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Microwave Atomic Clocks

Applications: , GNBS
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of the radiation corresponding to the
transition between the two hyperfine levels of
the ground state of the Caesium-133 atom
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Optical Atomic Clocks

Applications:

*Ability to measure time
and frequency more
precisely

*Can test fundamental
interactions to high levels
of precision, i.e. gravity
sensors (LIGO) or time
variation of the fine-
structure constant
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Rabi Oscillations

Q: How do we drive these regular, flip-
flopping oscillations in an atomic system?
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Rabi Oscillations

Q: How do we drive these regular, flip- A: Use a laser tuned to the resonance
flopping oscillations in an atomic system? frequency v, of the system.
Population A o=
Probability ,/ *
/ \ 7‘
P-Level y \ ,
/ \
y \ )
/ \ /
Energy _ )/ ' K
P (Excited) ! ' /
/ \ /
~ 7
Population - >
% S(Ground) Probability me -
S-Level . / *
/ \
\ / \
\ / \
\ / \
\ / \
\\ / \
\ )/ N|
\\ //
\} », >




6s2 1S,

Atomic Mercury

6s6p 3P,

6s6p 3P,

6s6p 3P,

Clock: 265. 6 nm

Due to various selection
rules, as well as an
important experimental
concern, we are actually
using a two-photon
transition between the 1S,
and 3P, levels. This is
essentially an “E1-M1”
transition.
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Atomic Mercury
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M Michelson Interferometer
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M Michelson Interferometer
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M Michelson Interferometer
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M Building a Model

Schrédinger Equation of Motion: 'dt) PP Density Matrix
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Building a Model

Schrodinger Equation of Motion:

p)=—1[H.p-Ir. )

|

Evolution of density matrix p(t): messssss)> Polarization/Magnetization behavior
of transitions between levels:
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Building a Model

Schrodinger Equation of Motion: Susceptibility to various frequencies:
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Evolution of density matrix p(t): msssss)> Polarization/Magnetization behavior
of transitions between levels:

v [P e

-
_
”
>
g
i
o
-
g

6s6p 3P, A

6s6p 3P,

Time



Model Results

Goal: Obtain as narrow a dispersion pattern as possible in order to measure the resonance
frequency w, precisely
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Model Results

Goal: Obtain as narrow a dispersion pattern as possible in order to measure the resonance
frequency w, precisely
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M Model Results

Goal: Obtain as narrow a dispersion pattern as possible in order to measure the resonance
frequency w, precisely
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Summary

*Goal: Obtain as narrow a dispersion
pattern as possible in order to measure
the resonance frequency w, precisely

*Method: Model with the computer to
determine expectations and experimental

parameters

*Future work: Set up experiment using
Michelson-Morley interferometer

Thank you for your attention!
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