Non Linearity in Irradiated DNA and the Effect of Magnetic Field

Adriana Córdova Advisor: Frederick D. Becchetti University of Michigan NSF - REU Program – Summer 2010

Uncertainties...

- Is the relation between radiation dose and DNA damage linear?
- What is happening at low doses?
- What if we apply a magnetic field?

- Most Irradiation damage results in single strand breaks which DNA can repair itself.
- Double strand breaks usually can't be repaired and can lead to DNA mutations

- Most Irradiation damage results in single strand breaks which DNA can repair itself.
- Double strand breaks usually can't be repaired and can lead to DNA mutations

- Most Irradiation damage results in single strand breaks which DNA can repair itself.
- Double strand breaks usually can't be repaired and can lead to DNA mutations

- Most Irradiation damage results in single strand breaks which DNA can repair itself.
- Double strand breaks usually can't be repaired and can lead to DNA mutations
- The limitation of radiation therapies
 - Secondary electron scatter and interact with healthy cells
- A magnetic field reduces the scatter
 - Will the magnetic field cause less damage to DNA?

Problem

• Can we extrapolate yearly or lifetime radiation dose limits in humans using data from high doses?

Why Study Radiation?

- Human exposure to radiation is a common cause for cancer (natural sources, air travel)
- Concerns for radiation and medical workers
- Long term effects of medical x-rays / CT's
- Long duration space travel
 - > elevated radiation/ cosmic rays
 - Solar flares

Method

- Look at DNA mutations vs dose high dose → low dose
 - First irradiate with a 254nm UV light and in near future with fast neutrons at the Nuclear Engineering and Radiological Sciences (NERS)
- Look at high dose with and without magnetic field applied
- Analyze DNA mutations using electrophoresis

Experimental Setup

Irradiation Chamber

Electrophoresis Equipment

Electrophoresis

- Electrophoresis is the motion of dispersed particles relative to a fluid under the influence of a uniform electric field
- Restriction enzymes cuts the DNA in fragments
- Longer molecules or fragments migrate more slowly because they experience more drag within the gel

Gel Scans/Image Analysis

Above – control samples with DNA fragment, base pairs(bp)
Left – intensity peaks

Above - mutated DNA (4 hour radiation) Right - intensity peaks

** Gels and samples were prepared in lab, Photographed and analyzed using NIH ImageJ

Results

Conclusion

The relation between dose and DNA damage seems to be consistent with a threshold effect

Conclusion

- The relation between dose and DNA damage seems to be consistent with a threshold effect
- A linear extrapolation of high dose data to low dose will over estimate the radiation damage if there is a threshold as indicated by the UV data
- The radiation causes smears at the DNA bands
- The results in these experiments are reproducible
- Research must continue in order to get a concrete conclusion
- More time is required to analyze the magnetic field effect

Future Research*

Irradiation of DNA samples using a d+t [deuterium (²H) - tritium (³H)] 14.5 MeV neutron generator at NERS

*Awaiting approval by UM Radiation Control

Special thanks to:

- Ramon Torres
- Mitaire Ojaruega
- Michael Hartman
 - Dave Burke
 - Chris Meiners
- Gursharan Singh Sandhu
- Prof. Liu and the UM REU staff for this wonderful experience

Thanks for your attention

• Questions???

I hope to continue my studies in Medical Physics