉 = 〈λx.b, γ〉, and by
definition of ⇓cl, 〈d, σ, µ〉 = 〈λx.a, σ, µ〉⇓cl({λx.a, σ}, µ). But codomσ ⊆
domh and λx.b = (h ◦ σ)(λx.a), therefore {λx.a, σ} h→ λx.b. Moreover we
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know µ
h→ γ and with g = h, we get ({λx.a, σ}, µ)

g∼ 〈λx.b, γ〉 which com-
pletes this case.

Function application of a λ-abstraction

(⇐) The converse is similar. If 〈e1 e2, γ〉⇓cl〈i, δ〉 because

〈e1, γ〉⇓ca〈λx.b, ζ〉 〈e2, ζ〉⇓ca〈j, η〉 〈b[x/y], η[y/j]〉⇓ca〈i, δ〉

with y fresh, then by induction hypothesis on the derivation of e1, there exist
w, ξ and h1 an extension of h such that

〈d1, σ, µ〉⇓ca(w, ξ) (w, ξ)
h1∼ 〈λx.b, ζ〉

The second condition implies that w = {λx.a, τ} for some a, τ such that

(h1 ◦ τ)(λx.a) = λx.b, and that ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→ e2,

therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation of e2,

there exist v, χ and h2 an extension of h1 such that

〈d2, σ, ξ〉⇓ca(v, χ) (j, η)
h2∼ (v, χ)

As y is the fresh variable chosen in the derivation of ⇓ca for e, let ` be a fresh
location for the derivation of ⇓cl for d. Let h3 : Loc⇀ Var such that:

h3 : domh2 ∪ {`} → codomh2 ∪ {y}
`2 ∈ domh2 7→ h2(`2)

` 7→ y

Lemma A.1 〈a, τ [x/`], χ[`/v]〉 h3∼ (b[x/y], η[y/j])

Proof. This is the same as lemma 4.6, and the same proof holds. 2

Using lemma A.1 and by induction hypothesis on the derivation of b[x/y],
there exist u, ν and g an extension of h3 such that

〈a, τ [x/`], χ[`/v]〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl,

〈d1 d2, σ, µ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

18
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Variable assignment

(⇐) The converse is similar. The derivation of ⇓ca for e shows that 〈i, δ〉 =
〈(), ζ[x/j]〉 for some j, ζ such that

〈e1, σ, µ〉⇓cl(v, ξ)

By induction hypothesis on the derivation of ⇓ca for e1, there exists v, ξ and
g an extension of h such that

〈d1, σ, µ〉⇓ca〈v, ξ〉 (v, ξ)
g∼ 〈j, ζ〉

Lemma A.2 ((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉

Proof. This is the same as lemma 4.7, and the same proof holds. 2

Using lemma A.2 and by definition of ⇓ca,

〈x := d1, σ, µ〉⇓cl((), ξ[σ(x)/v]) ((), ξ[σ(x)/v])
g∼ 〈(), ζ[y/j]〉 = 〈i, δ〉

which completes this case.

Constant

If d = c then e = (h ◦ σ)(d) = c as well.

(⇒) The derivation of ⇓cl shows that (u, ν) = (c, µ), and the derivation of ⇓ca
shows that 〈e, γ〉 = 〈c, γ〉⇓ca〈c, γ〉. Moreover µ

h→ γ, therefore with g = h,

(c, µ)
g∼ 〈c, γ〉 which completes this case.

(⇐) The derivation of ⇓ca shows that 〈i, δ〉 = 〈c, γ〉, and the derivation of

⇓ca shows that 〈d, σ, µ〉 = 〈c, σ, µ〉⇓cl(c, µ). Moreover µ
h→ γ, therefore with

g = h, (c, µ)
g∼ 〈c, γ〉 which completes this case.

Function application of a constant function

(⇒) If 〈d1 d2, σ, µ〉⇓cl(u, ν) because

〈d1, σ, µ〉⇓cl(f, ξ) 〈d2, σ, ξ〉⇓cl(c, ν) u = f(c)

then, recalling that 〈d1, σ, µ〉
h∼ (e1, γ), by induction hypothesis on the deriva-

tion of d1, there exist j, ζ and h1 an extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 (f, ξ)
h1∼ 〈j, ζ〉
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The second condition implies j = f and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→

e2, therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation

of d2, there exist k, δ and g an extension of h1 such that

〈e2, ζ〉⇓ca〈k, δ〉 (c, ν)
g∼ 〈k, δ〉

The second condition implies k = c and ν
g→ δ. Therefore, by definition of

⇓ca,

〈e1 e2, γ〉⇓ca〈f(c), δ〉 (f(c), ν)
g∼ 〈f(c), δ〉

which completes this case.

(⇐) If 〈e1 e2, γ〉⇓ca〈i, δ〉 because

〈e1, γ〉⇓cl〈f, ζ〉 〈e2, ζ〉⇓cl〈c, δ〉 u = f(c)

then, recalling that 〈d1, σ, µ〉
h∼ (e1, γ), by induction hypothesis on the deriva-

tion of e1, there exist v, ξ and h1 an extension of h such that

〈d1, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈f, ζ〉

The second condition implies v = f and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→

e2, therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation

of e2, there exist w, ν and g an extension of h1 such that

〈d2, σ, ξ〉⇓ca(w, ν) (w, ν)
g∼ 〈c, δ〉

The second condition implies w = c and ν
g→ δ. Therefore, by definition of

⇓ca,

〈d1 d2, σ, µ〉⇓ca〈f(c), δ〉 (f(c), ν)
g∼ 〈f(c), δ〉

which completes this case.

Composition

If d = (d1; d2), then e = (e1; e2) for e1 = (h ◦ σ)(d1) and e2 = (h ◦ σ)(d2),

therefore 〈d1, σ, µ〉
h∼ 〈e1, γ〉 and 〈d2, σ, µ〉

h∼ 〈e2, γ〉.

(⇐) The derivation of ⇓cl for d shows that

〈d1, σ, µ〉⇓cl((), ξ) 〈d2, σ, ξ〉⇓cl(u, ν)
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for some ξ. By induction hypothesis on the derivation of d1, there exist j, ζ
and h1 an extension of h such that

〈e1, γ〉⇓ca〈j, ζ〉 ((), ξ)
h1∼ 〈j, ζ〉

The second condition implies j = () and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→

e2, therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation

of d2, there exist i, δ and g an extension of h1 such that

〈e2, ζ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓ca,

〈e1; e2, γ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

which completes this case.

(⇒) The derivation of ⇓ca for e shows that

〈e1, γ〉⇓ca〈(), ζ〉 〈e2, ζ〉⇓ca〈i, δ〉

for some ζ. By induction hypothesis on the derivation of e1, there exist v, ξ
and h1 an extension of h such that

〈d1, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈j, ζ〉

The second condition implies v = () and ξ
h1→ ζ. Moreover d2

h1→ e2 since d2
h→

e2, therefore 〈d2, σ, ξ〉
h1∼ 〈e2, ζ〉. By induction hypothesis on the derivation

of e2, there exist u, ν and g an extension of h1 such that

〈d2, σ, ξ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓cl,

〈d1; d2, σ〉µ⇓ca(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

if conditional

If d = (if a then d1 else d2), then e = (if b then e1 else e2) for b = (h ◦ σ)(a),

e1 = (h ◦ σ)(d1) and e2 = (h ◦ σ)(d2), therefore 〈a, σ, µ〉 h∼ 〈b, γ〉, 〈d1, σ, µ〉
h∼

〈e1, γ〉 and 〈d2, σ, µ〉
h∼ 〈e2, γ〉.
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(⇐) The derivation of ⇓cl for d shows that either

〈a, σ, µ〉⇓cl(true, ξ) 〈d1, σ, ξ〉⇓cl(u, ν)

or

〈a, σ, µ〉⇓cl(false, ξ) 〈d2, σ, ξ〉⇓cl(u, ν)

For some ξ. Let us consider the case where 〈a, σ, µ〉⇓cl(true, ξ); the other case
has a very similar proof. By induction hypothesis on the derivation of a, there
exist j, ζ and h1 an extension of h such that

〈b, γ〉⇓ca〈j, ζ〉 (true, ξ)
h1∼ 〈j, ζ〉

The second condition implies j = true and ξ
h1→ ζ. Moreover d1

h1→ e1 since

d1
h→ e1, therefore 〈d1, σ, ξ〉

h1∼ 〈e1, ζ〉. By induction hypothesis on the deriva-
tion of d1, there exist i, δ and g an extension of h1 such that

〈e1, ζ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

Therefore, by definition of ⇓ca,

〈if b then e1 else e2, γ〉⇓ca〈i, δ〉 (u, ν)
g∼ 〈i, δ〉

which completes this case.

(⇒) The derivation of ⇓ca for e shows that either

〈b, γ〉⇓ca〈true, ζ〉 〈e1, ζ〉⇓ca〈i, δ〉

or

〈b, γ〉⇓ca〈false, ζ〉 〈e2, ζ〉⇓ca〈i, δ〉

For some ζ. Let us consider the case where 〈b, γ〉⇓ca〈true, ζ〉; the other case
has a very similar proof. By induction hypothesis on the derivation of b, there
exist v, ξ and h1 an extension of h such that

〈a, σ, µ〉⇓cl(v, ξ) (v, ξ)
h1∼ 〈j, ζ〉

The second condition implies v = true and ξ
h1→ ζ. Moreover d1

h1→ e1 since

d1
h→ e1, therefore 〈d1, σ, ξ〉

h1∼ 〈e1, ζ〉. By induction hypothesis on the deriva-
tion of e1, there exist u, ν and g an extension of h1 such that

〈d1, σ, ξ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉
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Therefore, by definition of ⇓cl,

〈if a then d1 else d2, σ, µ〉⇓cl(u, ν) (u, ν)
g∼ 〈i, δ〉

which completes this case.

while loop

If d = (while a do d1), then e = (while b do e1) for b = (h ◦ σ)(a) and

e1 = (h ◦ σ)(d1), therefore 〈a, σ, µ〉 h∼ 〈b, γ〉 and 〈d1, σ, µ〉
h∼ 〈e1, γ〉. Let

µ0 = µ, γ0 = γ and h0 = h.

(⇒) Let νn = ν. The derivation of ⇓cl for d shows that

〈a, σ, µi〉⇓cl(true, νi) 〈d1, σ, νi〉⇓cl((), µi+1), 0 ≤ i < n

〈a, σ, µn〉⇓cl(false, νn) u = ()

for some n ≥ 0, µ1, . . . , µn, ν0, . . . , νn−1. Let us prove by recurrence on 0 ≤ i <

n that there exists hi, γi such that 〈a, σ, µi〉
hi∼ 〈b, γi〉 and 〈d1, σ, µi〉

hi∼ 〈e1, γi〉.
The result is already true for i = 0, let us suppose it is true for 0 ≤ i < n. By
induction hypothesis on the derivation 〈a, σ, µi〉⇓cl(true, νi), there exist ji, δi
and gi an extension of hi such that

〈b, γi〉⇓ca〈ji, δi〉 (true, νi)
h1∼ 〈ji, δi〉

The second condition implies ji = true and νi
gi→ δi. Moreover d1

gi→ e1 since

d1
hi→ e1, therefore 〈d1, σ, νi〉

gi∼ 〈e1, δi〉. By induction hypothesis on the
derivation 〈d1, σ, νi〉⇓cl((), µi+1), there exist ki, γi+1 and hi+1 an extension of
gi such that

〈e1, δi〉⇓ca〈ki, γi+1〉 ((), µi+1)
hi+1∼ 〈ki, γi+1〉

The second condition implies ki = () and µi+1
hi+1→ γi+1. Moreover a

hi+1→ b

since a
hi→ b and d1

hi+1→ e1 since d1
gi→ e1, therefore 〈a, σ, µi+1〉

hi+1∼ 〈b, γi+1〉
and 〈d1, σ, µi+1〉

hi+1∼ 〈e1, γi+1〉. This completes the recurrence. In particular,

for i = n− 1, 〈a, σ, µn〉
hn∼ 〈b, γn〉. By induction hypothesis on the derivation

〈a, σ, µn〉⇓cl(false, νn), there exist jn, δn and g an extension of hn such that

〈b, γn〉⇓ca〈jn, δn〉 (false, νn)
g∼ 〈jn, δn〉

The second condition implies jn = false, therefore by definition of ⇓ca,

〈while b do e1, γ0〉⇓ca〈(), δn〉 (u, ν) = ((), νn)
g∼ 〈(), δn〉
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which completes this case.

(⇐) Let δn = δ. The derivation of ⇓ca for e shows that

〈b, γi〉⇓ca〈true, δi〉 〈e1, δi〉⇓ca〈ki, γi+1〉, 0 ≤ i < n

〈b, γn〉⇓ca〈false, δn〉 i = ()

for some n ≥ 0, γ1, . . . , γn, δ0, . . . , δn−1. Let us prove by recurrence on 0 ≤ i <

n that there exists hi, µi such that 〈a, σ, µi〉
hi∼ 〈b, γi〉 and 〈d1, σ〉µi

hi∼ 〈e1, γi〉.
The result is already true for i = 0, let us suppose it is true for 0 ≤ i < n.
By induction hypothesis on the derivation 〈b, γi〉⇓ca〈true, δi〉, there exist vi, νi
and gi an extension of hi such that

〈a, σ, µi〉⇓cl(vi, νi) (vi, νi)
h1∼ 〈true, δi〉

The second condition implies vi = true and νi
gi→ δi. Moreover d1

gi→ e1

since d1
hi→ e1, therefore 〈d1, σ, νi〉

gi∼ 〈e1, δi〉. By induction hypothesis on the
derivation 〈e1, δi〉⇓cl((), γi+1), there exist wi, µi+1 and hi+1 an extension of gi
such that

〈d1, σ, νi〉⇓cl(wi, µi+1) (wi, µi+1)
hi+1∼ 〈(), γi+1〉

The second condition implies wi = () and µi+1
hi+1→ γi+1. Moreover a

hi+1→ b

since a
hi→ b and d1

hi+1→ e1 since d1
gi→ e1, therefore 〈a, σ, µi+1〉

hi+1∼ 〈b, γi+1〉
and 〈d1, σ, µi+1〉

hi+1∼ 〈e1, γi+1〉. This completes the recurrence. In particular,

for i = n− 1, 〈a, σ, µn〉
hn∼ 〈b, γn〉. By induction hypothesis on the derivation

〈b, γn〉⇓ca(false, νn), there exist vn, δn and g an extension of hn such that

〈a, σ, µn〉⇓cl(vn, νn) (vn, νn)
g∼ 〈false, δn〉

The second condition implies vn = false, therefore by definition of ⇓cl,

〈while a do d1, σ, µ0〉⇓ca((), νn) ((), νn)
g∼ 〈(), δn〉 = 〈i, δ〉

which completes this case and the proof. 2
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