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ABSTRACT

This paper offers an integrative behavioral-based physics-
inspired approach to model and control traffic congestion in an
efficient manner. While existing physics-based approaches com-
monly assign density and traffic flow states with the Fundamen-
tal Diagram, this paper specifies the flow-density relation using
past traffic behavior (intent) recorded over a time sliding win-
dow with constant horizon length. With this approach, traffic co-
ordination trends can be consistently learned and incorporated
into traffic planning. This is integrated with mass conservation
law (continuity) to model traffic coordination as a probabilis-
tic process and obtain traffic feasibility conditions using linear
temporal logic. By spatial discretization of a network of inter-
connected roads (NOIR), the NOIR is represented by a graph
with inlet boundary nodes, outlet boundary nodes, and interior
nodes. The paper offers a boundary control approach to man-
age congestion through the inlet boundary nodes. More specifi-
cally, model predictive control (MPC) is applied to control traffic
congestion through the boundary of the traffic network. There-
fore, the optimal boundary inflow is assigned as the solution of a
constrained quadratic programming problem with equality and
inequality constrained. The simulation results shows that the
proposed MPC boundary controller can successfully control the
traffic through the inlet boundary nodes where traffic reaches the
steady state condition.

1 Introduction
Urban traffic congestion management with physics-based

traffic coordination modeling has been extensively studied over
the past three decades. A network of interconnected roads
(NOIR) can be spatially discretized using the Cell Transmission
Model (CTM) that applies the mass conservation principle to
traffic coordination (1; 2). The Fundamental Diagram (3; 4) is
frequently applied to model congestion with a flow-density re-
lation at every traffic cell. While the Fundamental Diagram can
successfully determine the traffic state for small-scale urban road
networks, it may not properly analyze or control congestion in
large traffic networks. Backward propagation, spill-back conges-
tion, and shock-wave propagation are also difficult to accurately
model.

1.1 Related Work
Physics-based control approaches have been previously pro-

posed to deal with traffic coordination challenges. Fixed-cycle
control is the traditional approach to operating traffic signals at
intersections. For example, the traffic network study tool (5; 6)
has been deployed to optimize traffic signal timing. Fuzzy con-
trol systems (7; 8) have also been proposed to optimize traffic
light signal timings. The Fundamental Diagram is a popular
physics-based approach to determine traffic state (flow-density
relation) (3; 4) and to model dynamic traffic coordination (9).
This diagram has also been used to describe spillback conges-
tion (10; 11) and backward propagation (12; 13) effects into traf-
fic simulation and to compute feasibility conditions for traffic
congestion control.

1 Copyright c© 2020 by ASME



Mass flow conservation (14) applies first order traffic dy-
namics, dynamic traffic assignment (15; 16), and a cell trans-
mission model (1; 17) to model and control freeway traffic co-
ordination. Model predictive control (MPC) is a common ap-
proach for model-based traffic flow optimization (18; 19; 20).
As an example, MPC was used to determine the optimal platoon-
ing speed for automated highway systems (AHS) in (21). Fuzzy
logic (22; 23; 24; 25), neural network (26; 27; 28; 29), Markov
Decision Process (MDP) (30; 31), formal methods (32; 33),
mixed nonlinear programming (MNLP) (34), and optimal con-
trol (14; 35) methods have all been applied to model-based traffic
management.

This paper contributes a novel integrative behavioral-based
physics-inspired approach to obtain a microscopic data-driven
traffic coordination model and resiliently control congestion in
large-scale traffic networks. The proposed modeling and control
approach is formally presented and evaluated in traffic simulation
studies. Following a summary of related work and a statement of
contributions, preliminary notions of graph theory are first pre-
sented in Section 2. A problem statement is presented in Section
3. Section 4 models traffic coordination as a mass-conservation
problem followed by a description of traffic congestion bound-
ary control in Section 5. Simulation results presented in Section
6 are followed by concluding remarks in Section 7.

1.2 Contribution
This paper offers a new behavioral-based approach for con-

trol traffic coordination in a network of interconnected roads
(NOIR). We model traffic coordination as a mass conservation
problem governed by the continuity partial differential equation
(PDE). By spatial and temporal discretization of traffic coordina-
tion, traffic dynamics is expressed by a probabilistic process con-
trolled through the boundary road elements of the NOIR. The pa-
per uses linear temporal logic to formally specify the feasibility
conditions at NOIR road elements. Given traffic feasibility con-
ditions, optimal boundary inflow is assigned as the solution of an
adaptive model-predictive control (MPC) problem with param-
eters that are consistently learned based on the empirical traffic
information. Therefore, the optimal boundary inflow is contin-
uously assigned as the solution of a constrained quadratic pro-
gramming problem and incorporated into planning.

2 Graph Theory Notions
A NOIR consists of a finite set of serially-connected

road elements, where i ∈ V represents a unique road ele-
ment. The set V can be partitioned as V = Vin ∪Vout ∪VI ,
where Vin = {1, · · · ,Nin}, Vout = {Nin + 1, · · · ,Nout }, and VI =

{Nout +1, · · · ,N} define index numbers of inlet, outlet, and inte-
rior road elements, respectively. Interactions between road ele-
ments are defined by graph G (V,E), with verticesV and edges

E ⊂ V ×V. For every road element i ∈ V, the in-neighbor
set Ii , { j | ( j,i) ∈ E} ⊂ Vin ∪VI specifies upstream adjacent
road elements, and the out-neighbor set Oi , { j | (i, j) ∈ E} ⊂
Vout ∪VI defines downstream adjacent road elements. Traffic
enters i ∈ V from an in-neighbor node belonging to Ii and exits
from i ∈ V toward an out-neighbor node belonging to Oi .
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FIGURE 1. Simple NOIR example with 7 unidirectional roads, rep-
resenting a simple roundabout

As an example, consider the example NOIR shown in
Fig. 1 with 7 unidirectional roads. Every road element is
identified by a unique index number i ∈ V = {1, · · · ,7} =
Vin

⋃
Vout

⋃
VI , where Vin = {1,2}, Vout = {3,4}, and

VI = {5,6,7}. The graph G = (V,E) is defined by V =
{(1,5),(5,3),(2,6),(6,4),(6,7),(7,5)}.

Assumption. The paper assumes that Ii = ∅ and |Oi | = 1
for every inlet element i ∈ Vin, where |·| is the set cardinality
symbol. This paper also assumes that

��Ij �� = 1 and Oj = ∅, for
every outlet element j ∈ Vout .

3 Problem Statement
The traffic coordination control problem is defined by tu-

ple M given by tuple M = (X,U,F ,C), where X ⊂ RN−Nout .
Vector x =

[
ρNout+1 · · · ρN

]T
∈ X defines traffic density of in-

terior road elements across the NOIR, where ρi is the traffic
density at interior road element i ∈ VI . U ⊂ RNin , and vector
u =

[
u1 · · · uNin

]T
∈ U defines the boundary inflow, where ui is

the inflow at inlet boundary element i ∈Vin. Because traffic den-
sity and boundary inflow are finite, X ⊂ RN−Nout and U ⊂ RNin

are compact. Furthermore, F : X×U→ X is the traffic state
transition function defined as follows:

F (x,u) = Ax+Bu (1)

where constant matrices A ∈ R(N−Nout )×(N−Nout ) and B ∈
R(N−Nout )×Nin will be defined in Section 4 and A ∈
R(N−Nout )×(N−Nout ) is called the tendency matrix. Moreover,
C : X×U→ R≥0 is the traffic coordination cost defined based
on the traffic density distribution across the NOIR.
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4 Traffic Coordination Modeling
The mass-conservation law is applied to obtain microscopic

traffic dynamics across the NOIR. Therefore, traffic coordination
at road element i ∈ V is given by

ρi[k +1] = ρi[k]+ yi[k]− zi[k], (2)

where k ∈ N denotes discrete time, ρi[k] is the traffic density of
road element i ∈ V, and

yi[k] =

{
ui[k] i ∈ Vin∑

j∈Ii
⋂
Vin

u j[k]+
∑

j∈Ii
⋂
(V\Vin)

p̄ j q̄i , j ρj[k] i ∈ V \Vin

(3a)

zi[k] =

{
p̄iρi[k] i ∈ VI

yi[k] i ∈ V \VI

(3b)

are the traffic inflow and outflow, respectively, at road element
i ∈ V over time interval [tk,tk+1]. Note that ui[k] can be con-
trolled at inlet boundary element i ∈ Vin, p̄i ∈ [0,1] is the out-
flow probability of road element i ∈ V \Vin, determining the
fraction of cars leaving road element i ∈ VI over time interval
t ∈ [tk,tk+1]. Also, tendency probability q̄i , j is the fraction of
z j [k] directed from j toward i ∈ Oj over time interval t ∈ [tk,tk+1],
where

∑
i∈O j

q̄i, j = 1. By convention, q̄i, j = 0 if ( j,i) < E.
Remark: Since Oj = ∅ for j ∈ Vout , traffic is not directed

from an outlet boundary element towards an interior element or
an inlet boundary element. Therefore for j ∈ Vout , the quantities
q̄1, j through q̄N , j are all zero. Therefore,

∀i ∈ VI , yi[k] =
∑

j∈Ii
⋂
Vin

u j[k]+
∑

j∈Ii
⋂
VI

p̄ j q̄i , j ρj[k]. (4)

4.1 Traffic state transition function
Per Eq. (3b), yi[k] = zi[k] for every road element i ∈

Vin
⋃
Vout at every discrete time k. Therefore, traffic density

of every road element i ∈ Vin
⋃
Vout remains constant but traffic

density can change with time over the interior road elements. We
define positive-definite and diagonal matrix

P =


p̄Nout +1 0

. . .

0 p̄N

 ∈ R
(N−Nout )×(N−Nout ). (5)

We also define non-negative matrix Q = [Qi j] =[
q̄i+Nout , j+Nout

]
∈ R(N−Nout )×(N−Nout ) with i j entry

Qi j = q̄i+Nout , j+Nout specifying the tendency of traffic at interior
node j + Nout ∈ VI to move towards node (i+Nout ) ∈ Oj+Nout

at any time t ∈ [tk,tk+1].
Traffic Tendency Matrix: Given P and Q, we define the

tendency matrix A ∈ R(N−Nout )×(N−Nout ) as follows:

A = I−P+QP, (6)

where I ∈ R(N−Nout )×(N−Nout ) is the identity matrix. Assuming
traffic is updated by Eq. (2) at every road element i ∈ VI , density
vector x[k] =

[
ρNout+1[k] · · · ρN [k]

]T is updated by the follow-
ing network dynamics:

x[k +1] = F (x[k],u[k]) = Ax[k]+Bu[k], (7)

where u[k]=
[
u1[k] · · · uNin [k]

]T is the boundary inflow vector,
B =

[
Bi j

]
∈ R(N−Nout )×Nin , and Bi j is a constant matrix defined

as Bi j =

{
1 j ∈ Ii+Nout

0 otherwise
.

Theorem 1. The traffic state transition, defined by dynamics
(7), is BIBO stable when the following conditions are satisfied:

1. There exists at least one directed path from every inlet
boundary road element toward the interior of road element
i ∈ VI .

2. There exists at least one directed path from the interior of
road element i ∈ VI toward every outlet boundary road ele-
ment.

Proof: Because there exists a path from each boundary node to
every interior node of graph G, non-negative matrix A is irre-
ducible, and the sum of the column entries of A is one or less
than one. Entries of column i of matrix A sum to 1 if no out-
neighbors of road element i + Nout are outlet boundary nodes,
i.e. Oi+Nout

⋂
Vout = ∅. Otherwise, the sum of the entries of

column i of matrix A is 0 or a positive number between 0 and 1.
Consequently, the spectral radius of A is less than 1. When x[k]
is updated by discrete traffic dynamics (7), we can write

x[k +1] =
[
Γk · · · Γ1 I

] 
x[1]

Bu[1]
...

Bu[k]


. (8)

Eigenvalues of matrix A are all placed inside a unit disk centered
at the origin. Because x[1] is finite and u[k] is bounded at ev-
ery discrete time k, there exists a zmax < ∞ such that x[1] <
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zmax1N−Nout ,1, and Bx[k] < zmax1N−Nout ,1 for k = 1,2, · · · .
Thus

xT [k +1]x [k +1] ≤z2
max1T

(
I+

k∑
h=1

ΨT
hΨh

)
1

≤z2
max (N −Nout )

(
k∑

h=0
rh

)
≤

z2
max (N −Nout )

1− r

,

(9)

where r is the spectral radius of matrix ΨT
h

Ψh for h = 1,2, · · · .
Because r < 1, the right-hand side of Eq. (9) is bounded and the
BIBO stability of traffic dynamics (7) is proven.

4.2 Traffic Feasibility Conditions
Linear Temporal Logic (LTL) is used to specify the feasibil-

ity conditions of the conservation-based traffic coordination dy-
namics given in equation (7) (36). Every LTL formula consists
of a set of atomic propositions, logical operators, and temporal
operators. Logical operators include ¬ (“negation”), ∨ (“disjunc-
tion”), ∧ (“conjunction”), and⇒ (“implication”). LTL formulae
also use temporal operators � (“always”), © (“next”), ♦ (“even-
tually”), andU (“until”).

We extend discrete-time LTL with the syntactic sugar
�{0,...,Nτ } whose intuition is that the state M = (X,U,F ,C) satis-
fies �{0,...,Nτ }ϕ at time k if and only if it satisfies ϕ from time
k + 0 = k to time k + Nτ , included. In discrete-time LTL, the
operator �{0,...,Nτ } can be defined syntactically as:

�{0,...,Nτ }ϕ , ϕ∧©ϕ∧©© ϕ∧ . . .∧©· · ·©︸  ︷︷  ︸
Nτ times

ϕ

The notation is inspired by Metric Temporal Logic MTL (37)
and Signal Temporal Logic STL (38), which feature a similar
operator in continuous time.

Four traffic feasibility conditions are formally specified be-
low to serve as formal constraints for the subsequent optimal
control definition. In particular, these feasibility conditions are
used to determine admissible boundary inflow u[k] ∈ U at every
discrete time k.

Feasibility Condition 1: Traffic density, defined as the
number of cars at a road element, is a positive quantity every-
where in the NOIR. Also, it is assumed that every road element
has maximum capacity ρmax. Therefore, the number of cars can-
not exceed ρmax in every road element i ∈VI . These two require-
ments can be formally specified as follows:∧

i∈V

�{0,...,Nτ } (ρi ≥ 0 ∧ ρi ≤ ρmax) . (Φ1)

If feasibility conditionΦ1 is satisfied at every road element, then,
traffic over-saturation is avoided everywhere in the NOIR at ev-
ery discrete times k.
Feasibility Condition 2: Fraction q̄j ,i of the outflow zi directed
from i ∈ V toward j ∈ Oi must not exceed the available capac-
ity of road element i denoted by Cj[k] = ρmax − ρj[k] at every
discrete time k. This condition can be formally specified by∧

i∈V

∧
j∈Oi

�{0,...,Nτ }
(
q̄j ,izi ≤ Cj

)
. (Φ2)

Feasibility Condition 3: The inflow yi must not exceed the
available available capacity Ci[k] at every discrete times k. This
requirement is formally specified by the following LTL formula:

∧
i∈V

�{0,...,Nτ } (yi ≤ Ci) . (Φ3)

Feasibility Condition 4: The boundary inflow needs to satisfy
the following feasibility condition at every discrete time k:

�{0,...,Nτ } (u ∈ U) . (Φ4)

While Feasibility Conditions 1 through 4 need to be satisfied at
every discrete time k, the following “optional” condition is also
implemented when inflow demand is high:
Optional Condition 5: Boundary inflow should satisfy the fol-
lowing feasibility condition at every discrete time k:

�{0,...,Nτ }

( ∑
i∈Vin

ui = u0

)
. (Φ5)

Boundary condition (Φ5) constrains the number of vehicles en-
tering the NOIR to be exactly u0 at any time k. Note that u0 is
an upper bound on vehicles entering the NOIR. However, in the
simulation results presented, traffic demand is significant such
that the NOIR is maximally utilized by as many vehicles as pos-
sible.

5 Traffic Coordination Control
The boundary inflow u[k] can be controlled by ramp me-

ters situated at the inlet boundary nodes at every discrete time
k. Ramp meters apply an MPC control design to determine the
optimal boundary inflow u[k] so that the traffic congestion can
be effectively and resiliently managed.

The optimal boundary inflow u[k] = u∗ is determined by
minimizing the Nτ-step expected cost

C =
Nτ∑
τ=1

(
xT [k + τ]xT [k + τ]+ βuT [k + τ]u[k + τ]

)
, (10)
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where C = C (x[k],u[k +1], · · · ,u[k +Nτ]) scaling parameter β >
0 is constant and all traffic feasibility conditions must be satis-
fied. The optimal control u[k] = u∗ is assigned as the solution
of a constrained quadratic programming problem that can be for-
mally specified as follows:

(u[k +1], · · · ,u[k +Nτ]) = argmin
(u[k+1], · · · ,u[k+Nτ ])∈UNτ

C (11)

subject to constraints (Φ1), (Φ2), (Φ3), (Φ4) and (Φ5). Cost func-
tion C can only be defined based on x[k],u[k + 1], · · · ,u[k +Nτ]
at every discrete time k. Therefore, u∗ = u[k] can be assigned as
the solution of a constrained quadratic programming problem at
every discrete time k.

FIGURE 2. Communication graph representing an example NOIR .

FIGURE 3. Boundary control input u1[k] through u8[k] for k =
1, · · · ,100

FIGURE 4. Traffic density at interior road elements for k = 1, · · · ,100.

FIGURE 5. Traffic outflow at outlet boundary elements 5, 6, and 7
and network traffic outflow znet for k = 1, · · · ,100.

6 Simulation Results
Consider the NOIR consists of 20 unidirectional roads (road

elements) shown in Fig. 2. Road elements are defined by set
V = {1, · · · ,20} where V = Vin =

⋃
Vout

⋃
VI where Vin =

{1, · · · ,4}, Vout = {5,6,7}, VI = {8, · · · ,20}, Nin = |Vin | = 4,
Nout = |Vout | = 3, and NI = |VI | = 13. For simulation, p̄8 = 0.67,
p̄9 = 0.76, p̄10 = 0.71, p̄11 = 0.59, p̄12 = 0.73, p̄13 = 0.82, p̄14 =
0.94, p̄10 = 0.83, p̄16 = 0.69, p̄17 = 0.58, p̄10 = 0.97, p̄19 = 0.96
and p̄20 = 0.91 are the average outflow probabilities at interior
road elements 8 through 20. Furthermore, the traffic tendency
proabilities shown in Fig. 2 are used to set up matrix Q. Given P
and Q, matrix A ∈ R13×13 is computed using (6).

We assume that u0 = 10, thus the number of vehicles entering
the NOIR are restricted to be 10 at any time k. Also, ρmax = 40 is
selected for the simulation. Boundary control inflows u1 through
u4 are plotted versus discrete time k for k = 1, · · · ,100 in Fig. 3.
Fig. 4 plots the traffic density in all road elements versus discrete
time k. Figs. 3 and 4 imply that traffic density reaches the steady
state values after about 15 time steps in simulation while traffic
consistently enters the NOIR through the inlet boundary nodes.
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Furthermore, traffic outflows z5, z6, z7 are plotted versus dis-
crete time k in Fig. 5. It is observed that

∀k > 15, znet [k] = z5[k]+ z6[k]+ z7[k] � 10

This implies that the net traffic inflow (u0 = 10) is approximately
the same as the net traffic outflow for k > 15.

7 Conclusion
This paper offers a behavioral-based physics-inspired ap-

proach to effectively model and control traffic congestion. This
paper proposes learning traffic flow-density relations using em-
pirical traffic data rather than the traditional Fundamental Dia-
gram. This approach offers several benefits: (i) Traffic data is
consistently incorporated into the model, (ii) Microscopic prop-
erties of a traffic system are incorporated into planning, and (iii)
Resilience of traffic congestion control is improved. Further-
more, feasibility conditions for traffic coordination in a large-
scale urban network are formally specified using liner tempo-
ral logic. Simulation studies show reasonable steady-state traffic
flow properties. Future work with real traffic data will be re-
quired to learn realistic traffic tendencies for specific real-world
road networks.
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