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Abstract
Building software-defined network controllers is an

exercise in software development and, as such, likely
to introduce bugs. We present CoCoNet, a framework
for SDN development that facilitates both the design and
verification of complex networks using stepwise refine-
ment to move from a high-level specification to the final
network implementation.

A CoCoNet user specifies intermediate design levels
in a hierarchical design process that delineates the mod-
ularity in complicated network forwarding and makes
verification extremely efficient. For example, an enter-
prise network, equipped with VLANs, ACLs, and Level
2 and Level 3 Routing, can be decomposed cleanly into
abstractions for each mechanism, and the resulting step-
wise verification is over 200x faster than verifying the
final implementation. CoCoNet further separates static
network design from its dynamically changing configu-
ration. The former is verified at design time, while the
latter is checked at run time using statically defined in-
variants. We present six different SDN use cases includ-
ing B4 and F10. Our performance evaluation demon-
strates that CoCoNet is not only faster than existing ver-
ification tools but can also find many bugs statically be-
fore the network design has been fully specified.

1 Introduction
Software-defined networks (SDNs) are a popular and

flexible means of implementing network control. In an
SDN, a logically-centralized controller governs network
behavior by emitting a stream of data-plane configura-
tions in response to network events such as changing traf-
fic patterns, new access control rules, intrusion detection,
and so on. But decades of research and industry expe-
rience in software engineering have shown that writing
bug-free software is far from trivial. By shifting to soft-
ware, SDNs trade one form of complexity for another.

Data-plane verification has risen in popularity with
SDNs. As the controller generates new forwarding con-

figurations, tools like Header Space Analysis (HSA) and
Veriflow [15, 16] verify that safety properties hold for
each configuration in real time. Network operators can
rest assured that access control violations, routing loops,
and other common misconfiguration errors will be de-
tected before being deployed.

This style of verification is an important safeguard, but
falls short in several ways.

Design. Applying verification techniques early in the
development cycle saves effort by catching bugs as soon
as they are introduced. But correctness properties often
depend on many mechanisms spanning many different
levels of abstraction and time scales. Thus the entire
controller must be implemented before data-plane verifi-
cation can be utilized. Furthermore, data-plane verifica-
tion catches bugs once the controller has been deployed
in a live network, making it hard to fix the bug without
disrupting network operation.

Debugging. Verifying detailed, whole-network con-
figurations makes debugging difficult: It is difficult to
pinpoint which part of the controller caused a particular
property violation in the final configuration.

Scalability. Although existing tools verify one prop-
erty for a realistic network in under a second, the num-
ber of checks can scale non-linearly with network size.
For example, checking connectivity between all pairs re-
quires a quadratic number of verifier invocations [26].
Thus practical verification at scale remains elusive.

Ideally, the controller software itself might be stati-
cally verified to guarantee it never produces configura-
tions that violate safety properties. But proving arbitrary
software programs correct is a frontier problem. Recent
work has proposed full controller verification, but only
for controllers with limited functionality [3].

We propose a middle ground—a correct-by-
construction SDN design framework that combines
static verification with runtime checks to efficiently ver-
ify complex SDNs, detecting most bugs at design time.
Our framework, called CoCoNet, consists of an SDN



programming language, a verifier for this language, and
a compiler from the language to data-plane languages:
NetKAT [2] and P4 [4].

CoCoNet is based on two principles. First, it enables
SDN design by stepwise refinement. A network pro-
grammer begins by specifying a high-level view which
captures the network’s behavior from an end host per-
spective. Such a specification might say: “A packet sent
by a host is delivered to the destination host if and only
if the source is not blacklisted by the network security
policy”, while eliding details such as forwarding or ac-
cess control mechanisms. In essence, this high-level
view specifies correct network behavior. The network
engineer continues by refining the underspecified parts
of the design, filling in pieces until sufficient detail ex-
ists to deploy the network. A refined specification may
state: “End hosts are connected via Ethernet switches to
zone routers, which forward packets between zones via
the core network, while dropping packets that violate se-
curity policy.”

CoCoNet automatically verifies that each refinement
preserves the behavior of the higher-level view of the net-
work by reducing each refinement to a Boogie program
and using the Corral verifier to check this program for re-
finement violations [18]. Bugs are immediately detected
and localized to the step in which they are introduced.
The refinement relation is transitive, and so CoCoNet
guarantees that the lowest-level implementation refines
the highest-level specification.

Second, CoCoNet separates static network design
from its run-time configuration. While refinements
specify static invariants on network behavior, dynamic
configuration is captured by runtime-defined functions
(RDFs). In the above example the hosts and exact secu-
rity policy are not known at design time and serve as de-
sign parameters. They are specified as RDFs, i.e., func-
tions that are declared but not assigned a concrete defini-
tion at design time. RDFs are generated and updated at
run time by multiple sources: the SDN controller report-
ing a new host joining, the network operator updating
the security policy, an external load balancer redistribut-
ing traffic among redundant links, etc. Upon receiving
an updated RDF definition, the CoCoNet compiler gen-
erates a new data plane configuration.

To statically verify the design without knowing the ex-
act configuration, CoCoNet relies on static assumptions.
At design time, RDFs can be annotated with assumptions
that constrain their definitions. For example, the topol-
ogy of the network may be updated as links come up and
down, but each refinement may only need to know that
the topology remains connected. At run time, CoCoNet
checks that RDF definitions meet their assumptions. This
separation minimizes real-time verification cost: most of
the effort has been done up-front at design time.
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Figure 1: CoCoNet architecture.

Hence, CoCoNet decomposes verification into two
parts, as shown in Figure 1. Static verification guaran-
tees correctness of all refinements; this verification is
done once, before network deployment. Dynamic ver-
ification checks that behaviors supplied at run time (by
updating RDFs) meet the assumptions each refinement
makes about run-time behaviors.

Although we apply our techniques to SDNs in this pa-
per, they are equally applicable to traditional networks.
In particular, stepwise refinement may help find bugs in
potentially messy interactions between mechanisms such
as VLANs and ACLs, and check that forwarding state
matches the assumptions made in the specification.

Contributions The main contribution of this paper is
a network design and verification methodology based
on step-wise refinement and separation of static and dy-
namic behavior. We evaluate this methodology by im-
plementing it in the CoCoNet tool chain and applying it
to design and verify six realistic network architectures.
Our performance evaluation demonstrates that CoCoNet
is faster than existing data-plane verification tools, while
also being able to find many defects statically, even be-
fore the network design has been fully specified.

2 CoCoNet by Example
In this section, we introduce features of CoCoNet by

implementing and verifying a variant of the enterprise
network design described by Sung et al. [29], simpli-
fied for the sake of presentation. Figure 2 shows the in-
tended network design. Hosts are physically partitioned
into operational zones, such as administrative buildings,
and grouped by owner into IP subnets symbolized by
colors—hosts in each zone are often in the same subnet,
but not always. Intra-subnet traffic is unrestricted and
isolated by VLAN, but traffic between subnets is subject
to an access control policy.
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Figure 3: Refinement plan for the running example.

Each operational zone is equipped with a gateway
router. Each router is also associated with a subnet and
implements access control: Inter-subnet traffic must first
traverse the gateway tied to its source subnet followed
by the gateway associated with its destination subnet.
The details of access control may change as the network
runs, but all inter-subnet traffic must always traverse the
gateways that implement access control. The path high-
lighted with a dashed blue line in Figure 2 illustrates traf-
fic from a host in subnet 2 to one in subnet 1.

Our refinement strategy is illustrated in Figure 3. At a
high level, the goals of the network are simple: Group
hosts by subnet, allow intra-subnet traffic, and sub-
ject inter-subnet traffic to an access control policy (Fig-
ure 3a). The first refinement splits the network into oper-
ational zones and distributes access control checks across
gateway routers (Figure 3b). The second and third refine-
ments detail the L2 switching fabric inside zones and the
core (Figure 3c and d).

We now formalize these refinements in the CoCoNet
language, introducing key language features along the
way. Figure 4 shows the high-level specification that

1typedef uint<32> IP4
2typedef uint<12> vid_t
3typedef struct {
4 vid_t vid,
5 IP4 srcIP,
6 IP4 dstIP
7} Packet
8

9function cHost(IP4 addr): bool
10function cSubnet(vid_t vid): bool
11function acl(Packet p): bool
12function ip2subnet(IP4 ip): vid_t
13assume(IP4 addr) cHost(addr)=>cSubnet(ip2subnet(addr))
14function sameSubnet(vid_t svid, vid_t dvid): bool =
15 svid == dvid;
16

17role HostOut[IP4 addr] | cHost(addr) =
18 let vid_t svid = ip2subnet(pkt.srcIP);
19 let vid_t dvid = ip2subnet(pkt.dstIP);
20 filter addr == pkt.srcIP;
21 filter sameSubnet(svid, dvid) or acl(pkt);
22 filter cHost(pkt.dstIP);
23 send HostIn[pkt.dstIP]
24

25role HostIn[IP4 addr] | cHost(addr) = filter false

Figure 4: High-level specification of the running example.

matches Figure 3a.

Roles The main building blocks of CoCoNet specifica-
tions are roles, which specify arbitrary network entities:
hosts, switches, routers, etc. A role accepts a packet,
possibly modifies it and forwards to zero or more other
roles. Roles are parameterized, so a single role can spec-
ify a set of similar entities, allowing a large network to
be modeled with a few roles. An instance of the role cor-
responds to a concrete parameter assignment. A role has
an associated characteristic function, which determines
the set of its instances: Given a parameter assignment,
the characteristic function returns true if and only if the
corresponding instance of the role exists in the network.

We use separate roles to model input and output ports
of hosts and switches. The input port specifies how the
host or switch modifies and forwards packets. The output
port specifies how the network handles packets gener-
ated by the host. Our high-level specification introduces
HostIn and HostOut roles, which model the input and
output ports of end hosts. Both roles are parameterized
by the IP address of the host (parameters are given in
square brackets in lines 17 and 26), with the character-
istic function cHost (expression after the vertical bar),
declared in line 9.

Policies A role’s policy specifies how its instances
modify and forward packets. CoCoNet’s policy language
is inspired by the Frenetic family of languages [11]:
complex policies are built out of primitive policies using
sequential and parallel composition. Primitive policies
include filtering packets based on header values, updat-
ing header fields, and sending packets to other roles.

The HostOut policy in lines 18–23 first computes sub-
net IDs of the source and destination hosts and stores
them in local variables, explained below. Next, it per-
forms two security checks: (1) filter packets whose
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source IP does not match the IP address of the sending
host (line 21), and (2) filter packets sent across subnets
based on the network’s security policy (line 21). Line 22
drops packets whose destination IP does not exist on the
network. All other packets are sent to the input port of
their destination host in line 23.

The send policy on line 23 is a key abstraction mech-
anism of CoCoNet. It can forward the packet to any
instance of any role. While a send may correspond to
a single hop in the network’s data plane, e.g., sending
from an input to an output port of the same switch or be-
tween two connected ports of different switches, it can
also forward to instances without a direct connection to
the sender, thus abstracting multiple hops through net-
work nodes not yet introduced at the current refinement
level. CoCoNet’s final specification may only contain the
former kind of send’s, which can be compiled directly to
switch flow tables.

The HostIn policy in line 25 acts as a packet sink,
dropping all packets delivered to it. Any packets sent by
the host in response to previously-received packets are
interpreted as new packets entering the network.

Variables The HostOut role illustrates three kinds of
variables available to a policy: (1) the pkt variable,
representing the packet processed by the role, which is
passed as an implicit argument to each role and can be
both read and modified by the policy; (2) read-only role
parameters; and (3) local variables that store intermedi-
ate values while the role is processing the packet.

Functions Functions are pure (side-effect free) com-
putations used in specifying the set of role instances and
defining policies. Function declarations can provide an
explicit definition with their body (e.g., sameSubnet in
Figure 4), or only a signature (e.g., cHost, cSubnet,
acl and ip2subnet) without a definition. In the latter
case, the body of the function can be defined by subse-
quent refinements, or the body can be dynamically de-
fined and updated at run time, making the function a
runtime-defined function (RDF).

Our top-level specification introduces four RDFs:
cHost (discussed above); cSubnet, a characteristic
function of the set of IP subnets (each subnet is given a
unique identifier); ip2subnet, which maps end hosts to
subnet IDs based on the IP prefix; and acl, the network
security policy, which filters packets by header.

RDFs are a crucial part of CoCoNet’s programming
model. They separate static network design from its
runtime configuration. In our example, explicit defi-
nitions of RDFs are immaterial to the overall logic of
the network operation—making those functions runtime-
defined enables specifying the network design along with
all possible runtime configurations it can produce.

At run time, RDFs serve as the network configuration

interface. For example, by redefining RDFs in Figure 4,
the operator can introduce new hosts and subnets, update
the security policy, etc. However, not all possible defini-
tions correspond to well-formed network configurations.
In order to eliminate inconsistent definitions, CoCoNet
relies on assumptions.

Assumptions Assumptions constrain the range of pos-
sible instantiations of functions—both explicit instantia-
tions in a later refinement and runtime instantiations in
the case of RDFs—without fixing a concrete instantia-
tion. Consider the ip2subnet() function, which maps
end hosts to subnets. We would like to restrict possible
definitions of this function to map valid end host IP ad-
dresses to valid subnet IDs. Formally,

∀addr.cHost(addr)⇒ cSubnet(ip2subnet(addr)).

Line 13 states this assumption in the CoCoNet language.
In general, CoCoNet assumptions are in the fragment

of first-order logic of the form ∀x1 . . .xi.F(x1 . . .xi),
where F is a quantifier-free formula using variables x.
This fragment has been sufficiently expressive for the
systems we examine and allows for efficient verification.

Until a function is given a concrete definition, Co-
CoNet assumes that it can have any definition that sat-
isfies all its assumptions. Refinements are verified with
respect to these assumptions. When the function is de-
fined in a later refinement step, CoCoNet statically veri-
fies that the definition satisfies its assumptions. CoCoNet
performs this verification at run time for RDFs.

Refinements A refinement replaces one or more roles
with a more detailed implementation. It provides a new
definition of the refined role and, typically, introduces
additional roles, so that the composition of the refined
role with the new roles behaves according to the original
definition of the role.

Consider Refinement 1 in Figure 3b, which introduces
zone routers. It refines the HostOut role to send packets
to the local zone router, which sends them via the two
gateway routers to the destination zone router and finally
the destination host. The routers are modeled by four
new roles, which model the two router ports facing core
and zone networks (Figure 5).

Figure 7 illustrates this refinement, focusing on roles.
Blue arrows show the packet path that matches the path
in Figure 3b. Solid arrows correspond to hops between
different network nodes (routers or hosts); dashed arrows
show packet forwarding between incoming and outgo-
ing ports of the same router. Both types of hops are
expressed using the send operation in Figure 6, which
shows the CoCoNet specification of this refinement.

Line 55 shows the refined specification of HostOut,
which sends the packet directly to the destination only
if it is on the same IP subnet and inside the same zone
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Figure 5: Router ports and corresponding roles.

(line 62); otherwise it sends to the local zone router
(line 65). Router roles forward the packet based on its
source and destination addresses. They encode the cur-
rent path segment in the VLAN ID field of the packet,
setting it to the source subnet ID when traveling to the
source gateway (segments 1 and 2), 0 when traveling be-
tween source and destination gateways (segment 3), and
destination subnet ID in segments 4 and 5. The security
check is now split into two: The aclSrc() check per-
formed by the outgoing gateway (lines 19 and 42) and
the aclDst() check performed by the incoming gateway
of the destination subnet (line 31). The assumption in
line 10 guarantees that a conjunction of these two checks
is equivalent to the global security policy expressed by
the acl() function. This assumption enables CoCoNet
to establish correctness of the refinement without getting
into the details of the network security policy, which may
change at run time.

Subsequent refinements detail the internal structure of
core and zone networks. We only show the core network
refinement (Figure 3c). For simplicity, Figure 8 specifies
the core switching fabric as a single Ethernet switch with
switch port number i connnected to zone i router. This
simplification is localized to a single refinement: As the
network outgrows the single-switch design, the network
programmer can later revise this refinement without af-
fecting the high-level specification or other refinements.

The refined RouterCoreOut role (Figure 8, line 2)
forwards packets to the core switch rather than directly to
the destination router. The core switch input port (line 4)
determines the destination router based on the VLAN ID
and destination IP address (as one final simplification,
we avoid reasoning about IP to MAC address mapping
by assuming that switches forward packets based on IP
addresses) and forwards the packet via the corresponding
output port.

Putting it all together Figure 9 shows the final step
in specifying our example network: adding the physical
network elements (hosts, switches, and routers). Recall
that a role can model any network entity, from an indi-
vidual interface to an entire network segment. For the
CoCoNet compiler to generate flow tables, it needs to
know how roles combine to form each data-plane ele-
ment. This is achieved using declarations in lines 1–5,
which introduce parameterized hosts and switches (Co-
CoNet currently models routers as switches), specified
in terms or their input/output port pairs. A port pair can
represent multiple physical ports of the switch. We omit
a detailed description of host and switch constructs, as

these are incidental to the main ideas of this work.

Other language features CoCoNet supports multicast
forwarding using the fork construct. For example,
fork(uint<16> port|port>0 and port<n())
send SwitchOut[port]

spawns a parallel copy of the send statement for each
assignment to the port variable satisfying the fork con-
dition (expression after the vertical bar). Each parallel
thread operates on a private copy of the packet. Note that
n() can be an RDF, in which case the number forked is
determined at run time.

Underspecified behaviors can be expressed using non-
determinism. In the following snippet
havoc pkt.dstIP; assume pkt.dstIP != pkt.srcIP

the havoc statement non-deterministically picks a value
for the dstIP field of the packet; the assume statement
constrains the possible choices. Non-determinism is only
allowed in high-level specifications and cannot occur in
the final, most detailed, definition of any role.

3 Refinement-based verification
We informally present the semantics of CoCoNet

specifications, the kinds of correctness guarantees that
can be established through refinement-based verification,
and the design of CoCoNet verification tools. See Ap-
pendix A for a more formal presentation.

Semantics We start with assigning semantics to roles
as packet transformer functions. Let Pkt be the set of all
possible packets, and Loc be the set of locations, where
each location identifies a unique role instance in a Co-
CoNet specification. We define the set of located packets
LPkt= {(p,l) | p ∈ Pkt,l ∈ Loc}.

We define semantics of a role R as a partial function
JRK : LPkt 7→ 22

LPkt
that takes a packet located at an in-

stance of R and returns the set of all possible outputs that
R can produce for this packet. Each output corresponds
to one way of resolving non-determinism in the imple-
mentation of R. Deterministic roles produce a unique
output. An output consists of a set of located packets,
where each packet is generated by a send statement. In
particular, a role that does not perform any send’s drops
the packet, which corresponds to an empty set of packets.
A unicast role produces output sets, each consisting of a
single packet. Multicast roles, expressed via a combina-
tion of fork and send statements, produce output sets
containing multiple packets.

We define refinement relation v over roles:

Definition 1 (Role refinement). Role R̂ refines role R

(R̂v R) iff R̂ and R have identical parameter lists and char-
acteristic functions and

∀p ∈ Domain(JRK).JR̂K(p)⊆ JRK(p). (1)
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1refine HostOut {
2 typedef uint<16> zid_t
3 function cZone(zid_t zid): bool
4 function zone(IP4 addr): zid_t
5 assume (IP4 addr) cHost(addr) => cZone(zone(addr))
6 function gwZone(vid_t vid): zid_t
7 assume (vid_t vid) cSubnet(vid) => cZone(gwZone(vid))
8 function aclSrc(Packet p): bool
9 function aclDst(Packet p): bool

10 assume (Packet p) acl(p) == (aclSrc(p) and aclDst(p))
11 assume (vid_t vid) cSubnet(vid) => (vid != 0)
12

13 role RouterZoneIn[zid_t zid] | cZone(zid) =
14 let vid_t dvid = ip2subnet(pkt.dstIP);
15 let vid_t svid = pkt.vid;
16 filter cSubnet(dvid);
17 if dvid != svid and gwZone(svid) == zid then {
18 pkt.vid := 0;
19 filter aclSrc(pkt)
20 };
21 send RouterCoreOut[zid]
22

23 role RouterZoneOut[zid_t zid] | cZone(zid) =
24 filter cHost(pkt.dstIP) and zone(pkt.dstIP) == zid;
25 pkt.vid := 0;
26 send HostIn[pkt.dstIP]
27

28 role RouterCoreIn[zid_t zid] | cZone(zid) =
29 let vid_t dvid = ip2subnet(pkt.dstIP);
30 if pkt.vid == 0 then {
31 filter aclDst(pkt);
32 pkt.vid := dvid;
33 if zone(pkt.dstIP) == zid then
34 send RouterZoneOut[zid]

35 else
36 send RouterCoreOut[zid]
37 } else if pkt.vid == dvid then {
38 send RouterZoneOut[zid]
39 } else {
40 let vid_t svid = pkt.vid;
41 pkt.vid := 0;
42 filter aclSrc(pkt);
43 send RouterCoreOut[zid]
44 }
45 role RouterCoreOut[zid_t zid]|cZone(zid)=
46 if pkt.vid == 0 then {
47 filter cSubnet(ip2subnet(pkt.dstIP));
48 send RouterCoreIn[gwZone(ip2subnet(pkt.dstIP))]
49 } else if pkt.vid != ip2subnet(pkt.dstIP) then {
50 send RouterCoreIn[gwZone(ip2subnet(pkt.srcIP))]
51 } else {
52 filter cZone(zone(pkt.dstIP));
53 send RouterCoreIn[zone(pkt.dstIP)]
54 }
55 role HostOut[IP4 addr] | cHost(addr) =
56 let vid_t svid = ip2subnet(pkt.srcIP);
57 let vid_t dvid = ip2subnet(pkt.dstIP);
58 filter addr == pkt.srcIP;
59 filter pkt.vid == 0;
60 if svid==dvid and zone(pkt.dstIP)==zone(addr)then
61 { filter cHost(pkt.dstIP);
62 send HostIn[pkt.dstIP]
63 } else {
64 pkt.vid := ip2subnet(addr);
65 send RouterZoneIn[zone(addr)]
66 }
67}

Figure 6: Refinement 1.
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Figure 7: Refinement 1: the HostOut role is refined by
introducing four router roles. The path from HostOut to
HostIn is decomposed into up to 5 segments.

1refine RouterCoreOut {
2 role RouterCoreOut[zid_t zid] |cZone(zid) =
3 send CoreSwitchIn[zid]
4 role CoreSwitchIn[uint<16> port] | cZone(port) =
5 if pkt.vid == 0 then {
6 filter cSubnet(ip2subnet(pkt.dstIP));
7 send CoreSwitchOut[gwZone(ip2subnet(pkt.dstIP))]
8 } else if pkt.vid != ip2subnet(pkt.dstIP) then {
9 send CoreSwitchOut[gwZone(ip2subnet(pkt.srcIP))]

10 } else {
11 filter cZone(zone(pkt.dstIP));
12 send CoreSwitchOut[zone(pkt.dstIP)]
13 }
14 role CoreSwitchOut[uint<16> port] | cZone(port) =
15 send RouterCoreIn[port]
16}

Figure 8: Refinement 2.

A CoCoNet program defines a sequence of specifi-
cations, where a specification consists of a set of roles.
Each refine{. . .} block introduces a new specification
obtained from the previous specification by providing
new implementations for some of the roles and introduc-
ing new roles.

Next, we informally introduce the inline() opera-
tion, which takes a role R and a set of roles {P1 . . .Pk}
and recursively inlines the implementation of Pi in R

whenever R sends to Pi. Consider the refinement in Fig-

1host Host[IP4 addr]((HostIn, HostOut))
2switch ZoneRouter[zid_t zid](
3 (RouterZoneIn,RouterZoneOut),
4 (RouterCoreIn,RouterCoreOut))
5switch CoreSwitch[]((CoreSwitchIn, CoreSwitchOut))

Figure 9: Declaring physical network elements: hosts and
switches.

ure 7. When verifying this refinement, we would like to
prove that the refined HostOut role combined with the
newly introduced router roles is equivalent to the origi-
nal HostOut role on the left. This combined role, indi-
cated with the dashed line in Figure 7, is computed as
inline(HostOut,{RouterZoneIn, . . .}).

We can now extend the refinement relation to specifi-
cations:

Definition 2 (Specification refinement). Let S =
{R1, . . . ,Rn} and Ŝ= {R′1, . . . ,R′n,P1, . . . ,Pk} be two spec-
ifications, such that roles Ri and R′i have identical names,
parameter lists and characteristic functions. Ŝ refines S
(Ŝv S) iff ∀i ∈ [1..n]. inline(R′i,{P1, . . . ,Pk})v Ri.

The following proposition is the foundation of Co-
CoNet’s compositional verification procedure:

Proposition 1. The v relation is transitive.

Hence, we can prove that the final specification is a
refinement of the top-level specification by proving step-
wise refinements within a chain of intermediate specifi-
cations.

We encode the problem of checking the refinement re-
lation between roles into a model checking problem and
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use the Corral model checker [18] to solve it. We chose
Corral over other state-of-the-art model checkers due to
its expressive input language, called Boogie [19], which
enables a straightforward encoding of CoCoNet specifi-
cations. Given roles R and R̂, we would like to check
property (1) or, equivalently, ¬(∃p,p′.p′ ∈ JR̂K(p) ∧ p′ 6∈
JRK(p)) (to simplify presentation, we assume that roles
are unicast, i.e., output exactly one packet). We encode
this property as a Boogie program:

p′ := procR̂(p); assert(procR(p,p′))

Here, procR̂(p) is a Boogie procedure that takes a lo-
cated packet p and non-deterministically returns one of
possible outputs of R̂ on this packet; procR(p,p′) returns
true iff p′ ∈ R(p). We use Boogie’s havoc construct to
encode nondeterminism. We encode CoCoNet assump-
tions as Boogie axioms, and characteristic functions of
roles as procedure preconditions [19]. Violation of prop-
erty (1) triggers an assertion violation in this program.

Corral is a bounded model checker, i.e., it only detects
assertion violations that occur within a bounded number
of program steps. We sidestep this limitation by bound-
ing the maximal number of network hops introduced by
each refinement. This is a natural restriction in network
verification, as any practical network design must bound
the number of hops through the network. We introduce
a global counter incremented on every send operation
and generate an error when it exceeds a user-defined
bound, which is also used as a bound on the number of
program steps explored by Corral. Coincidentally, this
check guarantees that refinements do not introduce for-
warding loops.

Verifying path properties CoCoNet’s refinement-
based verification operates on a single role at a time and
never considers global forwarding behavior of the net-
work. Importantly, however, it guarantees that all such
behaviors are preserved by refinements, specifically, a
valid refinement can only modify a network path by in-
troducing intermediate hops into it; however, it cannot
modify paths in any other way, add or remove paths.

This invariant can be exploited to dramatically speed
up conventional property-based dataplane verification.
Consider, for example, the problem of checking pairwise
reachability between all end hosts. CoCoNet guarantees
that this property holds for the network implementation
if and only if it holds for its high-level specification. Of-
ten, the high-level specification is simple enough that
the desired property obviously holds for it. If, however,
the user does not trust the high-level specification, they
can apply an existing network verification tool such as
NetKAT, HSA, or Veriflow to it. Such verification can
be performed much more efficiently than checking an
equivalent property directly on the detailed low-level im-
plementation.

Limitations Because CoCoNet specifications describe
how individual packets are forwarded, it cannot verify
properties related to multiple packets such as stateful net-
work behaviors induced by say stateful firewalls. This
limitation is shared by virtually all current network veri-
fication tools, which verify dataplane snapshots.

However, stateful networks can be built on top of Co-
CoNet by encapsulating dynamic state inside RDFs. For
example, a stateful firewall specification may include
a function that determines whether a packet must be
blocked by the firewall. This function is computed by an
external program, potentially based on observed packet
history. CoCoNet can enforce statically defined invari-
ants over such functions. For example, with multiple
firewalls, it can enforce rule set consistency and ensure
that each entering packet is inspected by one firewall.

Assumption checker CoCoNet’s dynamic assumption
checker encodes all function definitions and assumptions
into an SMT formula and uses the Z3 SMT solver [6] to
check the validity of this formula.

4 Compiler
The CoCoNet compiler proactively compiles speci-

fications into switch flow tables; it currently supports
OpenFlow and P4 backends. Due to space limitations,
we only describe the OpenFlow backend.

The OpenFlow backend uses NetKAT as an interme-
diate representation and leverages the NetKAT compiler
to generate OpenFlow tables during the final compilation
step. Compilation proceeds in several phases. The first
phase computes the set of instances of each role by find-
ing all parameter assignments satisfying the characteris-
tic function of the role with the help of an SMT solver.
During the second phase, we specialize the implemen-
tation of each role for each instance by inlining function
calls and substituting concrete values for role parameters.

The third phase constructs a network topology graph,
where vertices correspond to hosts and switches, while
edges model physical links. To this end, the compiler
statically evaluates all instances whose roles are listed as
outgoing ports in host and switch specifications and
creates an edge between the outgoing port and the in-
coming port it sends to. The resulting network graph is
used in an emulator (Section 6).

During the fourth phase, instances that model input
ports of switches are compiled to a NetKAT program.
This is a straightforward syntactic transformation, since
NetKAT is syntactically and semantically close to the
subset of the CoCoNet language obtained after function
inlining and parameter substitution. During the final
compilation phase, the NetKAT compiler converts the
NetKAT program into OpenFlow tables to be installed
on network switches.
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Figure 10: Case study 1: Software-defined WAN. Arrows
show an example path between end hosts in different sites.

The resulting switch configuration handles all packets
inline, without ever forwarding them to the controller.
An alternative compilation strategy would be to forward
some of the packets to the controller, which would enable
more complex forms of packet processing that are not
supported by the switch.

At run time, the CoCoNet compiler translates network
configuration updates into updates to switch flow tables.
Recompiling the entire network dataplane on every re-
configuration is both inefficient and unnecessary, since
most updates only affect a small fraction of switches.
While our current prototype does not support incremen-
tal compilation, it can be implemented as a straightfor-
ward extension.

5 Case studies
We show that real-world SDNs can benefit from

refinement-based design by implementing and verifying
six network architectures using CoCoNet. Our case stud-
ies cover both mainstream SDN applications such as net-
work virtualization and emerging ones such as software-
defined WANs and IXPs. The case studies have multiple
sources of complexity including non-trivial routing logic,
security constraints, fault recovery; they are hard to im-
plement correctly using conventional tools. We present
two studies in detail and briefly outline the remainder.

5.1 Case study 1: Software-defined WAN

We design and verify a software-defined WAN in-
spired by Google’s B4 [13] comprising geographically
distributed datacenters connected by wide-area links
(Figure 10). It achieves optimal link utilization by send-
ing traffic across multi-hop tunnels dynamically config-
ured by a centralized controller. In Figure 10, some traf-
fic between datacenters 1 and 2 is sent via a tunnel con-
sisting of underutilized links 1 and 2 instead of congested
link 3. CoCoNet cannot reason about quality-of-service
and relies on an external optimizer to choose tunnel con-
figuration; however it can formalize the WAN architec-
ture and enforce routing invariants, which ensure that op-
timizer configurations deliver packets correctly.

addr1

addr2

dst=
addr2

Data center 1 Data center 3

Data center 2

(a) High-level 
specification

(b) Refinement 1

(d) Refinement 3

(c) Refinement 2

(e) Refinement 4

Pod 1 Pod 2 Pod 3 Pod 4
1

2

3

Figure 11: Refinement strategy for case study 1.

We specify end-to-end routing between end hosts in
the WAN, including inter- and intra-datacenter routing.
Local and global routing can be specified by different
teams and integrated in a common CoCoNet specifica-
tion. Our high-level specification (Figure 11) is trivial:
it defines a set of hosts and requires that each packet be
delivered to its destination, if it exists:
role HostOut[IP4 addr] | cHost(addr) =
if cHost(pkt.dstIP) then send HostIn[pkt.dstIP]

Refinement 1 defines global routing and topology. It
partitions hosts into subnets, localized within datacen-
ters, and introduces WAN links across datacenters. It
formalizes tunnel-based routing using two functions:
function tunnel(dcid_t src,dcid_t dst,Packet p): tid_t
function nexthop(tid_t tun,dcid_t dc): dcid_t

The former maps a packet to be sent from datacen-
ter src to dst to ID of the tunnel to forward the packet
through. The latter specifies the shape of each tunnel as
a chain of datacenters. We define a recursive function
distance(src,dst,tun), which computes the number
of hops between two datacenters via tunnel tun. Correct-
ness of global routing relies on the following assumption,
which states that tunnels returned by the tunnel() func-
tion deliver packets to the destination in k hops or less,
where k is a user-defined bound on the length of a tunnel:
assume(dcid_t src, dcid_t dst, Packet p)

distance(src, dst, tunnel(p)) <= k()

Subsequent refinements detail intra-datacenter topol-
ogy and routing. Specifically, we instantiate a fat-tree
topology [1] within each datacenter: other topologies
can be specified equally easily. Refinement 2 introduces
groups of switches, called pods, within the datacenter
fabric: each host is connected to a downstream port of
a pod, which forwards packets to an upstream port of
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Figure 12: Refinement strategy for case study 2.

the same pod, which, in turn, forwards to the destination
pod. Pod behavior is underspecified by this refinement:
the pod non-deterministically picks one of the upstream
ports to send each packet through, giving rise to multi-
ple paths, shown by blue and green arrows. This non-
determinism is resolved by Refinement 3, which decom-
poses pods into two layers of switches. A bottom-layer
switch picks a top-level switch to send to based on the
hash of the packet’s destination address. Refinement 3
also takes advantage of path redundancy to route packets
around failed links. The blue arrow in Figure 11d shows
the normal path between top and bottom-layer switches
within a pod; red arrows show the backup path taken in
case of link failure. Finally, Refinement 4 details packet
forwarding between pods via the core layer of switches.

5.2 Case study 2: Network virtualization

Network virtualization for multi-tenant datacenters is
arguably the most important SDN application today [17].
It combines CPU and network virtualization to offer each
client the illusion of running within its own private dat-
acenter. Figure 12a shows the clients’ view of the dat-
acenter as a collection of isolated LANs connected only
by router nodes that have interfaces on multiple LANs.
In reality, client workloads run inside virtual machines
(VMs) hosted within physical servers connected by a
shared network fabric (Figure 12b). Each server runs
an instance of a software SDN switch, OpenVSwitch
(OVS) [25], which isolates traffic from different tenants.
Packets sent to VMs hosted on remote physical nodes are
encapsulated and forwarded to remote OVS instances.

While the basic virtualization scheme is simple,
industrial virtualization platforms, such as VMWare
NSX [17], have evolved into complex systems, due to
numerous configuration options and feature extensions
which are hard to understand and use correctly.

In this case study we untangle network virtualization
with the help of refinement-based programming. We im-

plement a basic virtualization scheme and a number of
extensions in CoCoNet. Below we present two example
extensions and show how CoCoNet separates the spec-
ification of various features from their implementation,
thus helping users and developers of the framework to
understand its operation, while also bringing the benefits
of verification to network virtualization.

Service chaining Service chaining modifies the virtual
forwarding to redirect packets through a chain of virtual
middleboxes. Middlebox chains are formalized by the
following RDF, which, based on packet headers and cur-
rent packet location computes the virtual port to forward
the packet to (the destination port or the next middlebox
in the chain):
function chain(Packet p, VPortId port): VPortId

Service chaining required only a minor modification
to the high-level specification: instead of forwarding the
packet directly to its destination MAC address, we now
forward it down the service chain:
role VHostOut[VPortId vport] | cVPort(vport) =
...
(*send VHostIn[mac2VPort(vnet, pkt.dstMAC)]*)
send VHostIn[chain(p, vport)]

The implementation of this feature in the refined spec-
ification is, however, more complex: upon receiving a
packet from a virtual host, OVS uses the chain() func-
tion to establish its next-hop destination. It then attaches
a label to the packet encoding its last virtual location and
sends the packet via a tunnel to the physical node that
hosts the next-hop destination. OVS on the other end of
the tunnel uses the label to determine which virtual host
to deliver it to.

Broadcast and ARP suppression Virtual broadcast
packets must be delivered to all VMs on the virtual net-
work:
role VHostOut[VPortId vport] | cVPort(vport) =
...
if pkt.dstMAC == hffffffffffff(*bcast address*) then
fork (VPortId vport | vPortVNet(vport) == vnet)
send VHostIn[vhport.vhost, vhport.vport]

This behavior is implemented via two cascading mul-
ticasts shown with dashed green arrown in Figure 12b.
First, the OVS at the source multicasts the packet to all
physical servers that host one or more VMs on the same
virtual network. Second, the destination OVS delivers a
copy of the packet to each local VM.

The ARP suppression extension takes advantage of the
fact that most broadcast traffic consists of Address Reso-
lution Protocol (ARP) requests. When ARP suppression
is enabled for a virtual network, CoCoNet configures all
OVS instances with a local table of IP-to-MAC address
mappings, used to respond to ARP requests, locally.

Other extensions we have implemented include a de-
centralized information flow control model for networks
and virtual-to-physical port forwarding.
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5.3 Other case studies

Our third case study is a realistic version of the enter-
prise network, a simplified version of which was used in
Section 2 [29]. In addition to features described in Sec-
tion 2, we accurately model both MAC-based forward-
ing (within a VLAN) and IP-based forwarding across
VLANs, implement support for arbitrary IP topologies
that do not assume a central core network, and arbitrary
level-2 topologies within each zone. We replace the stan-
dard decentralized routing protocols used in the original
design with a SDN controller computing a centralized
routing policy. This policy is expressed via RDFs, which
are compiled to OpenFlow and installed on all switches.

The fourth case study implements the F10 fault-
tolerant datacenter network design. F10 uses a variant of
fat tree, extending it with the ability to globally reconfig-
ure the network to reduce performance degradation due
to link failures. In a traditional fat tree, a link failure
may force the packet to take a longer path through the
network, as shown in Figure 11d. F10 avoids this by re-
configuring all potentially affected switches to steer the
traffic away from the affected region of the switching
fabric. We implement and SDN version of F10, where
the reconfiguration is performed by the central controller
rather than a decentralized routing protocol.

Case study 5 implements a protocol called sTag [20]—
a version of fat tree with source-based routing. The edge
router attaches two tags to each packet: an mTag, which
identifies switch ports to send the packet through at every
hop, and a security tag that identifies the sender of the
packet. The latter is validated by the last switch in the
path, before delivering the packet to the destination.

Our final case study implements the iSDX software-
defined Internet exchange point (IXP) architecture [12].
In iSDX, each autonomous system (AS) connected to
IXP can define its own routing preferences. These pref-
erences are encoded in the MAC address field of each
packet sent from the AS to the IXP. The IXP decodes
the MAC address and ensures that AS preferences do not
conflict with the BGP routing database.

6 Implementation and Evaluation
We implemented CoCoNet in 4,700 lines of Haskell.

We implemented, verified, and tested the six case studies
described in Section 5 using the Mininet network emu-
lator. CoCoNet, along with all case studies, is available
under the Apache 2.0 license [5].

All experiments in this section were performed on a
machine with a 2.5 GHz processor and 16 GB of RAM.

Table 1 summarizes our case studies, showing (1) total
lines of CoCoNet code (LOC) excluding runtime-defined
function definitions, (2) lines of code in the high-level
specification, (3) number of refinements, (4) time taken

case study LOC #refines verification time (s)
total high-level compositional monolithic

WAN 305 18 6 10 >3600
virtualization 678 97 1 6 6
enterprise 342 50 4 16 >3600
F10 262 52 2 19 57
stag 283 47 1 2 2
iSDX 190 21 2 3 3

Table 1: Summary of case studies. >3600 in the last column
denotes experiments interrupted after one hour timeout.

by the CoCoNet static verifier to verify all refinements
in the case study, and (5) time taken to verify the entire
design in one iteration. The last column measures the
impact of compositional verification: We combine all re-
finements and verify the combined specification against
the high-level specification in one single step.

6.1 Static verification
The results show that CoCoNet verifies the static de-

sign of complex networks in a matter of seconds. Com-
positional verification was much faster than monolithic
verification: a refinement that focuses on a single role
has exponentially fewer states than the complete speci-
fication and is potentially exponentially faster to verify.
Additional verification efficiency arises from parameter-
ized specifications, which allow verifying all instances of
a role at once.

Bug finding We choose 3 (of many) examples from the
case studies to show how CoCoNet detected subtle bugs
early in our designs.

1. Enterprise network: When sending a packet be-
tween hosts on different subnets in the same zone, the
zone router skipped access control checks at gateway
routers (skipping path segments 2-3-4 in Figure 3b).
Since this bug only manifests for some topologies and
security policies, it is difficult to detect using testing or
snapshot verification. The bug was detected early (in re-
finement 1), before L2 forwarding was introduced.

2. WAN: Consider the packet path in Figure 11d. Our
implementation incorrectly sent the packet back to the
core after hops 1 and 2, instead of sending it down via
hop 3, causing a loop. This bug only manifests in re-
sponse to a link failure, making it hard to catch by snap-
shot verification. It was detected only when verifying
refinement 3, but the verifier localized the bug in space
to the pod component.

3. Virtualization: This bug, discovered when verifying
the sole refinement in this case study, is caused by the in-
terplay between routing and security. The specification
requires that neither unicast nor multicast packets can be
exchanged by blacklisted hosts. The implementation fil-
ters out unicast packets at the source OVS; however, mul-
ticast packets were filtered at the destination and hence
packets delivered to VMs hosted by the same server as
the sender bypassed the security check.
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Scale Hosts Switches NetKAT Policy Flowtable Rules
2 8 11 1171 830
5 17 23 1986 3299
15 47 63 43948 31462
25 77 103 147608 89216

Table 2: Number of hosts, switches, flowtable rules and size
of NetKAT policy as a function of network’s scale parame-
ter.

For each detected bug, Corral generated two witness
traces, which showed how the problematic packet was
handled by the abstract and refined implementations re-
spectively. The two traces would differ in either how they
modify the packet or in where they forward it.

Our encoding of refinements into Boogie guarantees
the absence of false negatives, i.e., Corral does not miss
any bugs (modulo defects in Corral itself). However, we
have encountered three instances where Corral reported
a non-existing bug. In all three cases this was caused by
a performance optimization in Corral: by default, it runs
the underlying Z3 SMT solver with a heuristic, incom-
plete, quantifier instantiation strategy. We were able to
eliminate these false positives by reformulating some of
our assumptions, namely, breaking boolean equivalences
into pairs of implications.

6.2 CoCoNet vs NetKAT

CoCoNet verifies that each specification is a correct
refinement. The NetKAT decision procedure for pro-
gram equivalence [10] is the closest alternative to re-
finement verification. We compare CoCoNet against
NetKAT on a parameterized model of the enterprise net-
work case study [29]—we configure the network with
three operational zones and scale the number of hosts and
switches per zone. For an access control policy, we ran-
domly blacklist communication between pairs of hosts.
The topology of the operational zones and the router-to-
router fabric are built from Waxman graphs. Table 2
summarizes the dimensions of our test network for a
sample of scales.

We measure the full verification run time of CoCoNet,
including the cost of static refinement verification and
the cost of checking the assumptions of RDFs. We
then perform an equivalent experiment using NetKAT.
To this end, we translate each level of CoCoNet specifi-
cation, along with definitions for the RDFs, into NetKAT,
and use the NetKAT decision procedure to determine
whether the lower-level specification exhibits a subset of
the behaviors of the higher-level specification.

Figure 13 shows the verification run time in seconds
as we increase the network scale. CoCoNet verification
scales beyond that of NetKAT. CoCoNet performs much
of the heavy lifting during static verification, taking ad-
vantage of all available design-time information captured
in refinements, assumptions, and parameterized roles.
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Figure 13: Comparison between CoCoNet refinement veri-
fication vs. equivalence decision in NetKAT.
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Figure 14: Comparison of high-level specification verifica-
tion via HSA and CoCoNet verification vs. snapshot data-
plane verification via HSA.

Nevertheless, we observe that the cost of assumption
validation was quite high, taking hundreds of seconds on
larger networks. This is due to the unoptimized imple-
mentation of the runtime checker: our simple solution
based on SMT encoding of assumptions proved ineffi-
cient and should be improved in the future.

6.3 CoCoNet + HSA

At present, the easiest way to verify an arbitrary con-
troller application is to verify reachability properties for
each of the data-plane configurations it generates. As de-
scribed in Section 3, CoCoNet can accelerate property-
based verification: instead of checking path properties
on the low-level data-plane configuration, one can check
them more efficiently on the top-level CoCoNet specifi-
cation, taking advantage of the fact that such properties
are preserved by refinement.

We evaluate this using the Header Space Analysis
(HSA) [15] network verifier. Using the same network
scenarios as above, we use Frenetic to compile the
NetKAT policy (translated from CoCoNet specification)
into a set of OpenFlow flowtables. We produce the
flowtables of the highest- and lowest-level specifications,
shown below as Spec and Snapshot, respectively. We
then apply HSA by creating the corresponding transfer
functions and checking the all-pair reachability property
on Spec and Snapshot, and measure the total run time.
As can be seen in Figure 14, performing the verification
on Spec and leveraging CoCoNet’s refinement verifica-
tion results in dramatic improvement in verification per-
formance, so that the cost of CoCoNet verification (red
line) dominates the cost of HSA applied to the high-level
specification (blue line).
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7 Related Work
SDN controllers often use two-tier design: a con-

troller emits a stream of data-plane configurations. There
are many languages and verification techniques for both
tiers, and some approaches that abandon the two-tiers.

Language design OpenFlow [24] is a data-plane con-
figuration language: Controller frameworks like Open-
Daylight [23], Floodlight [8], and Ryu [27] emit Open-
Flow commands to update SDN-capable switches. The
Frenetic family [2,9,21,28] introduces modular language
design; they allow writing controller applications in a
general purpose language and compiling to OpenFlow.
VeriCon [3], FlowLog [22], and Maple [30] eschew the
tiered structure entirely using custom languages that de-
scribe network behavior over time.

From a language design perspective, CoCoNet resides
between a controller application and data-plane config-
uration language, but closer to the latter: CoCoNet re-
ceives a stream of definitions for run-time defined func-
tions, and for each new definition produces a new data-
plane configuration. However, refinements allow for
modular development of invariant network behavior—in
essence, CoCoNet characterizes how the pieces of the
network fit together, reducing the burden on controller
applications supplying RDF definitions.

Data-plane verification SDN verification takes two
forms: controller verification and data-plane verification.
Data-plane verification [14–16] verifies that a given set
of safety properties (e.g, no black holes or forwarding
loops) hold on a given data-plane configuration. Hence
it must be reapplied to each configuration the controller
produces. Further, checking reachability between host
pairs scales quadratically with the number of hosts. Ver-
ification can be sped up by leveraging symmetries but the
problem remains [26].

CoCoNet does not verify network properties directly.
Rather, it guarantees that refinements are functionally
equivalent, provided dynamically checked assumptions
holds on RDF definitions. Often, reachability properties
are “obvious” in high-level specifications: They hold by
design and are preserved by functional equivalence, and
so hold across refinements. If the design is not “obvi-
ous”, data-plane verification can be applied to the highest
level CoCoNet specification, which is often dramatically
simpler, enabling much faster property verification.

NetKAT [2] is a language with a decision procedure
for program equivalence. This enables property verifi-
cation but can also verify whether one NetKAT program
is a correct refinement of another. However, NetKAT
verification is not yet suitable for verifying the equiva-
lence of large networks in near-real time. NetKAT lacks
the abstractions—namely RDFs and assumptions—that
allow some verification to be done statically.

NetKAT also lacks other language features that Co-
CoNet provides for stepwise refinement, including pa-
rameterized roles, in part because NetKAT is intended as
a synthesis target emitted by the Frenetic controller. Co-
CoNet refinements, on the other hand, are human read-
able, even at scale. The definitions supplied to RDFs at
run time are not, but their expected behavior is captured
by assumptions annotated in the CoCoNet specification.

Controller verification VeriCon [3] and FlowLog [22]
prove statically that a controller application always pro-
duces correct data-plane configurations. VeriCon re-
duces verification to SMT solving, while Flowlog uses
bounded model checking. In both cases, scalability is
a limiting factor. FlowLog also restricts expressivity to
enable verification.

In contrast, CoCoNet statically verifies that refine-
ments are functionally equivalent, but the refinement
language is less expressive than either VeriCon or
FlowLog—dynamic behavior is excluded, hidden behind
RDFs. However, this combination of static and dynamic
verification enables much greater scalability (see Sec-
tion 6), while still providing strong guarantees about ar-
bitrarily complex dynamic behavior hidden in RDFs.

Stepwise refinement Stepwise refinement for pro-
gramming dates back to Dijkstra [7] and Wirth [31].
Despite its promise, refinement-based programming has
had limited success in mainstream software engineering
because: (1) developing formal specifications for non-
trivial software systems is hard, (2) formalizing module
boundaries for compositional verification is equally hard;
even well designed software systems modules make im-
plicit assumptions, and (3) verifying even simple soft-
ware modules automatically is hard.

8 Conclusions
Our key discovery is that the factors that impede re-

finement based software engineering are not roadblocks
to refinement-based network programming. First, even
complex networks admit relatively simple high-level
specifications. Second, boundaries between different
network components admit much cleaner specifications
than software interfaces. Finally, once formally speci-
fied, network designs can be efficiently verified.

CoCoNet can be seen as both a design assistant and a
proof assistant: by imposing the refinement-based pro-
gramming discipline on the network designer, it enforces
more comprehensible designs that are also amenable to
efficient automatic verification.
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A Syntax and Semantics of CoCoNet

A.1 Syntax

The syntax of the CoCoNet system is given in Fig. 15.
Let Id be the set of identifiers, Pkt the set of packets
and Val the set of values.

We suppose the existence of a countable set of iden-
tifiers, or variable names. Values comprise booleans
true and false, integers, tuples, and records of type
id, written id{v}. Expressions comprise standard nega-
tion, binary operators ⊗, projection of fields e.id, con-
struction of records id{e}, function call id(e), built-in
function calls id!(e), variable call id, tuple construction
(e, . . . ,e), and call to the current packet being processed
pkt. The semantics of a built-in function id! is given by
Jid!K ∈ Val→ Val.

Statements allow filtering, which stops the computa-
tion if e does not evaluate to true. Assumptions are
slightly different in that they are not executable, but can
be refined only if e evaluates to true. Packet fields can
be assigned explicitly with the := construct, or assigned
to a nondeterministic value using havoc. Statements
allow standard conditionals and let-bindings. Finally, a
statement can send a packet to another role id[e], or fork
to multicast a packet across all variables args satisfying
condition e.

Declarations contain function definitions, both with-
out a body to be refined later on or become user-defined
functions, and with a body when defined explicitly. Dec-
larations also contain role definitions: a role is param-
eterized by some arguments, and is only valid if some
constraints on those arguments ( | e) and on the incom-
ing packets (/ e) are true. Finally, assumptions allow re-
stricting the future definitions of declared functions, both
in future refinements and as user-defined functions.

Note that although types are part of the syntax, we
drop them in the semantics to simplify notations.
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integers n
identifier id

ids = id | id, ids

arguments args = τ id | τ id,args

case body cbod = · | e1 : e2; cbod
value v = true | false | n | id{v}

(v, . . . ,v)
expression e = not e | e1⊗ e2 | e.id

| id(e) | id!(e) | id{e}
| pkt | id
| case {cbod; default:e;}
| (e, . . . ,e)

type specs τ = uint <n> | bool | id | [τ;n]
| struct {args}

statement a = filter e | assume e
| pkt.id:=e | havoc pkt.id
| if e then a1
| if e then a1 else a2
| let τ id = e
| send id[e]
| fork (args | e) as

as = f | a,as
role constraints cs = · | |e | /e | |e/e
declaration d = typedef τ id

| function id(args) : τ

| function id(args) : τ = e
| role id[args] cs = as
| assume (args) e

ds = d | d,ds
refinement r = refine ids ds
spec spec = r | r,spec

Figure 15: CoCoNet Syntax.

A.2 Semantics

We give a denotational semantics of CoCoNet. The
semantics of expressions, statements and declarations is
given in terms of:

• a packet p ∈ Pkt, a record of type Pkt;
• a local environment σ ∈ (Id ⇀ Val), a par-

tial function from identifiers to values, comprising
let-defined variables; let Env be the set of local
environments;
• a set of possible environments of functions φ . Func-

tions take one argument (which can be a tuple).
Each function’s denotational semantics is a (math-
ematical) function from a pair (v,p) to a value v.
Each possible environment of functions is a par-
tial function from identifiers to such denotational
semantics. The set φ is a set of such possible en-
vironments, representing all the possible function
definitions. If Φ represents the set of all the sets

JeK(p,σ ,φ) ∈P(Val)
JvK(p,σ ,φ) = {v}

Jnot eK(p,σ ,φ) = {¬ v | v ∈ JeK}
Je1⊗ e2K(p,σ ,φ) = {v1⊗ v2 | v1 ∈ Je1K,v2 ∈ Je2K}

Je.idK(p,σ ,φ) = {v.id | v ∈ JeK}
Jid(e)K(p,σ ,φ) = {f (id)(v,p,φ) | v ∈ JeK, f ∈ φ}

Jid!(e)K(p,σ ,φ) = {Jid!K(v) | v ∈ JeK}
where Jid!K ∈ Val→ Val

Jid{e}K(p,σ ,φ) = {id{v} | v ∈ JeK}
JpktK(p,σ ,φ) = {p}

JidK(p,σ ,φ) = σ(id)
Jcase {·;default:e;}K(p,σ ,φ) = JeK(p,σ ,φ)
Jcase {e1 : e2;cbod; }K(p,σ ,φ) =
{v2 | (true,v2) ∈ J(e1,e2)K(p,σ ,φ)}∪
{v2 | false ∈ Je1K(p,σ ,φ),v2 ∈ Jcase {cbod;}K}

J(e1, . . . ,en)K(p,σ ,φ) = {(v1, . . . ,vn) | vi ∈ JeiK}

Figure 16: Semantics of expressions

of possible environments of functions, we thus have

Φ = P(Id⇀ (Val×Pkt)→ Val)

This enables the modelling of the nondeterminism
introduced by functions defined only as signatures,
and possibly restrained by assumptions;

• an environment of roles ρ , a partial function from
identifiers to role semantics, where each role se-
mantics is a (mathematical) function from a pair
(v,p) to a set of sets of pairs (p,σ). Each set of
pairs (p,σ) represents one possible execution, pos-
sibly returning multiple packets in the case of mul-
ticasting. We model nondeterminism by having the
semantics return a set of those possible executions.
Thus sets of sets enable the modeling of both non-
determinism and multicasting. If P represents the
possible environments of roles, we thus have

P = (Id⇀ Val×Pkt→P(P(Pkt×Env)))

A.2.1 Semantics of expressions

The semantics of expressions is given in Figure 16, in
terms of a triple (p,σ ,φ). Expressions are nondetermin-
istic, and thus their semantics is a set of possible output
values.

Most of the semantics is standard. Note that the only
nondeterminism is introduced by a function call id(e).
Functions are defined in the environment φ , while built-
in functions id! have their own semantics. The call pkt
just returns the current packet p in all cases.

A.2.2 Semantics of statements

The semantics of statements is given in Figure 17, in
terms of a quadruplet (ρ,σ ,φ ,ρ), and returns a set of
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JaK(p,σ ,φ ,ρ) ∈P(P(Pkt×Env))
Jfilter eK(p,σ ,φ ,ρ) = {{(p,σ) | true ∈ JeK(p,σ ,φ)}} can be {∅} but not ∅
Jassume eK(p,σ ,φ ,ρ) = {{(p,σ) | true ∈ JeK(p,σ ,φ)}} only if 6= {∅}
Jassume eK(p,σ ,φ ,ρ) =∅ otherwise

Jpkt.id := eK(p,σ ,φ ,ρ) = {{(p[id 7→ v],σ)} | v ∈ JeK(p,σ ,φ)}
Jhavoc pkt.idK(p,σ ,φ ,ρ) = {{(p[id 7→ v],σ)} | v ∈ Val}
Jif e then a1K(p,σ ,φ ,ρ) = {(p′,σ ′) ∈ Ja1K(p,σ ,φ ,ρ) | true ∈ JeK(p,σ ,φ)}∪

{(p,σ) | false ∈ JeK(p,σ ,φ)}
Jif e then a1 else a2K(p,σ ,φ ,ρ) = {(p′,σ ′) ∈ Ja1K(p,σ ,φ ,ρ) | true ∈ JeK(p,σ ,φ)}∪

{(p′,σ ′) ∈ Ja2K(p,σ ,φ ,ρ) | false ∈ JeK(p,σ ,φ)}
Jlet id = eK(p,σ ,φ ,ρ) = {{(p,σ [id 7→ v])} | v ∈ JeK(p,σ ,φ)}
Jsend id[e]K(p,σ ,φ ,ρ) =

⋃
{ρ(id)(v,p) | v ∈ JeK(p,σ ,φ)}

Jfork(id | e) asK(p,σ ,φ ,ρ) =
⊗
{JasK(p,σ [id 7→ v],φ ,ρ) | true ∈ JeK(p,σ [id 7→ v],φ),v ∈ Val}

where
⊗
{A1, . . . ,An}= {a1∪ . . .∪an | a1 ∈ A1, . . . ,an ∈ An},ai ∈P(Pkt×Env)

JasK(p,σ ,φ ,ρ) ∈P(P(Pkt×Env))
Ja,asK(p,σ ,φ ,ρ) =

⋃{⊗
{JasK(p′,σ ′,φ ,ρ) | (p′,σ ′) ∈ A} | A ∈ JaK(p,σ ,φ ,ρ)

}
Figure 17: Semantics of statements

sets of pairs (p,σ) to model both nondeterminism and
multicasting.

The semantics of filter and assume only differ
when {{(p,σ) | true ∈ JeK(p,σ ,φ)}} = {∅}. In that
case filter drops all packets (its semantics is {∅}),
whereas assume disallows refinements by denoting ∅.
The semantics of packet field updates (explicit or using
havoc), conditionals, and let-bindings is standard.

The statement send is treated as a function call to the
new role we are sending to, putting together all the non-
deterministic behaviors of that role with a union. Finally,
fork makes a cross-product on all the possibilities of
each of the statements, generating all possible combina-
tions of multicasts by picking one in each statement of
as. Composition of statements a,as is defined using a
similar cross-product to correctly handle both multicast-
ing and nondeterminism.

A.2.3 Semantics of declarations

The semantics of declarations is given in Figure 18. A
declaration updates the environments of functions φ and
roles ρ . Constraints | e and / e on roles are considered
true when unspecified.

A role declaration updates the role environment with a
function r. This function first checks whether the condi-
tions e3 and e4 are fulfilled (first two lines); then, in the
case where this definition is a refinement of an existing
role, it checks whether the new role’s body is a valid re-
finement (third line); when those checks pass, r returns
the semantics of the body as of the role.

A function declaration without an explicit body cre-
ates a possible function environment for any possible
value of this function. When provided a body, those en-

vironments are restricted if a previous declaration existed
(first line), otherwise an explicit definition is added (sec-
ond line). Assumptions select the definitions of functions
in φ that agree with the assumption that is being consid-
ered.

The semantics of several declarations, refinements and
finally whole specifications chains through the semantics
of role declarations.
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JdK(φ ,ρ) ∈Φ×P
Jrole id1 [id2]K = Jrole id1 [id2] | true / trueK

Jrole id1 [id2] | eK = Jrole id1 [id2] | e / trueK
Jrole id1 [id2] / eK = Jrole id1 [id2] | true / eK

Jrole id1 [id2] | e3 / e4 = asK(φ ,ρ) = (φ ,ρ [id1 7→ r])

where r = λ (p,v2).


∅ if true 6∈ Je3[v2/id2]K(p, [ ],φ)
∅ if true 6∈ Je4[v2/id2]K(p, [ ],φ)
∅ if id1 ∈ dom(ρ) and Jas[v2/id2]K(p, [ ],φ ,ρ) 6⊆ ρ(id1)
Jas[v2/id2]K(p, [ ],φ ,ρ) otherwise

Jfunction id1(id2)K(φ ,ρ) = ({ψ[id1 7→ f ] | ψ ∈ φ , f ∈ (Val×Pkt→ Val), id1 6∈ dom(ψ)} ,ρ)
Jfunction id1(id2) = eK(φ ,ρ) = ({ψ ∈ φ | ∀p,v2.ψ(id1)(v2,p) ∈ Je[v2/id2]K(p, [ ],φ), id1 ∈ dom(ψ)}∪

{ψ[id1 7→ f ] | ψ ∈ φ ,∀p,v2.f (v2,p) ∈ Je[v2/id2]K(p, [ ],φ), id1 6∈ dom(ψ)}
,ρ)

Jassume args eK(φ ,ρ) = ({ψ | ψ ∈ φ ,∀args.true ∈ JeK({ }, [args],{ψ})},ρ)

Jd,dsK(φ ,ρ) = JdsK(JdK(φ ,ρ))

Jrefine ids dsK(φ ,ρ) = JdsK(φ ,ρ)

Jr,specK = JspecK(JrK(φ ,ρ))

Figure 18: Semantics of declarations
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