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Chapter 1

Governing Equations

The full governing equations (Navier-Stokes equations) for an incompressible
fluid are given by

ρ∗

(
Du

Dt
− fv

)
= −∂p

∂x
(1.1)

ρ∗

(
Dv

Dt
+ fu

)
= −∂p

∂y
(1.2)

ρ∗
Dw

Dt
= −∂p

∂z
− gρ (1.3)

Dρ

Dt
= −wρ0

dz
(1.4)

∂u

∂x
+
∂v

∂x
+
∂w

∂z
= 0 (1.5)

where (u, v, w) are the velocity components in the x, y, z directions respec-
tively, p is pressure, ρ∗ is a constant density, ρ(x, y, z, t) is the total density,
ρ0(z) is the background density, g is acceleration due to gravity and f is
the Coriolis frequency due to rotation of the Earth. The material derivative
D/Dt is defined as

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

1.1 Simplifications:

Consider a two dimensional flow in the xz−plane (see Figure 1.1), without
the Coriolis frequency and with constant density (ρ0 = ρ = constant), then
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the governing equations reduce to

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(1.6)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (1.7)

∂u

∂x
+
∂w

∂z
= 0. (1.8)

The vertical coordinate is measured upward from the undisturbed free sur-
face, and the free surface displacement is η(x, t). The Coriolis frequency is

Figure 1.1: Surface wave

neglected by assuming that the frequency of the waves is large compared to
the Coriolis frequency such that the waves are not affected by the Earth’s
rotation. Viscous effects have also been neglected because they do not have
significant effect on the wave propagation. The motion is generated from rest
by wind action or dropping a stone in the water body. The resulting motion
is irrotational, by the Kelvin’s circulation theorem.

To further simplify the equations motion, it is assumed that the amplitude
a of oscillation of the free surface is small. That is, both a/λ and a/H are
much smaller than one.

• a/λ << 1 implies that the slope of the sea/water surface is small.

• a/H << 1 implies that the instantaneous depth is not significantly
different from the undisturbed depth.
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These small amplitude assumptions allows for the problem to be linearized.
Under the small amplitude assumption, the equations become

∂u

∂t
+

�
�
�

u
∂u

∂x
+

�
�
�

w
∂u

∂z
= −1

ρ

∂p

∂x

∂w

∂t
+

�
�
�

u
∂w

∂x
+

�
�
�

w
∂w

∂z
= −1

ρ

∂p

∂z
− g

∂u

∂x
+
∂w

∂z
= 0

Thus, the simplified equations to solve are

∂u

∂t
= −1

ρ

∂p

∂x
(1.9)

∂w

∂t
= −1

ρ

∂p

∂z
− g (1.10)

∂u

∂x
+
∂w

∂z
= 0 (1.11)

Before proceeding further, we give a few definitions and concepts which allows
for further simplification of the equations.

Definition 1 (Vorticity). The vorticity vector ω of a fluid element with
velocity vector u = (u, v, w) is defined as

ω = ∇× u (1.12)

with components:

ω1 =
∂w

∂y
− ∂v

∂z
, ω2 =

∂u

∂z
− ∂w

∂x
, ω3 =

∂v

∂x
− ∂u

∂y
(1.13)

Remark. Vorticity is a measure of the local rotation of a fluid element. It
is related to the concept of circulation which is the line integral of the
tangental component of velocity around a closed contour.

Definition 2 (Irrotational Flow). A fluid motion is said to be irrotational
if the vorticity is equal to zero

ω = ∇× u = 0, (1.14)

which requires that

∂ui
∂xj

=
∂uj
∂xi

i 6= j, (1.15)

where ui and uj denote the velocity components in the xi and xj coordinates
respectively.
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Remark. If the flow is irrotational, the velocity vector can be written as the
gradient of a scalar function φ(x, t). This is because

ui =
∂φ

∂xi
(1.16)

satisfies the condition of irrotationality in equation (1.14).

For example, in our 2D flow in the xz−plane (i.e., x1x3−plane), irrota-
tionality implies that

∂u1
∂x3

=
∂u3
∂x1

=⇒ ∂u

∂z
− ∂w

∂x
= 0, (1.17)

and the velocity field satisfies

u =
∂φ

∂x
, w =

∂φ

∂z
(1.18)

Further simplifications

Substituting (1.18) into the continuity equation (1.11) results in the Laplace
equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (1.19)

Also, from equation (1.10), we have

∂

∂t

(
∂φ

∂z

)
= −1

ρ

∂p

∂z
− g,

and inter-changing derivatives gives

=⇒ ∂

∂z

(
∂φ

∂t

)
= − ∂

∂z

(
p

ρ

)
− g,

=⇒ ∂

∂z

(
∂φ

∂t
+
p

ρ

)
= −g.

Integrating both sides with respect to z results in the linearized Bernoulli
equation

∂φ

∂t
+
p

ρ
+ gz = 0. (1.20)
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Note that equation (1.9) also satisfies the Bernoulli equation, where the re-
sulting integration constant, say C(z), must be equated to C(z) = −gz. To
solve the Laplace equation, we need to specify boundary conditions at the
free surface and at the bottom.

Boundary conditions

Bottom boundary condition:

At the bottom, we specify zero normal velocity such that

w =
∂φ

∂z
= 0, at z = −H (1.21)

Kinematic boundary condition:

The kinematic boundary condition at the free surface states that the fluid
particle never leaves the surface, that is

Dη

Dt
= wη, at z = η, (1.22)

where the material derivative is D/Dt = ∂/∂t + u(∂/∂x), and wη is the
vertical component of fluid velocity at the free surface. In other words,

∂η

∂t
+ u

∂η

∂x

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=η

, (1.23)

which is a non-linear equation. Recall that η = η(x, t). For small amplitude
waves both u and ∂η/∂x are small, so that the quadratic term u∂η/∂x is one
order smaller than the other terms in (1.23) so we neglect u∂η/∂x and get

∂η

∂t
=
∂φ

∂z

∣∣∣
z=η

. (1.24)

We can simplify this condition further by evaluating the right side at z = 0
rather than at the free surface. This can be justified by performing a Taylor
series expansion of ∂φ/∂z about z = 0:

∂φ

∂z

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=0

+ η
∂2φ

∂2z
+ · · · ≈ ∂φ

∂z

∣∣∣
z=0

(1.25)

Thus, to first order of accuracy, ∂φ/∂z can be evaluated at z = 0 and (1.24)
becomes

∂η

∂t
=
∂φ

∂z
at z = 0. (1.26)
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Dynamic boundary condition:

There is a dynamic boundary condition that the pressure just below the free
surface is always equal to the ambient (atmospheric) pressure. Taking the
ambient pressure to be zero results in

p = 0 at z = η. (1.27)

Substituting into the Bernoulli equation (1.20) yields

∂φ

∂t
+ gη = 0 at z = η (1.28)

As in the case of the kinematic condition, for small amplitude waves, the
term ∂φ/∂t can be evaluated at z = 0 instead of at z = η so that

∂φ

∂t
+ gη = 0 at z = 0 (1.29)

Solution of the Problem

Summarizing, we need to solve the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (1.30)

in the interior of the domain, subject to the conditions

∂φ

∂z
= 0, at z = −H (1.31)

∂φ

∂z
=
∂η

∂t
at z = 0 (1.32)

∂φ

∂t
= −gη at z = 0 (1.33)

To apply the boundary conditions, we need to assume a form for η(x, t). We
assume the simplest case of a sinusoidal component with wave number k and
frequency ω, such that

η = a cos(kx− ωt) (1.34)

Remark. A strong motivation for studying sinusoidal waves is that an arbi-
trary disturbance can be decomposed into various sinusoidal components by
Fourier analysis, and the response of the system to an arbitrary small dis-
turbance is the sum of the responses to the various sinusoidal components.
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We solve the Laplace equation by assuming a separable solution of the
form φ(x, z, t) = ψ(z)Φ(x, t). Since we assumed a cosine dependence of η on
(kx−ωt), the conditions in (1.32) and (1.33) imply that Φ(x, t) must be sine
function of kx− ωt. Thus, we assume a solution in the form

φ = ψ(z) sin(kx− ωt), (1.35)

where ψ(z) and ω(k) are to be determined. Substituting (1.35) into the
Laplace equation (1.30) gives

−k2ψ(z) sin(kx− ωt) + ψ′′(z) sin(kx− ωt) = 0,

d2ψ

dz2
− k2ψ = 0. (1.36)

This is a second order ordinary differential equation with a general solution

ψ(z) = Aekz +Be−kz.

Thus, the velocity potential φ in (1.35) is given by

φ =
(
Aekz +Be−kz

)
sin(kx− ωt). (1.37)

The constants A and B are determined from the conditions in (1.31) and
(1.32). Now,

∂φ

∂z
=
(
kAekz − kBe−kz

)
sin(kx− ωt)

Applying (1.31):
∂φ

∂z
= 0 at z = 0

gives (
kAe−kH − kBekH

)
sin(kx− ωt) = 0,

=⇒ k
(
Ae−kH −BekH

)
sin(kx− ωt) = 0.

For a nontrivial solution,

sin(kx− ωt) 6= 0 =⇒ Ae−kH = BekH

=⇒ B = Ae−2kH (1.38)

We next apply condition (1.32). But before we do that, consider the following
remark.
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Remark. Suppose we applied condition (1.32) at z = η instead of the lin-
earized form at z = 0. Then from (1.37) we get

∂φ

∂z

∣∣∣
z=η

= k
(
Aekη −Be−kη

)
sin(kx− ωt)

For a small slope of the free surface, kη << 1, we can set ekη ≈ e−kη =
1. This is effectively what we are doing by applying the surface boundary
conditions at z = 0 instead of at z = η, which was justified using Taylor
series expansions.

Substituting (1.34) and (1.37) into (1.32) gives

k
(
Aekz −Be−kz

)
sin(kx− ωt) = aω sin(kx− ωt)

At z = 0 we have

k(A−B) = aω (1.39)

=⇒ A−B =
aω

k

=⇒ B = A− aω

k

Employing (1.38) results in

A− aω

k
= Ae−2kH

=⇒ A
(
1− e−2kH

)
=
aω

k

=⇒ A =
aω

k (1− e−2kH)
(1.40)

and

B =
aωe−2kH

k (1− e−2kH)
(1.41)

From (1.37) we finally get the velocity potential

φ =

[
aωekz

k (1− e−2kH)
+

aωe−2kH

k (1− e−2kH)
e−kz

]
sin(kx− ωt).

φ =
aω

k

[
ekz

(1− e−2kH)
+

e−k(z+2H)

(1− e−2kH)

]
sin(kx− ωt). (1.42)

Using the fact that

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
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1− e−2kH = 1− e−kH

ekH
=
ekH − e−kH

ekH

Thus,

φ =
aω

k

[
ek(z+H)

(ekH − e−kH)
+
e(−kz−2kH) · ekH

(ekH − e−kH)

]
sin(kx− ωt)

=⇒ φ =
aω

k

[
ek(z+H) + e−k(z+H)

ekH − e−kH

]
sin(kx− ωt)

∴ φ =
aω

k

cosh[k(z +H)]

sinh(kH)
sin(kx− ωt) (1.43)

The velocity components u = ∂φ/∂x and w = ∂φ/∂z are given by

u = aω
cosh[k(z +H)]

sinh(kH)
cos(kx− ωt) (1.44)

w = aω
sinh[k(z +H)]

sinh(kH)
sin(kx− ωt) (1.45)

Remark. Note that since η = a cos(kx − ωt), we see that the u velocity is
in phase with the displacement while the w velocity is 90◦ out of phase with
η, as shown in Figure 1.2a. Snapshots of φ, u and w are depicted in Figures
1.2b-d.

Dispersion relation

Note that we solved the Laplace equation by using only the bottom and kine-
matic conditions (1.31) and (1.32); without employing the dynamic condition
(1.33). Application of the dynamic condition (1.33) results in a relation be-
tween the wave number k and frequency ω. Substituting (1.34) and (1.43)
into condition (1.33), we have

−aω2

k

cosh(kH)

sinh(kH)
cos(kx− ωt) = −ga cos(kx− ωt)

=⇒ ω2

k

cosh(kH)

sinh(kH)
= g

=⇒ ω2 = gk tanh(kH)
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Figure 1.2: (a) Phase relationships between u,w and η, and snapshots of (b)
velocity potential, φ, (c) u velocity, and (d) w velocity.

ω =
√
gk tanh(kH) or T =

√
2πλ

g
coth

(
2πH

λ

)
, (1.46)

where T is the wave period. The wave speed c = ω/k is related to the wave
size by

c =

√
g

k
tanh(kH) =

√
gλ

2π
tanh

2πH

λ
(1.47)

These equations show that the speed of propagation of a wave component
depends on its wavenumber. Waves for which c is a function of k are said to be
dispersive since they separate into individual components. The relationship
in (1.46) or (1.47) where ω is a function of k is called a dispersion relation.
This is because it expresses the nature of the dispersive process.
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1.2 Approximations for Deep and Shallow Wa-

ter

The analysis in the previous section is applicable irrespective of the rela-
tionship between the magnitude of λ and the water depth H. Some inter-
esting simplifications arise for shallow water (H/λ << 1) and deep water
(H/λ >> 1). We derive approximations for the phase speed for which (1.47)
takes simple forms. The behaviour of hyperbolic functions (Figure 1.3) as
x→∞ and as x→ 0 be employed for the simplifications.

Deep Water Approximation

In deep water H/λ >> 1, we use the fact that tanhx → 1 as x → ∞ to
approximate (1.47) by

c =

√
gλ

2π
=

√
g

k
. (1.48)

We note that x does not need to be very large for the approximation tanhx→
1 to be valied since tanhx = 0.96403 for x = 2. Thus, with 2% accuracy,
the approximation (1.48) is valied for H > 0.32λ (i.e., kH > 2). Therefore,
surface waves are classified as deep water waves if the depth is more than one-
third of the wavelength. We see here that deep water waves are dispersive
since the phase speed depends on the wavelength.

Remark. 1. The 2% accuracy is computed from√
gλ
2π
−
√

gλ
2π

tanh 2πH
λ√

gλ
2π

=
1−

√
tanh 2πH

λ

1
= 1−

√
0.96403 ≈ 2%,

for 2πH/λ = 2.

2. As an example, the dominant period of surface waves generated by
winds in the ocean is approximately 10 s which corresponds to a wave-
length of about 150m (using equation 1.46). The water depth on a
typical continental shelf is about 100 m and about 4 km in the open
ocean. This means that over the continental shelf, H/λ ≈ 100/150 =
0.67 > 0.32. So the dominant wind waves in the ocean, even over the
continental shelf, act as deep-water waves and do not feel the effects of
the ocean bottom until they arrive near the coastline. In contrast, grav-
ity waves with very long wavelengths or tsunamis generated by tidal
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forces or earthquakes act as shallow water waves as discussed next.
Such waves may have wavelengths of hundreds of kilometers.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

sinh
cosh
tanh

Figure 1.3: Hyperbolic functions.

Shallow Water Approximation

From Figure 1.3 we see that tanhx ≈ x for x→ 0. Thus, for H/λ << 1, we
have

tanh
2πH

λ
≈ 2πH

λ
and the phase speed simplifies to the relation

c =
√
gH. (1.49)

The approximation gives better than 3% accuracy if H < 0.07λ. Thus,
surface waves are regarded as shallow-water waves if the water depth is less
than 7% of the wavelength. In other words, they have to be 14 times longer
than the water depth. Equation (1.49) shows that the phase speed of shallow-
water waves are independent of wavelength and increases with water depth.
So shallow-water waves are nondispersive.
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1.3 Interfacial Waves

We next consider the case of waves that exists in the interface between two
fluids with different densities. Such density discontinuities can often exist
in the ocean as a result of the sun heating the upper layers. This can also
occur in an estuary, that is, a river mouth, or in a fjord whereby less dense
fresh water flows over denser oceanic water. In this section, we consider an
idealized situation of a finite layer of density ρ1 over an infinitely deep layer
of density ρ2. This situation allows for both surface waves and waves at the
interface. So we expect two modes of oscillation; the first mode is the case
in which the free surface is in phase with the interface and a second mode in
which they are out of phase or oppositely directed.

Figure 1.4 depicts the setup, where H is the thickness of the upper layer,
and the origin is at the mean position of the free surface. As in the one-layer
case, the Laplace equation applies in both layers such that

Figure 1.4: Surface and interfacial waves

∂2φ1

∂x2
+
∂2φ1

∂z2
= 0 (1.50)

∂2φ2

∂x2
+
∂2φ2

∂z2
= 0 (1.51)

13 c©Dr. Joseph K. Ansong
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with the conditions

φ2 → 0 at z → −∞ (1.52)

∂φ1

∂z
=
∂η

∂t
at z = 0 (1.53)

∂φ1

∂t
= −gη at z = 0 (1.54)

∂φ1

∂z
=
∂φ2

∂z
=
∂ζ

∂t
at z = −H (1.55)

ρ1
∂φ1

∂t
+ ρ1gζ = ρ2

∂φ2

∂t
+ ρ2gζ at z = −H (1.56)

We assume a free surface displacement η, and interface displacement ζ, of
the form:

η = aei(kx−ωt) (1.57)

ζ = bei(kx−ωt) (1.58)

Only the real part of the right hand side of (1.57) and (1.58) are meant. The
constant a can be regarded as real but the constant b should be left complex
since η and ζ may not be in phase. From our previous analysis in equations
(1.35)-(1.37), it is clear that φ1 and φ2 must be of the form

φ1 =
(
Aekz +Be−kz

)
ei(kx−ωt) (1.59)

φ2 = Cekzei(kx−ωt) (1.60)

The form (1.60) is chosen to satisfy (1.52). We are left with the problem of
finding A,B and C, as well as the relationship between amplitudes a and b.
Applying (1.53) we have

∂φ1

∂z
= k

(
Aekz −Be−kz

)
eiθ = −iaωeiθ,

and at z = 0, we get

k(A−B) = −iaω

=⇒ A−B = −iaω
k

(1.61)

where θ = kx− ωt. Applying (1.54), we have

∂φ1

∂t
= −iω

(
Aekz +Be−kz

)
eiθ = −gaωeiθ,
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and at z = 0, we get

A+B =
ga

iω
= −iag

ω
(1.62)

Summing (1.61) and (1.62) results in

2A = i
(
−ag
ω
− aω

k

)
=⇒ A = −ai

2

(ω
k

+
g

ω

)
(1.63)

=⇒ B = −iag
ω
− A = −iag

ω
+
ai

2

(ω
k

+
g

ω

)
=⇒ B =

ai

2

(ω
k
− g

ω

)
(1.64)

From (1.55):
∂φ1

∂z
=
∂φ2

∂z

=⇒ k
(
Aekz −Be−kz

)
eiθ = −kCekzωeiθ

At z = −H, we have
Ae−kH −BekH = Ce−kH

=⇒ C = A−Be2kH

C = −ai
2

(ω
k

+
g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH (1.65)

To determine the relationship between a and b, we may use either

∂φ1

∂z
=
∂ζ

∂t
or

∂φ2

∂z
=
∂ζ

∂t

from equation (1.55). Employing the latter equation for simplicity, we have

kCekzeiθ = −iωbeiθ

and at z = −H:

b =
k

−iω
Ce−kH =

ik

ω
Ce−kH

=⇒ b =
ik

ω

{
−ai

2

(ω
k

+
g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH

}
e−kH

∴ b =
a

2

(
1 +

gk

ω2

)
e−kH +

a

2

(
1− gk

ω2

)
ekH (1.66)
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Recapitulating, the velocity potentials are given by (1.59)-(1.60), with the
constants given by

A = −ai
2

(ω
k

+
g

ω

)
(1.67)

B =
ai

2

(ω
k
− g

ω

)
(1.68)

C = −ai
2

(ω
k

+
g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH (1.69)

and

∴ b =
a

2

(
1 +

gk

ω2

)
e−kH +

a

2

(
1− gk

ω2

)
ekH . (1.70)

1.3.1 Dispersion Relation

For the dispersion relation, we employ equation (1.56). After a few pages of
algebra, the result can be written as (see Appendix ??)(

ω2

gk
− 1

){
ω2

gk
[ρ1 sinh(kH) + ρ2 cosh(kH)]− (ρ2 − ρ1) sinh(kH)

}
= 0.

(1.71)

Equation (1.71) shows that there are two possible roots, resulting in the
barotropic or surface mode and the baroclinic or internal modes as discussed
below.

Barotropic or Surface Mode

From (1.71), one of the roots is given by(
ω2

gk
− 1

)
= 0

∴ ω2 = gk. (1.72)

This is the same dispersion relation we obtained for a deep-water water wave.
Equation (1.70) shows that

b = ae−kH (1.73)

which implies that the amplitude at the interface is smaller than that at the
surface by a factor e−kH . Also, equation (1.73) together with (1.57)-(1.58)
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shows that the motions of the free surface and the interface are locked in
phase. That is, they go up or down simultaneously. This mode is similar to
a gravity wave propagating on the free surface of the upper liquid, in which
the motion decays as e−kz from the free surface. It is called the barotropic
mode.

Baroclinic or Internal Mode

From (1.71), the second root is given by

ω2

gk
[ρ1 sinh(kH) + ρ2 cosh(kH)]− (ρ2 − ρ1) sinh(kH) = 0

=⇒ ω2 =
gk(ρ2 − ρ1) sinh(kH)

ρ1 sinh(kH) + ρ2 cosh(kH)
(1.74)

We can determine the relation between a and b by substituting (1.74) into
(1.70). From (1.74) we have

gk

ω2
=
ρ2 cosh kH + ρ1 sinh kH

(ρ2 − ρ1) sinh kH
,

and so

1− gk

ω2
= 1− sinh kH + (ρ2/ρ1) cosh kH

[(ρ2 − ρ1)/ρ1] sinh kH

and

1 +
gk

ω2
= 1 +

sinh kH + (ρ2/ρ1) cosh kH

[(ρ2 − ρ1)/ρ1] sinh kH
.

Substituting the last two equations into (1.70) and after some algebra gives

b = −a
(

ρ1
ρ2 − ρ1

)
(cosh kH + sinh kH) = −a

(
ρ1

ρ2 − ρ1

)
ekH

=⇒ a = −b
(
ρ2 − ρ1
ρ1

)
e−kH . (1.75)

From (1.57) and (1.58), we have

η =
a

b
ζ

∴ η = −ζ
(
ρ2 − ρ1
ρ1

)
e−kH . (1.76)
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Remark.

• Equation (1.76) shows that η and ζ have opposite signs, and if the
density difference is small, the interface displacement is much larger
than the surface displacement. This is one reason why it is important
to study internal waves because under nonlinear conditions, the waves
can break and mix the interior of the ocean thereby changing the lo-
cal stratification. Secondly, large amplitude internal waves carry more
energy as they propagate away from where they are generated.

• This mode is called the baroclinic or internal mode. This is because
the surfaces of constant pressure and density do not coincide.

• It can also be shown that the horizontal velocity changes sign across
the interface as depicted in Figure 1.5.

• The analysis above shows that the presence of a density difference gen-
erates a motion that is quite different from the barotropic behaviour.

Figure 1.5: The two modes of motion of a layer of fluid overlying an infinitely
deep layer.
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Chapter 2

Internal Gravity Waves

In this chapter, we turn our attention to internal gravity waves in a contin-
uously stratified environment.

2.1 Governing Equations

We consider the governing equations for an incompressible fluid under the
Boussinesq approximation:

Du

Dt
− fv = − 1

ρ∗

∂p

∂x
(2.1)

Dv

Dt
+ fu = − 1

ρ∗

∂p

∂y
(2.2)

Dw

Dt
= − 1

ρ∗

∂p

∂z
− gρ

ρ∗
(2.3)

∂u

∂x
+
∂v

∂x
+
∂w

∂z
= 0 (2.4)

Dρ

Dt
= −wdρ0

dz
(2.5)

where (u, v, w) are the velocity components in the x, y, z directions respec-
tively, p is pressure, ρ(x, y, z, t) is the total density, ρ0(z) is the background
density, g is acceleration due to gravity and f is the Coriolis frequency due
to rotation of the Earth. The material derivative D/Dt is defined as

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
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Considering small amplitude motions, we neglect the nonlinear terms, and
obtain

∂u

∂t
− fv = − 1

ρ∗

∂p

∂x
(2.6)

∂v

∂t
+ fu = − 1

ρ∗

∂p

∂y
(2.7)

∂w

∂t
= − 1

ρ∗

∂p

∂z
− gρ

ρ∗
(2.8)

∂u

∂x
+
∂v

∂x
+
∂w

∂z
= 0 (2.9)

∂ρ

∂t
= −wdρ0

dz
(2.10)

To obtain equations governing the propagation of internal gravity waves, we
assume that the flow is superimposed on a “background” state (i.e. it is a
perturbation of a known static background) with only vertical dependences
such that

p = p0(z) + p′(x, y, z, t) (2.11)

ρ = ρ0(z) + ρ′(x, y, z, t) (2.12)

and the static background density and pressure are in hydrostatic balance:

dp0
dz

= −gρ0 (2.13)

Substituting (2.11)-(2.12) into (2.6)-(2.10), equations (2.6)-(2.7) become

∂u

∂t
− fv = − 1

ρ∗

∂p′

∂x
(2.14)

∂v

∂t
+ fu = − 1

ρ∗

∂p′

∂y
(2.15)

From equation (2.8) we have

∂w

∂t
= − 1

ρ∗

dp0
dz
− 1

ρ∗

∂p′

∂z
− g(ρ0 + ρ′)

ρ∗

= − 1

ρ∗

dp0
dz
− 1

ρ∗

∂p′

∂z
− gρ0

ρ∗
− gρ′

ρ∗

applying (2.13) results in

∂w

∂t
= − 1

ρ∗

∂p′

∂z
− gρ′

ρ∗
= − 1

ρ∗

∂p′

∂z
+ b (2.16)
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where

b = −gρ
′

ρ∗
(2.17)

From (2.10) we have

∂ρ′

∂t
= −wdρ0

dz

=⇒ ∂ρ′

∂t
= −ρ∗w

g

g

ρ∗

dρ0
dz

=
ρ∗w

g
N2

∂ρ′

∂t
− ρ∗w

g
N2 = 0 (2.18)

∴
∂b

∂t
+ wN2 = 0 (2.19)

where we used (2.17) and the buoyancy frequency or Brunt-Väisälä
frequence, N , is defined as

N2 = − g

ρ∗

dρ0
dz

. (2.20)

It describes the frequency that a vertically displaced fluid will oscillate at
in an environment with background stratification given by dρ0/dz. This is
briefly derived from first principles below.

Buoyancy frequence

Consider fluid in a background density, ρ0(z), that is continuously decreasing
with height as depicted in Figure 2.1. Consider a fluid parcel of density
ρ∗ = ρ0(z0) situated initially at a vertical level z0. If the parcel is displaced
vertically by a small distance δz, it will maintain its density which is different
from that of the surrounding fluid (by neglecting thermodynamic effects). It
therefore experiences a buoyancy force. Newton law predicts that

mass× acceleration = Forcebuoyancy

=⇒ ρ∗
d2δz
dt2

= −δρg

where δρ is the density difference between the fluid parcel and the surrounding
fluid at its displaced position. Because the displacement |δz| is small, the
density difference can be written in terms of δz to get

δρ ≈ −
dρ0
dz

δz
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Figure 2.1: Illustration of fluid displaced vertically upward in a linearly strat-
ified background density.

Therefore, we get

ρ∗
d2δz
dt2

= g
dρ0
dz

δz =⇒ d2δz
dt2
− g

ρ∗

dρ0
dz

δz = 0.

This can be written as the “spring equation”:

d2δz
dt2

+N2δz = 0

where N is the buoyancy frequency (2.20).

In summary, the equations governing linear internal wave motions in a
continuously stratified ambient are given by

∂u

∂t
− fv = − 1

ρ∗

∂p′

∂x
(2.21)

∂v

∂t
+ fu = − 1

ρ∗

∂p′

∂y
(2.22)

∂w

∂t
= − 1

ρ∗

∂p′

∂z
+ b (2.23)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.24)

∂b

∂t
+ wN2 = 0 (2.25)
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We next derive a single equation for the vertical velocity w, from (2.21)-
(2.25). Taking the derivative ∂/∂z of (2.22) and ∂/∂y of (2.23) gives

∂

∂z
(2.22)→ ∂

∂t

(
∂v

∂z

)
+ f

∂u

∂z
= − 1

ρ∗

∂

∂y

(
∂p

∂z

)
∂

∂y
(2.23)→ ∂

∂t

(
∂w

∂y

)
= − 1

ρ∗

∂

∂y

(
∂p

∂z

)
+
∂b

∂y

Subtracting the first equation from the second gives

∂

∂t

(
∂w

∂y
− ∂v

∂z

)
− f ∂u

∂z
=
∂b

∂y

=⇒ ∂

∂t

(
∂w

∂y
− ∂v

∂z

)
= f

∂u

∂z
+
∂b

∂y
(2.26)

Similarly, taking ∂/∂z of (2.21) and ∂/∂x of (2.23) gives

∂

∂z
(2.21)→ ∂

∂t

(
∂u

∂z

)
− f ∂v

∂z
= − 1

ρ∗

∂

∂x

(
∂p

∂z

)
∂

∂x
(2.23)→ ∂

∂t

(
∂w

∂x

)
= − 1

ρ∗

∂

∂x

(
∂p

∂z

)
+
∂b

∂x

Subtracting the second equation from the first gives

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
− f ∂v

∂z
= − ∂b

∂x

=⇒ ∂

∂t

(
∂u

∂z
− ∂w

∂x

)
= f

∂v

∂z
− ∂b

∂x
(2.27)

Finally, taking ∂/∂y of (2.21) and ∂/∂x of (2.22) gives

∂

∂y
(2.21)→ ∂

∂t

(
∂u

∂y

)
− f ∂v

∂y
= − 1

ρ∗

∂

∂y

(
∂p

∂x

)
∂

∂x
(2.22)→ ∂

∂t

(
∂v

∂x

)
+ f

∂u

∂x
= − 1

ρ∗

∂

∂y

(
∂p

∂x

)
The second equation minus the first gives

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0

=⇒ ∂

∂t

(
∂v

∂x
− ∂u

∂y

)
= f

∂w

∂z
(2.28)

where we used the continuity equation (2.24).
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Remark. We note that the left hand side of (2.26)-(2.28) shows the vorticity
∇ × u. The vorticity is a measure of the rotation of water parcels, that is,
their change in orientation. This is different from a parcel traversing, e.g., a
circle in a translational movement.

Now ∂2/∂y∂t of (2.26) and ∂2/∂x∂t of (2.27) yield:

∂2

∂y∂t
(2.26)→ ∂2

∂t2

[
∂2w

∂y2
− ∂2v

∂y∂z

]
= f

∂

∂t

∂2u

∂y∂z
+
∂

∂t

∂2b

∂y2
(2.29)

∂2

∂x∂t
(2.27)→ ∂2

∂t2

[
∂2u

∂x∂z
− ∂2w

∂2x2

]
= f

∂

∂t

∂2v

∂x∂z
− ∂

∂t

∂2b

∂x2
(2.30)

Equation (2.29) minus (2.30) gives

∂2

∂t2

[
∂2w

∂x2
+
∂2w

∂2y2
− ∂

∂z

(
∂u

∂x
+
∂v

∂y

)]
= f

∂

∂t

∂

∂z

(
∂u

∂y
− ∂v

∂x

)
+
∂

∂t

(
∂2b

∂x2
+
∂2b

∂y2

)
Thus,

∂2

∂t2

[
∇2
hw +

∂2w

∂z2

]
= f

∂

∂t

∂

∂z

(
∂u

∂y
− ∂v

∂x

)
+
∂

∂t
∇2
hb

where we used (2.24) and

∇2
h =

∂2

∂x2
+

∂2

∂y2

The Coriolis term can be re-written using (2.28) and the last (buoyancy)
term using (2.25) to get

∂2

∂t2

[
∇2
hw +

∂2w

∂z2

]
+ f

∂

∂z

(
f
∂w

∂z

)
+∇2

hwN
2 = 0

∴
∂2

∂t2
∇2w + f 2∂

2w

∂z2
+N2∇2

hw = 0 , (2.31)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

2.2 Boundary Conditions

To solve equation (2.31), we need to specify boundary conditions at the
surface and bottom of our domain. The surface and bottom boundaries then
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acts like a “waveguide” to internal waves that can travel unboundedly in the
horizontal direction. The simplest surface condition employs the so-called
rigid-lid approximation in which the vertical velocity is taken to be zero
at the mean level z = 0:

w = 0 at z = 0. (2.32)

The simplest bottom boundary condition is obtained by assuming a flat bot-
tom, with water depth H, such that

w = 0 at z = −H. (2.33)

The details of the rigid-lid approximation and the bottom boundary condition
are given next.

2.2.1 Surface Condition: Rigid-lid Approximation

As seen in the case for interfacial waves, both surface waves and internal
waves exist in our domain but we wish to focus on internal waves. However,
the presence of internal waves results in small elevations and depressions of
the surface due to pressure gradients effected by the propagation of internal
waves. Therefore, we cannot simply assume that the surface is still. Never-
theless, the surface vertical elevations induced by an internal wave are very
small compared to those in the interior of the ocean. This is because the
force/energy that is used to produce large isopycnal displacements in the
ocean’s interior is only able to generate very small surface displacements as
a result of the large density gradient between air and sea water, in contrast
to smaller density gradients in the interior. This fact is used to simplify the
boundary conditions to obtain the “rigid-lid approximation”.

Let the free surface be described by

z = η(t, x, y), (2.34)

so we get

w(t, x, y, η) =
Dη

Dt
=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
. (2.35)

Assuming the atmospheric pressure, pa, is constant, then at the surface:

p(t, x, y, η) = p0(η) + p′(t, x, y, η) = pa, (2.36)
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where we used (2.11). A Taylor expansion about z = 0 for both (2.35) and
(2.36) yields

w(t, x, y, 0) + η
∂w

∂z
+ · · · = ∂η

∂t
+ u(t, x, y, 0)

∂η

∂x
+ v(t, x, y, 0)

∂η

∂y
+ · · ·

p0(0) + p′(t, x, y, 0) + η
dp0
dz

+ η
∂p′

∂z
+ · · · = pa

For small amplitude motions, we neglect the product of perturbation terms
(i.e. those involving u, v, w, η and p′), to get

w =
∂η

∂t
at z = 0 (2.37)

p0 + p′ + η
dp0
dz

= pa at z = 0 (2.38)

Combining (2.37) and (2.38) by using the hydrostatic balance (2.13) gives

∂p′

∂t
= wgρ0 at z = 0. (2.39)

Equation (2.39) can be nondimensionalized, by letting ρ0(0) = ρ∗, w =
Wŵ, p′ = P p̂′, t = T t̂, to get an equation of the form

C2
i

C2
sf

∂p̂′

∂t̂
= ŵ at z = 0. (2.40)

where Ci = L/T is a measure of the phase speed of internal waves and Csf
is that of surface gravity waves (C2

sf = gH, H is water depth). Thus, Csf is
proportional to gravity g while Ci is proportional to the so-called “reduced
gravity”, g′ (e.g., g′ = (ρ2−ρ1)/ρ2 for a two-layer fluid). Therefore Ci << Csf
such that

ε =
C2
i

C2
sf

<< 1

and (2.40) becomes

ε
∂p̂′

∂t̂
= ŵ at z = 0. (2.41)

We cannot just assume that the left hand side of (2.41) is smaller than the
righthand side; instead, we need to perform a perturbation expansion on p̂′

and ŵ in a series by letting

p̂′ = p(0) + εp(1) + ε2p(2) + · · ·
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ŵ = w(0) + εw(1) + ε2w(2) + · · ·
where each of the p(i) and w(i) are of order one. Substituting the expansions
into (2.41) gives

ε
∂p(0)

∂t̂
+ ε2

∂p(1)

∂t̂
+ ε3

∂p(2)

∂t̂
+ · · · = w(0) + εw(1) + ε2w(2) + · · ·

To lowest order, we get the approximation

w(0) = 0 at z = 0

which, for simplicity, is usually written as

w = 0 at z = 0. (2.42)

Keep in mind that w in (2.42) is actually an approximate variable and not
the w in the original equations.

2.2.2 Bottom Condition

The boundary condition at the bottom is much simpler to derive, it is that
of no normal flow. The bottom is described by

z = −h(x, y).

Thus, from (2.35), and replacing η with h gives the boundary condition

w = −u∂h
∂x
− v∂h

∂y
at z = −h. (2.43)

Assuming the bottom is horizontal, with water depth H, then we get the
simple condition (2.33):

w = 0 at z = −H. (2.44)

Before delving into the various ways of solving (2.31), we will use it to derive
the dispersion of relation of internal waves, from which we will discuss some
of their important basic properties.

2.3 Basic Properties of Internal Waves

Dispersion relation

The approximations that culminated in the derivation of (2.31) makes the
horizontal plane isotropic: northward propagating waves (y−direction), say,
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behave the same way as eastward propagating ones (x−direction). This can
be seen by assuming the waves are sinusoidal and substituing w ∼ exp(−iωt)
into (2.31). So we consider waves propagating in the x−direction, taking
∂/∂y = 0, and get the equation

∂2

∂t2
wxx + f 2wzz +N2wxx = 0 , (2.45)

Consider a wave for which

w = w0e
i(kx+mz−ωt) (2.46)

where w0 is the amplitude of fluctuations. Substituting (2.46) into (2.45)
gives the dispersion relation

ω2 =
f 2m2 + k2N2

k2 +m2
. (2.47)

For simplicity of discussing the basic features of internal waves, we consider
waves in a non-rotating frame of reference, f = 0, so the dispersion relation
becomes

ω2 =
k2

k2 +m2
N2 . (2.48)

The wave frequency is taken to be positive, and the direction of propagation
is determined by the wavenumber vector

~K = K = (k, m) = |K|(cos θ, sin θ), (2.49)

where θ is the angle between the phase velocity vector c (and therefore K)
and the horizontal direction as illustrated in Figure 2.2. Thus, the dispersion
relation can also be written as

ω = N cos θ , (2.50)

and

θ = tan−1(m/k), −π/2 ≤ θ ≤ π/2 (2.51)

and θ is restricted to lie between −π/2 and π/2 so that the frequency in
(2.50) is non-negative.

Remark. Equation (2.50) shows that
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Figure 2.2: Schematic illustration of (a) internal wavevector, K = (k, m)
and (b) motion along lines of constant phase and corresponding direction of
wavenumber vector.a

• the frequency of an internal wave in a stratified fluid depends only on
the direction of the wavenumber vector and not on the magnitude of
the wavenumber. This is in contrast with surface and interfacial waves,
for which frequency depends only on the magnitude.

• the frequency lies in the range 0 < ω ≤ N . Therefore N is the maxi-
mum possible frequency of internal waves in a stratified fluid.

Particle or fluid motion

Suppose the fluid motion is given by (2.46), with similar expressions for u
such that

∂w

∂z
= imw0e

i(kx+mz−ωt) = imw

Thus, from the continuity equation we have

iku+ imw = 0 =⇒ ku+mw = 0

K · u = 0 (2.52)

where u = (u, w), showing that the particle motion is perpendicular to
the wavenumber vector as illustrated in Figure 2.2b (in physical space).
In other words, fluid motion is parallel to lines of constant phase lines. So
the angle θ in (2.50) can now be interpreted as the angle between the particle
motion and the vertical direction (Figure 2.2b). In real space, it is measured
counterclockwise from the vertical. In general, the sign of θ is determined
by the sign of the ratio m/k (see equation 2.51); for a wave propagating to
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the right (k > 0), θ is positive if crests move upward (m > 0) and negative
if crests move downward (m < 0).

The angle θ is also a measure of the wave frequency relative to the buoy-
ancy frequency (2.50). So if the frequency is known, we can compute

θ = ± cos−1(ω/N), (2.53)

where the sign is determined by the sign of m/k.

Remark (Limiting Cases). •

• The maximum frequency ω = N occurs when θ = 0, that is when
the particles move up and down vertically. This happens for m = 0
(see equation 2.48), showing that the motion is independent of the
z−coordinate. So the fastest frequency waves have infinitely large ver-
tical wave lengths (since λm = 2π/m), with lines of constant phase
lying parallel to the z-axis.

• The frequency ω = 0 for θ = π/2, that is when the particle motion
is purely horizontal. So waves with nearly zero frequency have crests
that lie almost parallel to the horizontal axis.

Phase and group velocity

For a one-dimensional wave having structure in the x-direction alone, the
phase speed is defined by

cp =
ω

k
=
λ

T

which means the crest moves one wavelength λ in the time of one wave
period T . For waves having structure in two or three dimensions, the phase
velocity can be described by imagining setting on a crest and moving in the
direction of the wavenumber vector. Thus, the phase velocity is defined by

c =
ω

|~k|
k̂ =

ω

|~k|2
~k =

ω

|~k|2
(k, m) (2.54)

where k̂ = ~k/|~k| is the unit vector in the direction of ~k, as shown in Figure
2.3.

In two dimensions, the group velocity cg is defined as

cg =
∂ω

∂k
ix +

∂ω

∂m
iz =

(
∂ω

∂k
,
∂ω

∂m

)
(2.55)
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Figure 2.3: Schematic illustration of phase velocity and the wavelengths in
the x and z directions.

where ix and iz are unit vectors in the x and z directions respectively. From
the dispersion relation (2.48) we have

∂ω

∂k
=

Nm2

(k2 +m2)3/2
=
Nm2

|~k|3
∂ω

∂m
=

−Nmk
(k2 +m2)3/2

=
−Nmk
|~k|3

∴ cg =
Nm

|~k|3
(m,−k) (2.56)

Thus, from (2.54) and (2.56), we find that

cg · c = 0 (2.57)

showing that the phase and group velocity vectors of internal waves are
perpendicular. This means that while crests are moving in the direction of
the wavenumber vector, the wave packet as a whole is moving in a direction
that is parallel to the crests. From (2.49) and 2.50, the phase and group
velocity may written in the form

c =
N

|~k|
(cos2 θ, sin θ cos θ) =

N cos θ

|~k|
(cos θ, sin θ) (2.58)

cg =
N

|~k|
(sin2 θ, − sin θ cos θ) =

N sin θ

|~k|
(sin θ, − cos θ) (2.59)
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This shows that the horizontal components of c and cg are in the same di-
rection, while their vertical components are opposite. Thus, if crests move
upward the wavepacket as a whole moves downward and vice versa, as de-
picted in Figure 2.4.

Figure 2.4: Schematic illustration of the phase and group velocity of a
wavepacket at (a) an early time and (b) later time. The phase line AB
in (a) has moved through the packet to the new position in (b).

The St. Andrews Cross

As mentioned previously, the group velocity shows the direction of propa-
gation of energy of a sinusoidal component. This was first illustrated in a
laboratory experiment by Mowbray & Rarity (1967) by oscillating a cylinder
at frequeny ω in a tank filled with uniformly stratifed salt water. The energy
of the wave was found to radiate outward along four beams in a cross-shaped
pattern often referred to as a ‘St. Andrews Cross’ because of its resemblance
to the Scottish flag (see Figure 2.5). The structure of the wave beams is a
superposition of plane waves having different spatial structure but identical
frequencies. This will be discussed later under vertical normal modes. Be-
cause the buoyancy frequency and oscillation frequency are fixed, the phase
lines must be oriented at a fixed angle θ = cos−1(ω/N) to the vertical, in-
dependent of the size of the cylinder or its cross-sectional shape. Conical
wave beams generated by a plume impinging on a linearly stratified fluid are
shown in Figure 2.6, showing a pattern similar to the bottom half of the St.
Andrews Cross.
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Figure 2.5: Schematic illustration of the St. Andrews Cross showing the
directions of cp and cg for the four wave beams.
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Figure 2.6: Direction of propagation of conical wave beams generated by a
plume in a linearly stratified fluid.
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Chapter 3

Propagation of Internal Gravity
Waves: Vertical normal modes

3.1 Solution Approach

Here we return to finding solutions to equation (2.31)

∴
∂2

∂t2
∇2w + f 2∂

2w

∂z2
+N2∇2

hw = 0 , (3.1)

using the method of vertical normal modes subject to the boundary condi-
tions:

w = 0 at z = 0. (3.2)

w = 0 at z = −H. (3.3)

We consider waves propagating in the x−direction (∂/∂y = 0) since the
problem is horizontally isotropic, but we maintain f . We seek solutions of
the form

w = W (z)ei(kx−ωt), (3.4)

where the frequency ω is taken to be positive. Substituting into (3.1) gives
the ordinary differential equation for W :

W ′′(z) + k2
N2(z)− ω2

ω2 − f 2
W (z) = 0 (3.5)

Employing the boundary conditions (3.2)-(3.3), we get the boundary condi-
tions for W to be

W = 0 at z = 0, −H. (3.6)
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Thus, (3.5)-(3.6) forms a Sturm-Liouville problem, which, for a fixed fre-
quency ω, has an infinite number of solutions Wn (called eigenfunctions or
vertical modes) with corresponding eigenvalues kn. From the governing equa-
tions (2.21)-(2.25), the other variables (u, v, p, b) with their W (z) counter-
parts (U(z), V (z), P (z), B(z)) can be written in terms of W :

U =
i

k
W ′; V =

f

ωk
W ′; P = iρ∗

ω2 − f 2

ωk2
W ′; B = −iN

2

ω
W (3.7)

Equations (3.5) and (3.6) imply that the vertically integrated horizontal ve-
locities are zero: ∫ 0

−H
udz = 0;

∫ 0

−H
vdz = 0. (3.8)

This feature is a distinguishing property of internal gravity waves compared
to surface waves.

The general solution of w is given by a superposition of wave components
such that

w =
∑
n

Wn(z)
[
a±n exp i(k±n x− ωt)

]
(3.9)

where a±n are arbitrary complex constants, and the + and − superscripts
describe rightward and leftward propagating waves respectively. As usual,
the real part of (3.8) is meant.

3.1.1 Oscillatory versus exponential behaviour

From (3.5), let

m2 = k2
N2(z)− ω2

ω2 − f 2
. (3.10)

Solutions to (3.5) may exhibit two kinds of behaviour, depending on the sign
of m2. In the parts of the water column where m is real (m2 >≥ 0), the
waves are oscillatory. This then implies that one of the following inequalities
must hold throughout this part of the water column:

N(z) ≤ ω ≤ |f | or |f | ≤ ω ≤ N(z). (3.11)

In the ocean and atmosphere, the most common situation is N > |f |. How-
ever, in exceptionally circumstances, and in extremely weakly stratified re-
gions, |f | may exceed N ; e.g. in convective layers. The second condition
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is therefore consistent with our previous analysis in which f = 0. Thus, in
the presence of rotation the internal wave frequency is additionally bounded
below (or above) by |f |.

In the case when m2 < 0 (i.e. outside the intervals in (3.11)), we get the
so-called evernescent waves : an exponential-like decay of waves away from
the source; there is a rapid decrease of the wave-amplitude.

3.1.2 Orthogonality of eigenfunctions

It can be shown that the eigenfunctions in the Sturm-Liouville problem are
orthogonal to each other. We skip the proof here.

3.2 Uniform stratification

We consider the case of a uniform stratification in which N is a constant.
That is, density is linearly increasing from the top of the ocean to the bot-
tom. The problem is to determine the eigvenvalues kn and their relation to
frequency ω (i.e. the dispersion relation), and also determine the vertical
structure of the eigenfunctions or modes, Wn.

In the case of uniform stratification, (3.5) can easily be solved because
we get

W ′′(z) +m2W (z) = 0 (3.12)

where m is a constant (independent of z) in this case. For wave-like solutions
we assume N > |f | and employ the inequality

|f | ≤ ω ≤ N.

The general solution to (3.12) is given by

W (z) = C1 sinmz + C2 cosmz. (3.13)

We can solve (3.13) straightaway using the boundary conditions, but for a
systematic solution procedure in other cases where N is not constant, we
recast (3.13) together with the boundary conditions W = 0 at z = 0 and
z = −H in the matrix form(

0 1
− sinmH cosmH

)(
C1

C2

)
=

(
0
0

)
(3.14)

37 c©Dr. Joseph K. Ansong



Introduction to Internal Gravity Waves J.K.A

3.2.1 Dispersion relation

For non-trivial solutions for the pair (C1, C2), the determinant of the matrix
in (3.14) must be zero. Thus sinmH = 0 so that

mn = ±nπ
H
, for n = 1, 2, 3, · · · . (3.15)

From equation (3.10) we get the dispersion relation

kn = ±nπ
H

(
ω2 − f 2

N2 − ω2

)1/2

, n = 1, 2, 3, · · · (3.16)

This shows that there are an infinite number of eigenvalues kn (which serve
as horizontal wavenumbers) for a given frequency ω. As the mode number n
increases |kn| increases, that is, the waves become shorter. Alternatively, for
a given k and mode number n, we may express the frequency in terms of k
and n:

ω2 =
N2k2 + f 2

(
nπ
H

)2
k2 +

(
nπ
H

)2 (3.17)

The lower bound of the frequency domain, |f |, is attained in the long-wave
limit |k| → 0 while the upper bound N is attained in the short-wave limit
|k| → ∞ as shown in Figure X.

Differentiating (3.17) yields the group velocity

cg =
k
(
nπ
H

)2
(N2 − f 2)[

N2k2 + f 2
(
nπ
H

)2]1/2 [
k2 +

(
nπ
H

)2]3/2 (3.18)

=⇒ cg = ± H
nπ

(ω2 − f 2)1/2(N2 − ω2)3/2

ω(N2 − f 2)
(3.19)

where the + sign applies for positive k and the − sign if k is negative. The
horizontal phase speed c = ω/k is given by

cp =

[
N2k2 + f 2

(
nπ
H

)2]1/2
k
[
k2 +

(
nπ
H

)2]1/2 (3.20)

=⇒ cp = ±Hω
nπ

(
N2 − ω2

ω2 − f 2

)1/2

(3.21)
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Equations (3.19) and (3.21) show that both the phase speed and group ve-
locity are inverselyproportional to the modenumber n. Thus, higher modes
propagate more slowly. Also, (3.19) shows that the group velocity goes to
zero at the extreme limits of the frequency domain ω = |f |, N . However, the
phase speed tends to infinity at the lower bound |f |. See Figure..

39 c©Dr. Joseph K. Ansong



Introduction to Internal Gravity Waves J.K.A

40 c©Dr. Joseph K. Ansong


	Governing Equations
	Simplifications:
	Approximations for Deep and Shallow Water
	Interfacial Waves
	Dispersion Relation


	Internal Gravity Waves
	Governing Equations
	Boundary Conditions
	Surface Condition: Rigid-lid Approximation
	Bottom Condition

	Basic Properties of Internal Waves

	Propagation of Internal Gravity Waves: Vertical normal modes
	Solution Approach
	Oscillatory versus exponential behaviour
	Orthogonality of eigenfunctions

	Uniform stratification
	Dispersion relation



