
Twine: A Chisel Extension for Component-Level

Heterogeneous Design

Shibo Chen Yonathan Fisseha Jean-Baptiste Jeannin Todd Austin

University of Michigan, Ann Arbor

{chshibo, yonathan, jeannin, austin}@umich.edu

Abstract—Algorithm-oriented heterogeneous hardware design
has been one of the major driving forces for hardware im-
provement in the post-Moore’s Law era. To achieve the swift
development of heterogeneous designs, designers reuse existing
hardware components to craft their systems. However, current
hardware design languages either require tremendous efforts
to customize designs, or sacrifice quality for simplicity. Chisel,
while attracting more users for its capability to easily recon-
figure designs, lacks a few key features to further expedite the
heterogeneous design flow. In this paper, we introduce Twine—a
Chisel extension that provides high-level semantics to efficiently
generate heterogeneous designs. Twine standardizes the interface
for better reusability and supports control-free specification with
flexible data type conversion, which saves designers from the busy-
work of interconnecting modules. Our results show that Twine
provides a smooth on-boarding experience for hardware designers,
considerably improves reusability, and reduces design complexity
for heterogeneous designs while maintaining high design quality.

I. INTRODUCTION

As silicon scaling benefits wane, performance improvement

in homogeneous systems is diminishing. Therefore, developers

are building heterogeneous systems to meet distinct demands

for various workloads. However, heterogeneous design in-

evitably drives up the complexity and leads to exponential de-

sign cost growth [1]. One way to counter complexity explosion

is to reuse existing components for new systems.

Although reusing components can effectively reduce cost

and enable fast design iteration, current hardware design tools

do not aim to produce reusable components that can later be

used outside the presumed system. In existing workflows, a

component is tightly bound to the particular system it serves:

the composing component’s timing behaviors and control sig-

nals are only sufficient for the current design. To reuse that

component outside the original system, one needs to adjust the

timing behavior of that component to satisfy new constraints,

which requires developers to understand every detail of the

design. The necessity to understand every detail significantly

lowers productivity and component reusability, a phenomenon

that software engineering research has long recognized [2].

Moreover, for a scalable system, the growing size of the system

and the large number of components involved would quickly

make control signal coordination hard to manage manually.

The design complexity will further increase if the composing

components do not share the same data format. These situations

create new challenges for hardware designers as the design be-

comes intellectually impenetrable, making designing hardware

an expensive and error-prone process.

In our opinion, existing popular hardware description lan-

guages (HDL) do not sufficiently address the above problem,

leaving designers to toil through the construction, debugging,

and deployment of complex heterogeneous designs. Conven-

tional HDLs, such as SystemVerilog [3] and VHDL [4], abstract

I/O interfaces as low-level ports and do not distinguish between

data and control. The low-level semantics of HDLs pose no

requirement on a component’s behavior, which puts the respon-

sibility of understanding component behaviors and accommo-

dating their incompatibilities entirely on designers. While some

synthesis tools may provide building blocks, it is highly vendor-

dependent, making it hard to port designs for different target

devices. On the other hand, High-level Synthesis (HLS), such as

Vivado HLS [5] and SystemC [6], allows designers to translate

software designs directly to hardware representations. Although

HLS significantly improves productivity by abstracting away

low-level hardware details, recent studies show that, in most use

cases, it cannot achieve the same design quality as HDL-based

designs [7]. Nonetheless, HDLs remain very popular despite

the power of HLS, thus, in this work, we seek to improve the

heterogeneous design capabilities of the popular HDL Chisel.

Chisel [8] is a Scala-based hardware generation language

that has been drawing much attention in recent years. While

Chisel brings polymorphism to hardware design and provides

standard components to enhance productivity, Chisel does not

raise the abstraction level enough to significantly tame the

challenges of heterogeneous design. Therefore, designers still

need to coordinate control signals by hand and face the same

challenges as they would using a more conventional HDL.

To better address the challenges posed to the designers

of heterogeneous systems, we designed Twine. Built upon

Chisel, Twine preserves all the power and strength that Chisel

already carries, while also introducing the following features

that help alleviate much of the burden of designing scalable

heterogeneous systems:

• Standard component-level control interfaces that support

parameterization, buffering, and reordering.

• High-level specification of component-level producer/con-

sumer relations and dataflow.

• Automation of system-level control signal coordination

and flexible data format conversion.

Standard interfaces generalize components to meet most sys-

tem design requirements. High-level semantics and automation

make scaling and reconfiguring systems more manageable. Our

evaluation shows that Twine can simplify heterogeneous design



// Input operands for FMA operation

class FPFMAOps(val numBit:Int,

val entries:Int) extends Bundle{

val op1 = Vec(entries,new FP(numBit))

val op2 = Vec(entries,new FP(numBit))

val op3 = Vec(entries,new FP(numBit)) }

// Input operands for Sqrt operation

class FPSqrtOp(val numBit:Int,

val entries:Int) extends Bundle{

val op = Vec(entries,new FP(numBit)) }

// Output Result

class FPResult(val numBit:Int,

val entries:Int) extends Bundle{

val result = Vec(entries, new FP(numBit)) }

class FPFMA(val numBit:Int,

val entries:Int) extends TwineModule{

1© val in = Input(new FPFMAOps(numBit, entries))

val out = Output(new FPResult(numBit, entries)

val ctrl = new DecoupledIOCtrl(1,2)

/*Computation logic for FMA(fused multiply-add) */ }

class FPSqrt(val numBit:Int,

val entries:Int) extends TwineModule{

2© val in = Input(new FPSqrtOp(numBit, entries))

val out = Output(new FPResult(numBit, entries))

val ctrl = new ValidIOCtrl(2)

/*Computation logic for Sqrt */ }

class TopLevelDesign extends TwineModule{

3© val in = Input(new FPFMAOps(32,8))

val out = Output(new FPSqrtOps(16,4))

val ctrl = new DecoupledIOCtrl(3,2)

val fma1 = Module(new FPFMA(32,4))

val fma2 = Module(new FPFMA(32,2))

val sqrt1 = Module(new FPSqrt(16,2))

val sqrt2 = Module(new FPSqrt(16,2))

4© in >>> fma1 >>> sqrt1

5© in.op1 >>> sqrt2

6© TwineBundle(sqrt1, sqrt2, sqrt2) >>> fma2

7© fma2 >>> ctrl

}

Listing 1: An example of Twine in action. The highlighted lines show
the features of Twine extensions, with the rest of the lines showing
syntax and semantics of Chisel.

while retaining the high design quality of hand-built, low-level

HDL designs.

II. TWINE OVERVIEW

In this section, we will demonstrate the features of Twine

with a running example shown in Listing 1. In this example,

the top-level component is computing

out :=
√

in.op1 · in.op2 + in.op3 ·
√

in.op1 +
√

in.op1

The top level design is composed of the four components fma1,

fma2, sqrt1, and sqrt2 as shown in Figure 1. Component

fma1 and fma2 both take 32-bit floating point inputs and have

vectorization of 4 and 2 respectively. The components sqrt1

and sqrt2, on the other hand, implement 16-bit floating point

and can take 2 inputs at each cycle.

In a traditional HDL, the developers would be concerned

about serialization, type conversion between component in-

terfaces, and excessive control complexity caused by the ad-

ditional auxiliary codes. To relieve developers from complex

fma1 sqrt1

fma2in out

sqrt2

Fig. 1: An example of producer/consumer relations of components

control signal coordination and timing analysis at the high-

level, Twine has the following enhancements.

Twine standardizes I/O and control interface. Twine pro-

vides four standard interfaces and requires designers to choose

one of them when designing their components. The four stan-

dard interfaces are TightlyCoupledIOCtrl, ValidIOCtrl,

DecoupledIOCtrl, and OutOfOrderIOCtrl. Twine imposes

timing requirements on how components use the interfaces

through sanity checks. 1©, 2©, and 3© in Listing 1 show exam-

ples of Twine interfaces. In Twine, each hardware component

is a TwineModule which defines three variables:

• in: all input ports of the component

• out: all output ports of the component

• ctrl: the standard control interface used

Such requirements make understanding component behaviors

considerably easier. The standard interface enables Twine to

implement high-level semantics and automation to simplify

the design process. We describe the details of the standard

interfaces in Section II-A.

Twine provides expressive high-level semantics to specify

dataflow and producer/consumer relations. As we mentioned

above, Twine abstracts away the control logic and timing behav-

iors in the high-level design specification. As such, Twine offers

a set of semantics that are more expressive than those in current

design languages. It is more intuitive for developers to directly

define producer/consumer relations at the high level, rather than

connecting low-level ports and control signals. In Twine, a

new operator >>> directly specifies the relationships between

components and data ports. 4©, 5©, 6©, and 7© in Listing 1

show the use of Twine’s high-level connection operator between

modules and between separate values and a module.

Twine automates system-level control signal coordination

and data format conversion between components. There are

two key challenges when assembling pipelines, especially for

reconfigurable accelerators: coordinate the control signals and

convert data between the boundary of components. These two

tasks are often considered ‘busy-work,’ where designers need

to put in considerable effort to implement them correctly while

getting little value out of doing them.

Twine automates the assembly stage for developers. Based

on the producer/consumer relations and the interface of each

component, Twine first inserts necessary buffers and converters

as intermediate components between each component. Twine

then connects the data ports to the corresponding components

or its newly-generated intermediate components. Lastly, Twine

coordinates the control signals through the standard interfaces



to finish the last step of interconnection. As shown in Listing 1,

developers do not have to insert auxiliary logic to adapt differ-

ent interfaces and re-specify control logic: they are automated

in Twine. This feature is particularly useful during design space

exploration with parameterization.

A. Control Interface Abstraction

In this section, we describe the four standard control inter-

faces in Twine and the differences between each interface.

Standard interfaces, like Advanced eXtensible Interface

(AXI), have been widely adopted in industry as common

practice. However, most standard interfaces, like AXI, are

overly complex and inflexible for intra-core communication.

Other interfaces, (e.g., DecoupledIO in Chisel), only define

a set of I/O ports. The language neither requires users to use

standard interfaces in their designs nor enforces the way those

standard interface ports should be used, which limits the utility

of having standard interfaces in the first place.

Enforcing the use of standard interfaces makes hardware

components more predictable when reusing them in the high-

level design. Twine provides four standard control interfaces

that free developers from understanding each component in

detail. We describe the four interfaces below and discuss the

further extension of those interfaces in Section V.

TightlyCoupledIOCtrl

Module

in
out

stallstuck

(a) TightlyCoupledIOCtrl

ValidIOCtrl

Module

in out

stallstuck

valid valid

(b) ValidIOCtrl

DecoupledIOCtrl

Module

in out

valid valid

ready ready
Input Buffer Output Buffer

(c) DecoupledIOCtrl

OutOfOrderIOCtrl

Module

in out

valid valid

ready ready

Dispatch Buffer Reorder Buffer
tick_num tick_num

(d) OutOfOrderIOCtrl

Fig. 2: Four standard interfaces in Twine.

1) TightlyCoupledIOCtrl: TightlyCoupledIOCtrl is de-

signed for the components with constant latency and simple

timing behaviors (e.g., a pipelined multiplier that always takes

4 cycles to compute the result). It has the simplest interface and

the lowest overhead. Since the input and output of this interface

are tightly coupled together, it cannot accommodate variable

latency. As shown in Figure 2a, TightlyCoupledIOCtrl has

two control signals: stall and stuck. The component neither

consumes nor produces if stall or stuck signal is asserted;

otherwise, it takes inputs and produces outputs every cycle.

2) ValidIOCtrl: ValidIOCtrl is designed to be more

flexible than TightlyCoupledIOCtrl to support non-

deterministic latencies during execution while maintaining low

overhead. As shown in Figure 2b, ValidIOCtrl implements

an additional pair of valid bits at both ends, which allows the

input side to be only loosely-coupled with the output side.

The two new signals introduced in ValidIOCtrl are valid

signals. The input valid bit notifies the component of new

available inputs; and the output valid bit signals the external

system to handle the new results produced by the component.

TightlyCoupled Valid Decoupled OutOfOrder

Flexibility Very low Low High High

Overhead Low Low High High

Req. fixed lat.* Yes No No No

Out-of-Order No Intra.* Intra. Inter.*

Backpressure Yes Yes No No

TABLE I: Comparison between different interfaces. *Req. fixed lat.:
Require Fixed Latency, Intra.: Intra-module, Inter.: Inter-module

3) DecoupledIOCtrl: While ValidIOCtrl has increased

flexibility, it cannot locally buffer the backpressure from down-

stream components, so the backpressure will propagate further

upstream and stall more components. DecoupledIOCtrl

is the first control interface in Twine where the inputs and

outputs are entirely decoupled. DecoupledIOCtrl supports

FIFO buffers at both ends of the component to accommo-

date backpressure locally. Those buffers can be easily cus-

tomized and generated through parameters during declaration.

As shown in Figure 2c, DecoupledIOCtrl implements

valid/ready pairs at both ends of the component. Valid/ready

pairs provide a handshake mechanism to adapt to more complex

control logic. 1© in Listing 1 shows the declaration of a

DecoupledIOCtrl with 1 and 2 buffer entries on the input

end and the output end of the component respectively.

4) OutOfOrderIOCtrl: For operations that have large latency

variances (e.g., memory access), out-of-order execution is nec-

essary to exploit parallelism. OutOfOrderIOCtrl, shown

in Figure 2d, is the interface designed for such use cases. It

is one of the most flexible but the most complex interfaces.

The request that goes into an out-of-order component would

be assigned a ticket number tick_num to enable out-of-order

process and completion. At the end of execution, the requests

would be either automatically reordered with tick_num or

passed on to another out-of-order component. Buffer manage-

ment and reordering are transparent to developers so they only

need to focus on handling incoming requests.

Comparison Between Interfaces: Table I provides a qualita-

tive comparison of interfaces. As a rule of thumb, components

with naı̈ve timing behaviors should use low overhead interfaces;

those with complex functionalities and long latency operations

should implement the more flexible interfaces.

Adapting and Reusing Existing Designs in Twine: There

are two ways to adapt and reuse existing designs, in either

Verilog or Chisel, in Twine. First, the developers can extend

a TwineAdaptionModule and implement one of the four

standard Twine control interfaces without changing the internal

logic of the existing designs. The extended module can take

the fullest advantage of Twine’s automation framework and

be integrated to the existing Twine ecosystem seamlessly. The

second way is to integrate the existing modules manually.

Developers can benefit from the part of the system which

implements Twine interfaces without sacrificing anything on

the parts that do not implement Twine interfaces.

B. Specifying Producer/Consumer Relations and Dataflow

To improve the efficiency of specifying designs, Twine pro-

vides a set of semantics to express producer-consumer relations

rather than low-level port connections. The producer/consumer

model abstracts away the timing behaviors and control signals



component consumer producer p-stakeholder c-stakeholder

top fma1,sqrt2 fma2 N/A N/A
fma1 sqrt1 top N/A sqrt2
fma2 top sqrt1, sqrt2 N/A N/A
sqrt1 fma2 fma1 sqrt2 N/A
sqrt2 fma2 top sqrt1 fma1

TABLE II: The relationship between components in a system shown
in Figure 1 and specified in Listing 1

and allows users to focus entirely on data dependency. Such

design philosophy makes design much more intuitive and

enables high-level design automation. Twine needs to collect

information of data dependency between each component to

synthesize system control logic. To analyze the data depen-

dency, we label each component with producer, consumer,

and/or stakeholder, relative to its neighboring components. The

consumers are the components that take in values directly from

the current module. The producers are the components that

the input data originates from. A stakeholder is a component

that needs to monitor the status of the other module to make

control decisions. For example, when there is one producer with

multiple consumers, the producer can only release the results

when all consumers are ready to consume. In such a case,

each consumer needs to monitor the status of other consumers

to avoid duplication and ensure correctness. There are two

types of stakeholder: producer-stakeholder (p-stakeholder) and

consumer-stakeholder (c-stakeholder). P-stakeholders share at

least one common consumer and c-stakeholders share at least

one common producer. Taking the design shown in Listing 1

and Figure 1 as an example, relations between the components

are shown in Table II. Component sqrt1 and sqrt2 are p-

stakeholders for sharing a common consumer fma2; fma1 and

sqrt2 are c-stakeholders for sharing a common producer top.

Users only specify the producer/consumer relations in the

specification. The stakeholder relations are determined by

Twine during elaboration. Users can specify a producer/con-

sumer relationship between any two Twine objects with >>>

operator as producer >>> consumer. Twine will match the ports

on both sides if a bundle of ports are provided and infer the

producer/consumer relations from the matching ports.

C. Component Interconnection Automation

Based on the component interfaces and high-level specifi-

cation of producer/consumer relations, Twine automates two

challenging parts of the design: control signal coordination and

data format conversion between components.

Control signals in a hardware design determine when a

component should consume and release the data. For each

component, Twine checks the component status and control

its behaviors through a set of pre-defined signals. Twine then

elaborates the system control logic based on the interface each

component uses and the high-level specification that describes

the interconnection between components.

A type conversion happens when the two connecting ports

have different data types. At the current stage of development,

Twine supports automatic conversion between unsigned/signed

integers and common formats of floating point data (i.e., 8-bit,

16-bit, 32-bit, 64-bit). The framework can be easily extended to

support more types as needed. Twine will automatically insert

0 2 4 6 8 10
Area (Normalized to Baseline)

0.2

0.4

0.6

0.8

1.0

La
te

nc
y 

(N
or

m
al

ize
d 

to
 B

as
el

in
e)

Vectorization = 1 (20, 61, 81)

Vectorization = 2 (20, 92, 134)

Vectorization = 1
 (83, 223, 276)

Vectorization = 2
 (83, 262, 332)

Vectorization = 4
 (83, 262, 332)

# of Lines of Code in
(Twine, Chisel, Verilog)

Pareto Frontier
MemWidth = 1
MemWidth = 2
MemWidth = 3
MemWidth = 4

Fig. 3: Pareto chart of a data processing accelerator design space.
MemWidth represents the number of requests that the accelerator can
read from or write to memory each cycle. Performance is measured
as the average latency of processing a batch of 80 requests.

a converter to adapt different types when it detects mismatched

data types at the two ends of connection.

III. IMPLEMENTATION

In this section, we describe the implementation of Twine.

Twine is completely backward-compatible with Chisel and sup-

ports all Chisel functionalities. Developers can opt in to Twine

for their design by simply inheriting from TwineModule

when declaring components. A TwineModule can be used

as a normal Chisel module as well. When a Twine operation is

evaluated, it translates to a set of Chisel operations, inserts con-

version components where needed, and registers the connection

information into the Twine profile—a collection of information

that guides the synthesis of the system at later stages. The

connections between components are only complete after all

statements have been evaluated and the context information has

been fully collected. We add hooks into the Chisel elaboration

phase to initiate Twine synthesis after all statements have been

evaluated. Twine then analyzes the producer/consumer relations

to finalize connections for control coordination.

The workflow from Twine to FIRRTL are as follows(Twine-

specific steps are marked with ∗):

1. Generate low-level components using Chisel. Twine com-

ponents are implemented with a standard Twine interface.∗

2∗. Collect high-level information from Twine specification.

3∗. Generate necessary buffers and converters. Insert them

into the right locations based on the high-level specification.

4∗. Reconstruct roles and relations of Twine components.

5∗. Coordinate control signals. Interconnect all components.

6. Compile Chisel primitives into FIRRTL representation.

7∗. Checks that components meet the required standards to

generate correct Twine design (e.g., TightlyCoupledIOCtrl

module has fixed latency, ready and valid signals in

DecoupledIOCtrl are not interdependent).

8. Emit finalized FIRRTL files.

IV. RESULTS

We evaluate Twine by design productivity and design quality.

Design Productivity: To evaluate productivity, we de-

signed a modular data processing component library. The

library includes components that are essential to many data

processing workloads (e.g., aggregate, column filter, boolean



Chisel w/ Twine SystemVerilog VHDL Chisel HDL Bluespec Verilog SpinalHDL V++ PyMTL MyHDL

Reusable Standard Interface ✓ ✗ ✗ X– X– X– ✓ ✗ ✗

Design Elaboration ✓ X– X– ✓ X– ✓ X– ✓ ✓

Component-level Semantics ✓ ✗ ✗ ✗ ✗ X– ✓ ✗ ✗

Built-in Queueing ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Built-in Control Coordination ✓ ✗ ✗ ✗ ✗ X– X– ✗ ✗

Built-in Data Formatting ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Built-in Serialization ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Easy Parameterization ✓ X– X– ✓ ✗ ✓ ✗ ✓ ✓

TABLE III: Twine compared to other popular hardware design languages on features that help with heterogeneous design.
✓= fully supported; ✗= not supported; X–= partially supported

generation). We use building blocks to assemble an acceler-

ator that speeds up the processing of complex SQL queries.

The accelerator first filters out the selected rows, then adds

two columns together, and lastly aggregates results by the

key. We explore the design space by exploiting request-level

parallelism and data-level parallelism. We exploit the request-

level parallelism by adding more components at the front end

to filter multiple requests concurrently and exploit data-level

parallelism by vectorizing the ALU.

We hand built 12 different design configurations with various

memory bandwidths and degrees of vectorization to find the

optimal design balances between performance and area. To

take advantage of increased memory bandwidth, developers

need to put more components onto the system to exploit the

data parallelism while considering area and power budget. The

degree of vectorization will cause the component interface to

change, thus developers need to adapt and buffer the data

between the vectorized modules and non-vectorized modules.

These two tunable parameters will lead to a process in which

the developers need to add, remove, change, and reconnect

hardware components, which is common in the design space

exploration phase of heterogeneous design.

We first simulate the accelerators in Verilator to estimate

the average number of cycles each design takes to process

80 requests. Then we synthesize each configuration to get the

clock period and the area estimation. Since we focus on the

evaluation of design methodology rather than the design itself,

we use performance and area as examples in this experiment.

The developer can measure different metrics based on their

targets. The performance is measured as the average latency

required to process 80 requests. Figure 3 shows the 12 different

configurations we explored with regard to performance/area.

Through the figure, we are able to identify and call out five

Pareto optimal configurations.

We then compared the handwritten implementations in three

different design languages: Twine, Chisel, and SystemVerilog.

Figure 4 shows the number of components and the total number

of lines required to assemble the eight most representative con-

figurations in different languages. We count the number of line

changes for each language to specify every target configuration

from the baseline design where the accelerator can read one

request per cycle and has only one ALU. Thanks to high-level

specification and automation, the number of changes in Twine

is only affected by the numbers of new components and new

producer/consumer relations, while implementations in Chisel

and SystemVerilog have to consider timing behaviors and data

formats. In Chisel and SystemVerilog, we need to manually

0 50 100 150 200 250 300
# of Lines

Mem=4, Scalar ALU
40 components

Mem=4, Single ALU
40 components

Mem=3, Scalar ALU
30 components

Mem=3, Single ALU
30 components

Mem=2, Scalar ALU
20 components

Mem=2, Single ALU
20 components

Mem=1, Scalar ALU
10 components

Mem=1, Single ALU
10 components

(Baseline)

Twine
Chisel
SystemVerilog

# of Total Lines
# of Lines Changed
# of Total Lines
# of Lines Changed

Fig. 4: The number of lines needed for different configurations
when implemented in Twine, Chisel, and SystemVerilog. The hatched
portion represents the number of changed lines compared to the
baseline with the memory bandwidth of 1 row of data and a single
ALU that processes 1 row at a time.

coordinate signals for each new component and modify the

control signals for the existing ones that are indirectly impacted

by the new configuration; in Twine, such tasks are automated

during design elaboration. Our results show designers write and

modify significantly less code in Twine to assemble a new scal-

able system with reusable components, resulting in improved

productivity and facilitation of design space exploration.

Design Quality: To verify that Twine achieves comparable

design quality to Chisel, we ported an in-order RISC-V core

[9] from Chisel to Twine. In the original design, the datapath,

all stage registers, and the control logic are specified inside one

monolithic module. In the Twine design, all function units and

stages are encapsulated into 9 separate modules. The top-level

module only specifies the dataflow between modules and the

communication between the datapath and the cache. Table IV

shows a comparison of area and frequency between the two

designs synthesized with IBM 45nm SOI12S0 CMOS process.

Twine is able to achieve approximately the same performance

comparing to the Chisel design. The marginal variance between

the two designs is due to slight interface differences.

RISCV-MINI in Chisel RISCV-MINI in Twine

Area 727004.94 725937.9 (-0.14%)

Clock Period 0.85 ns 0.82 ns (-3.5%)

TABLE IV: Area and frequency comparison of RISCV-MINI in
Chisel and Twine.

Limitations: During our evaluation, we identified a few

cases where the highly structured nature of Twine led to

negative impacts on design quality. First, the standard interfaces

in Twine are not sufficiently flexible for designs to change

processing granularity dynamically. A component may dy-

namically decide to either batch requests together for higher



throughput or proceed immediately for lower latency. Since the

conversion logic is finalized during generation, the component

cannot change it during execution. To get around this limitation,

developers can fall back to Chisel to specify control and

conversion logic manually or integrate the functionality inside

the module. Meanwhile, dynamic scheduling can be easily

achieved through software. Second, there may be missed cross-

module optimization opportunities. Since Twine imposes high

modularity requirements, developers may not be able to easily

identify cross-module optimization opportunities (e.g., early

forwarding). However, such opportunities are usually hard to

find and exploit in scalable heterogeneous systems.

V. FUTURE WORK

We plan to further extend Twine to address current limita-

tions and further help developers improve productivity:

Customizable interface and protocol: We are working

on abstracting and decoupling the interface definition and

implementation so that users can easily modify the existing

interface and protocol or add new ones into the Twine workflow.

Better verification and debugging capability: Twine en-

ables us to verify properties without going down to the RTL

level. We are formalizing semantics and developing a verifica-

tion framework to verify high-level properties of the designs.

VI. RELATED WORK

In recent years, many hardware design languages have

been proposed to improve design productivity. Table III com-

pares Twine with other popular hardware design languages on

features that help developers design heterogeneous systems.

Chisel [8] enables polymorphism in hardware design workflow

and provides the flexibility to dynamically generate hardware

designs. Chisel provides optional pre-defined interface, e.g.,

Valid and Decoupled. However, the semantics of the pre-

defined ports are not specified, thus the automation of control

coordination is a challenge. It also lacks the functionality to

help developers match the data format and queue the data

in the presence of backpressure or out-of-order execution.

V++ [10] proposes using compiler-generated communication

channel with a multiple-writer-single-reader model as a ho-

mogeneous communication mechanism. However, such an in-

terface is overly expensive for light modules, which leads to

high and unnecessary performance, power, and area overhead.

SpinalHDL [11] provides stream component interface, which

is similar to DecoupledIO. However, the communication

behaviors are only well-defined between two components thus

do not support system-level elaboration. SpinalHDL does not

provide queueing and data format adapting capability for the

stream component interface. BaseJump STL [12] provides a

standard hardware component library with templates but lacks

the system-level automation between components.

Other hardware design languages are not designed to address

the challenges that developers are facing in heterogeneous

design. PyMTL [13] and MyHDL [14] are two Python-based

HDLs, aiming to make hardware design more accessible by

providing a Python frontend. However, they provide compa-

rable gate-level semantics to existing HDLs and lack crucial

features for easy meta-programming, which is fundamental for

accessible heterogeneous design. Wire sorts [15] is designed to

verify the correctness of component interconnections.

In comparison, Twine provides multiple universal interfaces

to meet the design needs and provides system-level solutions

for large-scale heterogeneous systems rather than partial au-

tomation that only works locally. Twine provides automation

capabilities that are essential for fast design space exploration.

VII. CONCLUSION

In this paper, we discuss the emerging challenges hardware

designers face in the new age of heterogeneous designs. We

propose Twine, a Chisel extension that supports component-

level abstraction to improve accessibility and productivity.

Twine standardizes component interface, provides high-level

semantics, and automates system-level control coordination

with inter-component data format adaption. Our results show

that Twine is easy to learn, easy to use, and considerably

improves productivity for designing heterogeneous hardware.

Our initial version of Twine has been released and is acces-

sible at https://github.com/Twine-Umich/Twine. We encourage you

to try it out, and we welcome your feedback.

VIII. ACKNOWLEDGEMENT

This work was supported by the Applications Driving Archi-

tectures (ADA) Research Center, a JUMP Center co-sponsored

by SRC and DARPA.

REFERENCES

[1] A. Olofsson, “Silicon Compilers-Version 2.0,” keynote, Proc. ISPD, 2018.
[2] P. Hallam, “What Do Programmers Really Do Anyway,” Microsoft

Developer Network (MSDN)—C# Compiler, 2006.
[3] SystemVerilog Standard. [Online]. Available: https://standards.ieee.org/p

roject/1800.html
[4] VHDL IEEE 1076-2019. [Online]. Available: https://standards.ieee.org/s

tandard/1076-2019.html
[5] Vivado HLS. [Online]. Available: https://www.xilinx.com/video/hardwar

e/vivado-hls-tool-overview.html
[6] SystemC. [Online]. Available: https://www.accellera.org/downloads/stan

dards/systemc
[7] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are We There

Yet? A Study on the State of High-Level Synthesis,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, 2019.

[8] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in
a Scala Embedded Language,” in DAC Design Automation Conference

2012, 2012, pp. 1212–1221.
[9] D. Kim. RISCV-Mini. [Online]. Available: url:https://github.com/ucb-b

ar/riscv-mini
[10] P. C. McGeer, S.-T. Cheng, M. J. Meyer, and P. Scaglia, “Hardware

Design Language for the Design of Integrated Circuits,” Jul. 16 2002,
uS Patent 6,421,808.

[11] C. Papon. SpinalHDL. [Online]. Available: https://github.com/SpinalHDL
[12] M. B. Taylor, “Invited: Basejump stl: Systemverilog needs a standard

template library for hardware design,” in 2018 55th ACM/ESDA/IEEE

Design Automation Conference (DAC), 2018, pp. 1–6.
[13] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A Unified Framework for

Vertically Integrated Computer Architecture Research,” in 2014 47th An-

nual IEEE/ACM International Symposium on Microarchitecture. IEEE,
2014, pp. 280–292.

[14] MyHDL. [Online]. Available: http://www.myhdl.org/
[15] M. Christensen, T. Sherwood, J. Balkind, and B. Hardekopf, “Wire sorts:

A language abstraction for safe hardware composition,” in Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, ser. PLDI 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 175–189.
[Online]. Available: https://doi.org/10.1145/3453483.3454037


