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Abstract

For safety-critical tasks like collision avoidance, formal ver-
ification can provide the assurances required to deploy au-
tonomous systems when lives are at stake. Many methods
for verifying collision avoidance model a vehicle as a mov-
ing point mass, though the real vehicles have non-zero area.
Motivated by this gap, our past work proposed a novel al-
gorithm (the active corner method) for verifying collision
avoidance for polygonal objects moving in the plane, pre-
sented a proof of its correctness, and detailed an automated
implementation of the algorithm. This paper presents work-
in-progress on a certifiable implementation that generates a
machine-checkable PVS proof of correctness for the output
quantifier-free safe region formulation. This work briefly dis-
cusses the proof approach from our original paper, presents
a novel approach that leverages simpler geometric intuition,
details what we have proven so far in PVS, and lays out our
future research goals for this project.
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1 Introduction

In safety-critical systems such as medical devices, power sys-
tems, automated vehicles, and airplanes, formal verification
is important to assure correct, safe operation and prevent
harm or loss of life. This work-in-progress paper concerns
collision avoidance verification, an important task in motion
planning for autonomous robotics in both aerospace and
ground settings. In particular, we consider verification for
collision avoidance when the object in question has non-zero
area. Many approaches for collision avoidance reason about
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point objects, which is unrealistic for robotics applications
where hardware systems (drones, wheeled robots, grasping
arms) have volume and mass [2, 10, 13].

In our prior work [12], we introduced the active corner
method for verifying collision avoidance for polygons mov-
ing along known planar trajectories and presented a paper
proof of its correctness and completeness. The paper also
presented an automated implementation of the active corner
method in Python, which could produce a quantifier-free
geometric representation of the safe region given an object
and a trajectory. However, there is currently a gap between
our paper proof and the implementation; the Python code
could contain bugs or incorrectly implement the method.

Here, we present progress towards formalizing our imple-
mentation of the active corner method for collision avoidance
in the Prototype Verification System (PVS), which couples a
formal specification language with an interactive theorem
prover [14, 15]. PVS has a lengthy history of use in the verifi-
cation community and includes the NASALib library, which
contains formalizations of mathematical concepts in geome-
try, calculus, and real analysis that are useful building blocks
for the proofs we present. The existing formalizations mean
that we do not have to redefine or re-prove the properties
of trajectory functions and polygons that we rely on in our
proof. We seek to automatically generate machine-checkable
PVS proofs. Because of the complexity of both our algorithm
and original proof, so far we have focused on building up a
generalized proof structure, rather than a full PVS reimple-
mentation of the algorithm from our prior work [12]. Our
goal is to automatically generate checkable proof objects
that can be used to check the correctness of the returned
implementation output to bridge the trust gap between our
paper proof and Python code. Note that we are not certifying
our Python code; instead we seek to generate certificates of
correctness. Along with the PVS work presented here, we en-
vision modifying our Python implementation to return 1) a
computationally efficient way to test for collision avoidance
and 2) a proof certificate as described above.

In doing so, we also have derived a novel proof approach
that holds for simple examples, presented below in Section 3.
We are currently working on generalizing this proof ap-
proach in two ways: 1) generalizing to all convex polygons
and 2) considering functions with bounded derivatives over a
certain interval, as in the original proof from our prior work
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[12]. The original proof in [12] leveraged significant geomet-
ric intuition, such as slopes corresponding to the sides of
polygons and bounds on the x- and y-coordinates of inte-
rior points of polygons. These geometric, visual concepts
are easily understood but not well suited for formalization
in a theorem prover; this work presents a more algebraic
approach that is more easily expressed in an interactive the-
orem prover.

PVS has been used to verify properties of hybrid systems in
the past [1, 16] along with tools like Isabelle [8]. Our work in
generating checkable proof certificates is reminiscent of the
Proof Module in CVC [4, 11]. PVS itself can export externally-
checkable proof certificates [9]. Other work in certificate
checking includes finite-precision error bounds in Coq and
HOLA4 [5] and proof witnesses for SMT solving in Coq [3].

2 Overview

An intuitive formulation for collision avoidance along a path
is a quantified one: for all points (xs, ys) along a path 7,
ensure that an obstacle at coordinate (xp, yo) is not inside
of a volume v centered at (x, y7). That is,

Y(x7y7) € T, (x0,Yo) ¢ v(xT, y7) (1)

However, this quantified representation has one issue: the
V quantifier cannot be easily used at runtime. Simulation-
based approaches may rely on imperfect discretization, and
the Cylindrical Algebraic Decomposition algorithm for elim-
inating quantifiers is doubly exponential in the number of
total variables [6, 7]. As such, we need to find a way to elim-
inate the universal V quantifier; certifying such an approach
in PVS is the focus of this work. Our prior work introduced a
fully symbolic method of generating a quantifier-free equiv-
alent to a quantified statement of collision avoidance in the
form of Equation (1). We call this an explicit representation
of the “safe region”, or the set of obstacle locations where,
given a polygon’s trajectory, a collision will not occur.

The key idea of our active corner method as presented in
our past work is that, to construct verifiably correct “safe
regions” (or reachable sets) for polygonal objects moving in
the plane, we must consider the shape of the object in addi-
tion to the paths of its corners [12]. Failing to consider the
shape of the object at a finite number of locations (and only
following the paths of its corners) would miss the “notch”,
as illustrated in Figure 1. In particular, we have shown that
while the derivative of the trajectory remains in a certain
interval, it suffices to follow only two “active” corners.

Because the object moves without rotating in our formula-
tion, we can shift a (known) trajectory for the object center
to get equations of motion for the active corners. For a ver-
tex v; with relative-to-center coordinates (Ax;, Ay;), we can
express its path as y = f(x + Ax;) + Ay;. Going forward, we
will consider only symmetric polygons for simplicity, but our
method holds for asymmetric polygons as detailed in prior
work [12]. To test if an obstacle at (xp, yo) is unsafe, we can
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Figure 1. A rectangular airplane moving along a planar
trajectory. At the transition point at the parabola’s vertex,
the “notch" is visible and shaded in red; part of the object
lies outside of the corner-trajectories at this point.

Left Endploint Middle Segment Righlt Endf)oint
Figure 2. Sections of proof: the three cases of our proof
account for the transition points, where the active corners

change, at the start and end of each trajectory segment.

see if it lies in between its active corners, which are opposite
vertices for symmetric polygons. Correspondingly, an unsafe
obstacle must be below the path of one active corner and
above the path of its opposing corner. We can express this
generally as Equation (2), a Boolean test for being unsafe.

(yo — f(xo + Ax) — Ay)(yo — f(xo — Ax) + Ay) <0 (2)

Using Equation (2) is not sufficient; at points along the
trajectory where the active corners change, we must account
for the “notch” (like the bottom of the parabola in Figure 1).
At those discrete instances, called transition points, we ad-
ditionally check if an obstacle is unsafe by seeing if it lies
within the polygon at that transition point.

3 A Mechanized Proof in PVS

In order to prove the correctness of our method, we must
show soundness: that is, any point that the active corner
method claims to be safe is indeed safe under the quantified
definition (Equation (1)). We can show this by contraposition:
we prove that all points (Xint, Yint) on the interior of a poly-
gon centered at (x7, y7) for yr = f(xq) will return True
(evaluate to unsafe) when plugged into Equation (2). A paper
proof of the opposite direction of implication (completeness)
is included in our prior work [12].

Our original proof of correctness reasons about segments
of a trajectory function in which the active corners do not
change; that is, segments where the derivative of the function
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Xint

Figure 3. Shifted polygon illustration. The red point is in
the interior of the center black polygon but also lies along
the dashed green centerline of the grey polygon.

stays bounded within a certain interval. Our proof gener-
alizes to the entirety of a trajectory by reasoning segment-
by-segment. As illustrated in Figure 2, our proof considers
interior points in three sections: the Left and Right Endpoint
sections account for transition points, and the Middle Seg-
ment in Figure 2 considers interior points lying between the
paths of the two active corners, as in Equation (2).

Our original proof from our past work proves complete-
ness by showing that, in the “Middle Segment” of Figure 2
any interior point of a polygon lies along the center line
of a different, shifted polygon (Figure 3). By bounding two
quantities: 1) the coordinates of that interior point and 2) the
center coordinates of that shifted polygon, we can show that
the interior point lies above one active corner and below the
opposite active corner, and so Equation (2) is True and any
interior point will test unsafe, as desired.

The remainder of this section focuses on a novel proof ap-
proach that reasons algebraically rather than geometrically
and is more straightforward to prove in PVS, as no geom-
etry libraries or definitions are required so far. Our proof
approach defines the polygon as a conjunction of linear half-
plane constraints (inequalities corresponding to edges), and
leverages the active corners by combining the inequalities
corresponding to the edges adjacent to each corner. We do
not yet have a general proof using this more algebraic ap-
proach but provide proofs for squares and diamonds moving
on straight-line paths in this section. We discuss how this ap-
proach may generalize and discuss future work in Section 4.

3.1 Square on straight line

Our initial example for this new proof structure was a square
moving in a straight line, as in Figure 4. We defined our
trajectory as f(x) = ax for @ € R and used a square with
side length 1, though the algebra generalizes to positive side
lengths.

We aim to show any point that the active corner method
claims to be safe is indeed safe under the quantified, implicit
definition, or safe,cy = safe,. We express this by con-
traposition: unsafe, = unsafe,c); intuitively this means
we want to show that any points inside any polygon on the
path will test unsafe using the active corner method. This
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Figure 4. Square moving on line with positive slope a. An
obstacle (xp, yo) is labeled, along with inequalities defining
the sides of the square and the active-corner-trajectories.

leads to the following implication, which we seek to prove:
Ixst. (xo-x<1Axo—-x2-1A
€ B
Yyo—ax <1 A yo—axz—l)
Y s 3)
—_—
((yo-1-a(xo—1)(yo+1-a(xo+1))) <0V
((o-1-a(xo+1) (yo+1-a(xo-1))) <0
Consider two cases. First we consider a > 0.

Then we introduce a known constraint y based on a side
of the polygon, as illustrated in Figure 4.

Yo—ax <1 )
yo—1<ax < a(xo+1) (bound with f)
(yo—-1) —alxo+1) <0 (rearrange)
4)

We combine this by manipulating and substituting into
inequality 8, which corresponds to the side opposite y.

yo —ax > —1 (6)
yo+1>ax > a(xp —1) (bound with €)

(yo+1) —a(xo—-1) =0 (rearrange)

(5)
The choice of relation introduced in the third line of both
Equations (4) and (5) is no coincidence. By pairing constraints
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y and f in Equation (4), we consider where these two con-
straints intersect; from Figure 4 we can see that is the top
left corner of the square, which is an active corner for linear
motion with positive slope.

We can use the results of Equations (4) and (5) to conclude
that given the left-hand of Equation (3), the following holds:

((yo-1-a(xo+1) (yo+1-a(xo-1)) <0 (6)

This is exactly one branch of the disjunction in (3), and so
we have proven (3) for ¢ > 0.

In the case of @ < 0, we consider y and J, but pair them
with inequalities € and f respectively (the opposite of the
above section). The linkage of constraints represents the two
active corners; clauses/edges y and € intersect form the top
right active corner for descending motion, and § and f form
the bottom left active corner in this situation.

Yyo—1<ax <a(xo—-1) (y,thene)
yo—1—a(xp—-1) <0

(7)

Yyo+1>ax > a(xo+1) (4, then p)
yo+1l—a(xo+1) 20

From Equation (7), we have that
((yo-1-a(xo-1) (yo+1-a(xo+1)) <0 (8)

Again, we have proven one half of the disjunction at the
second part of the implication in Equation (3), and so the
implication holds for a < 0.

3.2 Diamond on straight line

Again, we use f(x) = ax as above, but consider instead a
diamond moving along this line, illustrated in Figure 5.

Here, we seek to prove a different implication of the same
form as Equation (3).

dx s.t.

(yo—axs(xo—x)+l ANyo—ax = (x,—x)—1 A

€ S
Yyo—ax < —(x,—x)+1 A yo—axz—(xo—x)—l)

Y B

=

Yyo=2axo—1Ayo<axo+1| Vv

n &

Yyo+ta = axpo Nyo —a < axp

0 K
)
Note that the clauses 1, £, 0, and « in the consequent are
a bit different, but can be reformulated into the same form
as Equation (3) by rearranging terms so each inequality is
> 0 or < 0, multiplying together both sides of the A (one of
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Figure 5. Diamond moving on line with slope a. An obstacle
(x0, yo) is labeled, along with inequalities defining the sides
of the square.

which will be positive and the other negative), and setting
that product < 0.

Based on the two pairs of potential active corners for this
setting, we consider cases @ € (—1,1) and |a| > 1.

First we consider & € (-1, 1). We must show the following:

(enyAlal <1 = HA(PASAlal <1 = 1) (10)

A proof of the first half of the conjunction in Equation (10)
follows; the second part follows similarly. We manipulate
inequalities € and y:

yo—ax < (xo—x) +1 (e)
yo—xo—-1< (a—1)x (1)
< )

X210~ %
Yyo—ax < —(xo—x)+1 )

yo+xo—1< (a+1)x

(12)

L (yo + 1)
X —
a+1 Yo ©

\%
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Next, given the conclusions of Equations (11) and (12), we
eliminate x and bound yo.

1 1
—(Wo—-x0-1) =2 —(yo+x0—1) (eliminate x)
a—1 a+1
(a+1)(yo—x0—-1) < (a—1)(yo +x0 — 1) (flip inequality)
—axo+yo—1<axp—yo+1
Yo < axp +1 (¢, shown)
(13)

Note that the inequality switches towards the end of Equa-
tion (13) because a < 1, and we multiply by (a + 1)(a — 1),
a negative number.

In the case of |a| > 1, we take a different approach, using
the left and right-most corners of the diamond (which are
active for motion with slopes above 45 deg and below 45 deg).
Correspondingly, to show 6, we use clauses § and y. That is,
we seek to prove

SAYyAN|a| 21 = 6 (14)
The proof follows.

Yo —ax = (xo —x) — 1 (©)

Yo —ax < —(xo —x) +1 (¥)
Yyo—xo+1> (a—1)x (x(x+1) =0)
Yyo+xo—-1< (a+1)x (x(a—1) >20)

(a+1)(yo—x0+1) 2 (a = 1)(yo +x0 +1)
a(-xo+1)+yo = a(xo - 1) —yo
a(-xo+1)+yo =0
Yo = axp — a (8, shown)

(15)

3.3 Implementation in PVS

We have proven the square case in PVS and are working
on the diamond case proof. Our approach to proving the
square case directly follows the algebraic manipulations in
Equations (4) and (5).

Our theorem of soundness for the square case in PVS is
below. It effectively expresses Equation (3) in PVS.
SoundnessAlpha(xo, yo, alpha: real) : bool =
(EXISTS (x : real) :
((xo - x) <=1 AND (x0 - x) >= -1 AND

(yo - alpha*x) <= 1 AND (yo - alpha*x) >= -1))

IMPLIES

((yo - alpha*xo - alpha - 1) *

(yo - alpha*xo + alpha + 1) <= 0) OR

((yo - alpha*xo - alpha + 1) *

(yo - alpha*xo + alpha - 1) <= 0)

Our PVS proof for the square-linear case proceeds by
splitting cases on the condition @ > 0 and bounding x in
terms of xp. By multiplying the constraints with x and xo
by @, we then apply those bounds to the yo — ax inequalities
and show one portion of the PVS consequent for each case
of a (positive and negative).
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Similarly, the PVS definition for the diamond case imple-
ments Equation (9) in PVS syntax.

DiamondSoundness(xo, yo, alpha : real) : bool =
(EXISTS(x : real)
((yo - alpha*x <= xo0 - x + 1) AND
(yo - alpha*x >= xo0 - x - 1) AND
(yo - alpha*x <= -x0 + x + 1) AND
(yo - alpha*x >= -xo + x - 1)))

IMPLIES
((yo - alpha*xo + alpha) *
(yo - alpha*xo - alpha) <= 0 OR
(yo - alphaxxo + 1) *
(yo - alphax*xo - 1) <= 0)

Our PVS proof for the diamond-linear case proceeds by
splitting cases on the conditions -1 < @ < 1 and |a| >= 1.
We then eliminate x from inequalities representing adjacent
sides of the diamond as in 3.2, which yields terms that can
be rearranged to upper- or lower-bound yo. These bounds
themselves can be rearranged and multiplies to match one
term of the PVS consequent for our two cases on a.

4 Future Work and Conclusion

We have presented work in progress on formalizing the ac-
tive corner method [12]. Our goal is to generate machine-
checkable proof certificates of correctness and provide these
to users of our automated implementation, thus bridging the
trust gap between our paper proof and our Python imple-
mentation. In this paper, we have reviewed the active corner
method; discussed two proof approaches: one geometric from
our past paper and a novel, more algebraic approach; and
presented progress on formalizing this new proof in PVS.

We envision several next steps to generalize our PVS
proofs. To consider notches, we must add additional con-
straints that bound the domain for each proof case (intervals
where the active corner does not change). So far, we have
proven our square-linear case in PVS for a finite start but not
a finite end. To generalize to all convex polygons, we must
construct half-plane constraints as in (3) and (9) automati-
cally from a polygon definition in PVS and then manipulate
those constraints corresponding to the active corners. Lastly,
we must reason about function derivatives rather than lin-
ear motion. Our assumption that the active corners do not
change make this more straightforward: we can consider
the maximum and minimum values of the derivative f’(x)
when manipulating inequalities, the way that we use « in
our linear cases when bounding terms now.
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