Testing Statistical Isotropy of the CMB: The Effect of Foreground on Low-I Multipoles

Jeremy D. Bradford with

Dr. Dragan Huterer

July 28, 2010

The Universe is Isotropic and Homogeneous

- •The universe looks the same in all directions
- •The universe is uniform, regardless of position

Temperature Differences

- •The CMB is isotropic, but has hot and cold spots
- •We are interested in the differences in temp ΔT/T, we call the differences anisotropies, and they are distributed like a bell-shaped curve

Decomposing the Universe

- •The CMB can be decomposed into multipoles using the usual spherical harmonics
- •We can also decompose the CMB sky into vectors

Project Goal

- •My goal was to see how sensitive we need to be to detect violations of statistical isotropy, using multipole vectors
- Accomplished this with Monte-Carlo simulations and multipole vectors to test for statistical isotropy

Foregrounds: Deviations from Gaussianity

Adding Foregrounds to the Quadrupole

- •We used two control foregrounds to test with, we knew what to expect
- •Tested for what the picture looked like after foreground was added at various c's

Foreground m=0 added at c=0.00000 for l=2

Foreground m=1 added at c=0.00000 for l=2

Measuring Changes in the Vectors

$$S_z = \frac{(\hat{v}^{2,1} + \hat{v}^{2,2}) \cdot \hat{z}}{2}$$

$$S_n = \frac{\hat{v}^{2,1} \times \hat{v}^{2,2}}{|\hat{v}^{2,1} \times \hat{v}^{2,2}|} \cdot \hat{z}$$

- We came up with statistics that we knew would measure the changes in the vectors
- •The changes in the vectors were always proportional to the amount of foreground, and demonstrated deviations from statistical isotropy

The End Thank You

Sources

Bibliography within report.

All borrowed graphics are courtesy of NASA: http://map.gsfc.nasa.gov and Dr. Dragan Huterer.

Graphics generated with NASA's HEALPix software, Mac's Grapher program, Maple, MS Excel.