Introduction	Magnetotransport Properties	Noise	Results	Conclusion
O	00	00000	000	

low frequency 1/f noise in 2DEG $AI_xGa_{1-x}As/GaAs$ Hall bar structures

Stephen Collins

Physics REU University of Michigan Kurdak Lab

August 8, 2012

carrier density (n) how many free electrons per unit area
mobility (μ) how easily a electrons can move
2DEG "Two Dimensional Electron Gas"

Diagram adapted from "Doping in III-V Semiconductors" by E.F. Schubert, pg. 405

Magnetotransport Properties 00

Experimental Setup

Lock-in amplifier & current supply

- Needle valve
- Vacuum shell
- LHE
- Sample chamber
- LED Sample holder Magnet

Introduction	Magnetotransport Properties	Noise	Results	Conclusion
0	0		000	00

Magnetotransport Measurement

Introduction O	Magnetotransport Properties	Noise ●○○○○	Results 000	Conclusion
who cares?				
Why stud	ly noise?			

- Random fluctuations at the single charge carrier level are becoming a larger problem as devices get smaller
- Noise analysis provides a unique window into microscopic properties of a material

Hypothesis

Minimizing the $1/{\rm f}$ noise in a sample is fundamentally different from maximizing mobility

Introduction	Magnetotransport Properties	Noise	Results	Conclusion
0	00	0000		
noise theory				

What is 1/f noise?

Whooge?

$$\frac{S_V(f)}{V^2} = \frac{S_R(f)}{R^2} = \frac{\alpha_F}{N_C}$$

 α_{H} is the Hooge Parameter, originally thought to be a universal constant

Introduction O	Magnetotransport Properties	Noise 00000	Results 000	Conclusion
how do we see 1/f n	oise?			
Noise Me	asurement Circuit			

Introduction	Magnetotransport Properties	Noise	Results	Conclusion
O	00	00000	000	
how do we see 1/f noise?				

Improved Noise Measurement Circuit

Introduction	Magnetotransport Properties	Noise	Results	Conclusio
0	00	00000		00
how do we see 1/f nois	e?			

FFT (Fast Fourier Transform) Spectrum Analyzer

• PSD (Power Spectral Density) Units (for Voltage S_v): $\frac{V^2}{Hz}$

0	00000	•00	00
1/6			

77K ($20 \times 220 \mu m$ hall bar)

4K (50x550 μm hall bar)

$$P \propto e^{-\Delta E K \Delta x}$$

DX center illustration from Chadi, Chang, PRB 1989.

Introduction	Magnetotransport Properties	Noise	Results	Conclusion
0	00		000	00

PPC increases 1/f noise dramatically

Introduction	Magnetotransport Properties	Noise	Results	Conclusion
O		00000	000	• O
What's ir	nportant?			

- 1/f Noise at 77K is predominately from tunneling electrons in the delta-doped layer
- The slope of 1/f noise at 77K is greater than at 4K
 - this may be due to thermally activated electrons
 - analysis with the Hooge parameter is invalid in this regime
- Light exposure greatly increase noise magnitude

- Thank you to Dr. Kurdak for inviting me to research in his lab this summer, supervising my project, and giving me so many helpful "physics lessons."
- Thank you to Yun Suk Eo for showing me the ropes... and then showing me the ones I missed... and then fixing the ropes I broke. Also to Steven Wolgast and Richard Field III for answering countless questions and allowing me to continually peer over their shoulders and ask even more.
- Thank you to UMich Physics Department and NSF for organizing the whole experience and providing all of the essentials: food, shelter... and money!