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Internal gravity waves exist any time
you have a lighter �uid above a heavier
�uid with a mechanism to set them in
motion.

They have much larger amplitudes
than waves we see on beaches (surface
waves). This is because the density
di�erences within the ocean are much
smaller than on the surface.

Internal waves with tidal frequency are
called internal tides.



Introduction: History of 'dead water' phenomenon

Joseph Ansong jkansong@ug.edu.gh 4 / 63

Ships entering Norwegian fjords experienced increased drag

It was a mystery for several years and attributed to 'dead water'

First reported by Norwegian explorer Fridtjöf Nansen during his North
poler expedition in 1893 on his ship Fram.
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�When caught in dead water, Fram appeared to be held back, as if by some
mysterious force, and she did not always answer the helm. In calm
weather, with a light cargo, Fram was capable of 6 to 7 knots. When in
dead water she was unable to make 1.5 knots. We made loops in our
course, turned sometimes right around, tried all sorts of antics to get clear
of it, but to very little purpose.� (Walker J.M., 1991)

Nansen contacted an experienced physicist
and meteorologies, Vilhelm Bjerknes, to
study the problem scienti�cally.
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Nansen contacted an experienced physicist
and meteorologies, Vilhelm Bjerknes, to
study the problem scienti�cally.

Vilhem Bjerknes then passed on the problem to
his student, Vagn Walfrid Ekman. Ekman then
discovered that the problem was due to
interfacial/internal waves that are generated,
propagate and produce a drag on the ship.
Ekman performed the �rst laboratory experiment
to generate the waves. The Ekman spiral is
named after him.
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Credit: Matthieu Mercier (https://www.youtube.com/watch?v=bzcgAshAg2o)
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Photograph from the Apollo-Soyuz spacecraft in 1975, made over the
Andaman Sea, showing stripes due to internal waves. The stripes stretch
over 100 km, and have a mutual distance of the order of a few tens of
kilometers (Gerkeman & Zimmerman, 2008)
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Satellite image of internal waves over the Gulf of Maine west of Cape Cod
on June 23, 2008 [Jackson et. al. (2013); Oceanography]
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Morning glory clouds
(https://en.wikipedia.org)

Turbulence waves (NASA)
(https://www.nasa.gov)
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Generation by strati�ed
�ow over topographic
bumps.
(Prof. Jonathan Nash)

Generation in a laboratory
tank by sinusoidal hills
(Prof. Bruce Sutherland)
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Axisymmetric waves...

Waves propagate down as
conical beams

Ansong & Sutherland (2010)
JFM, Vol. 648


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Motivation: Why do we care?

Joseph Ansong jkansong@ug.edu.gh 14 / 63

WHY DO WE CARE ABOUT

INTERNAL GRAVITY WAVES
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Isopycnal (equal density surface) displacements due to the passage of
an internal wave in Lombok Strait, covering the upper 250 m of the
water column. Horizontal axis is time, and spacing between vertical
lines is 6 minutes ( Susanto et. al., 2005).

The picture gives a peak into the interior of the ocean.
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Larger displacements are in the interior and much smaller
displacements are closer to the surface: a characteristic feature of
internal waves

Currents associated with them extend to the surface thereby changing
the roughness of surface waves.
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Hans van Haren
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Temperature pro�les by Helland-Hansen & Nansen at two di�erent
locations represented by a (August, 1900) and b (July 1900). Pro�les
in 2.5 hours time at the same locations are a′ and b′. The
measurements are shown in dots and the curves are constructed from
them. (Helland-Hansen & Nansen, 1909).
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Breaking internal waves a�ect the Meridional Overturning Circulation
(thermohaline circulation)

The spatial variability of mixing is important for accurate climate
modeling

The Navy care about internal gravity waves; submarines don't want to
get caught up in IGWs.

Hans van Haren
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Surface

Gravity Waves

Interfacial

Waves
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THEORY OF....

Surface gravity waves

Interfacial waves

Internal waves in uniform
strati�cation
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SURFACE GRAVITY WAVES



Surface Gravity Waves: wave parameters

Joseph Ansong jkansong@ug.edu.gh 23 / 63

A simple way to describe a wave is

η(x , t) = a cos(kx − ωt)

a is the amplitude

k is the wavenumber (k = 2π/λ)

ω is the frequency and c = ω/k is the phase speed
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For the wave η(x , t) = a cos(kx − ωt)

The phase speed is c = ω/k

Important Fact

Waves of di�erent wavenumbers may travel at di�erent speeds.
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Momentum Conservation:

The Navier-Stokes equations express the conservation of momentum
of a �uid element (ma =

∑
F ):

ρ
Du

Dt
= −∇p + ρg + µ∇2u− 2Ω× u (1)

where u = (u, v ,w) is the velocity �eld, p pressure, ρ density, µ
viscosity, 
 is Earth's angular velocity and the total derivative or
material derivative and gradient are given by

D

Dt
=

∂

∂t
+ u · ∇ =⇒ D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
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Conservation of Mass:

The rate of mass in�ow into a control volume must balance the rate
of mass out�ow, leading to the so-called continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0

=⇒ 1

ρ

Dρ

Dt
+∇ · u = 0

The total derivative Dρ/Dt is the rate of change of density following
a �uid particle. A �uid is called incompressible if its density does not
change with pressure. Liquids are almost incompressible so we set
(1/ρ)Dρ/Dt = 0 and the continuity equation becomes

Dρ

Dt
= 0 and so ∇ · u = 0.



Surface Gravity Waves: Equations

The full governing equations for an incompressible �uid, non-viscous, with
Coriolis force f under Boussinesq approximation are:

ρ∗

(
Du

Dt
− fv

)
= −∂p

∂x

ρ∗

(
Dv

Dt
+ fu

)
= −∂p

∂y

ρ∗
Dw

Dt
= −∂p

∂z
− gρ

ρ∗
Dρ

Dt
= −w dρ0

dz
∂u

∂x
+
∂v

∂x
+
∂w

∂z
= 0

where ρ0(z) is the background density and ρ∗ is a constant density.

Joseph Ansong jkansong@ug.edu.gh 26 / 63



Surface Gravity Waves: Solution Approach

Rather than solve the previous equations, we �rst make simplifying
assumptions about the �ow �eld.

Assumptions

We consider

Small amplitude waves

Una�ected by Earth's rotation

Inviscid - viscosity is negligible

Incompressible - no sound waves allowed (∇ · u = 0)

Irrotational (∇× u = 0)

Two dimensional: u = (u,w)

Joseph Ansong jkansong@ug.edu.gh 27 / 63
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Consider 2D �ow in the xz−plane.
No Coriolis frequency and

Constant density (ρ∗ = ρ = constant).
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∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (3)

∂u

∂x
+
∂w

∂z
= 0. (4)

The Coriolis frequency is neglected by assuming that the frequency of
the waves is large compared to the Coriolis frequency such that the
waves are not a�ected by the Earth's rotation.

The motion is generated from rest by wind action or dropping a stone
in the water body.

The resulting motion is irrotational, by the Kelvin's circulation
theorem.
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Small Amplitude Assumption:

Assumed that the amplitude a of oscillation of the free surface is small.
That is, both a/λ and a/H are much smaller than one.

a/λ� 1 implies that the slope of the sea/water surface is small.

a/H � 1 implies that the instantaneous depth is not signi�cantly
di�erent from the undisturbed depth.

These small amplitude assumptions allows for the problem to be linearized
and the equations become...
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∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g

∂u

∂x
+
∂w

∂z
= 0.
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∂u

∂t
+

�
��u
∂u

∂x
+

�
�
�

w
∂u

∂z
= −1

ρ

∂p

∂x

∂w

∂t
+

�
�
�

u
∂w

∂x
+

�
�
�

w
∂w

∂z
= −1

ρ

∂p

∂z
− g

∂u

∂x
+
∂w

∂z
= 0
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∂u

∂t
+

�
��u
∂u

∂x
+

�
�
�

w
∂u

∂z
= −1

ρ

∂p

∂x

∂w

∂t
+

�
�
�

u
∂w

∂x
+

�
�
�

w
∂w

∂z
= −1

ρ

∂p

∂z
− g

∂u

∂x
+
∂w

∂z
= 0

The simpli�ed equations become:

∂u

∂t
= −1

ρ

∂p

∂x
(5)

∂w

∂t
= −1

ρ

∂p

∂z
− g (6)

∂u

∂x
+
∂w

∂z
= 0 (7)
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De�nition (Vorticity)

The vorticity vector ω of a �uid element with velocity vector ~u = (u, v ,w)
is de�ned as

ω = ∇× u (8)

with components:

ω1 =
∂w

∂y
− ∂v

∂z
, ω2 =

∂u

∂z
− ∂w

∂x
, ω3 =

∂v

∂x
− ∂u

∂y
(9)

Remark

Vorticity is a measure of the local rotation of a �uid element.
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De�nition (Irrotational Flow)

A �uid motion is said to be irrotational if the vorticity is equal to zero

ω = ∇× u = 0, (10)

which requires that

∂ui
∂xj

=
∂uj
∂xi

i 6= j , (11)

where ui and uj denote the velocity components in the xi and xj
coordinates respectively.
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Remark

If the �ow is irrotational, the velocity vector can be written as the gradient
of a scalar function φ(x, t). This is because

ui =
∂φ

∂xi
(12)

satis�es the condition of irrotationality in equation (10).

For example, in our 2D �ow in the xz−plane (i.e., x1x3−plane),
irrotationality implies that

∂u1
∂x3

=
∂u3
∂x1

=⇒ ∂u

∂z
− ∂w

∂x
= 0, (13)

and the velocity �eld satis�es

u =
∂φ

∂x
, w =

∂φ

∂z
(14)
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Repeat: the simpli�ed equations

∂u

∂t
= −1

ρ

∂p

∂x
(15)

∂w

∂t
= −1

ρ

∂p

∂z
− g (16)

∂u

∂x
+
∂w

∂z
= 0 (17)
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Substituting (14) into the continuity equation (17) results in the Laplace
equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (18)

Also, from equation (16), we have

∂

∂t

(
∂φ

∂z

)
= −1

ρ

∂p

∂z
− g ,

and inter-changing derivatives gives

=⇒ ∂

∂z

(
∂φ

∂t

)
= − ∂

∂z

(
p

ρ

)
− g ,

=⇒ ∂

∂z

(
∂φ

∂t
+

p

ρ

)
= −g .
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Integrating both sides with respect to z to get the linearized Bernoulli
equation:

∂φ

∂t
+

p

ρ
+ gz = 0. (19)

To solve the Laplace equation, we need to specify boundary conditions at

the free surface and at the bottom.
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Bottom boundary condition:
At the bottom, we specify zero normal velocity such that

w =
∂φ

∂z
= 0, at z = −H (20)

Kinematic boundary condition:
The kinematic boundary condition at the free surface states that the �uid
particle never leaves the surface, that is

Dη

Dt
= wη, at z = η, (21)

where the material derivative is D/Dt = ∂/∂t + u(∂/∂x), and wη is the
vertical component of �uid velocity at the free surface. In other words,

∂η

∂t
+ u

∂η

∂x

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=η

, non-linear (22)
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Recall that η = η(x , t). For small amplitude waves u∂η/∂x is one order
smaller than the other terms in (22) so we neglect u∂η/∂x and get

∂η

∂t
=
∂φ

∂z

∣∣∣
z=η

. (23)

We can simplify this condition further by evaluating the right side at z = 0
rather than at the free surface. This can be justi�ed by performing a
Taylor series expansion of ∂φ/∂z about z = 0:

∂φ

∂z

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=0

+ η
∂2φ

∂2z
+ · · · ≈ ∂φ

∂z

∣∣∣
z=0

(24)

To �rst order of accuracy, (23) becomes

∂η

∂t
=
∂φ

∂z
at z = 0. (25)
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Dynamic boundary condition:
There is a dynamic boundary condition that the pressure just below the
free surface is always equal to the ambient (atmospheric) pressure. Taking
the ambient pressure to be zero results in

p = 0 at z = η. (26)

Substituting into the Bernoulli equation (19) yields

∂φ

∂t
+ gη = 0 at z = η (27)

As in the case of the kinematic condition, for small amplitude waves, the
term ∂φ/∂t can be evaluated at z = 0 instead of at z = η so that

∂φ

∂t
+ gη = 0 at z = 0 (28)
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∂φ

∂t
= −gη

∂φ

∂z
=
∂η

∂t

at z = 0

∂2φ

∂x2
+
∂2φ

∂z2
= 0

∂φ

∂z
= 0 at z = −H

IMPORTANT

The boundary conditions imply specifying a form for η.

The kinematic condition imply separation of variables
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Summarizing, we need to solve the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (29)

in the interior of the domain, subject to the conditions

∂φ

∂z
= 0, at z = −H (30)

∂φ

∂z
=
∂η

∂t
at z = 0 (31)

∂φ

∂t
= −gη at z = 0 (32)

To apply the boundary conditions, we need to assume a form
for η(x , t). We assume a sinusoidal component:

η = a cos(kx − ωt) (33)
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Remark

A strong motivation for studying sinusoidal waves is that an
arbitrary disturbance can be decomposed into various
sinusoidal components by Fourier analysis, and the response of
the system to an arbitrary small disturbance is the sum of the
responses to the various sinusoidal components.
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Remark

A strong motivation for studying sinusoidal waves is that an
arbitrary disturbance can be decomposed into various
sinusoidal components by Fourier analysis, and the response of
the system to an arbitrary small disturbance is the sum of the
responses to the various sinusoidal components.

Assuming a separable solution: φ(x , z , t) = ψ(z)Φ(x , t). The
conditions in (31) and (32) imply that Φ(x , t) must be sine
function of kx − ωt. Thus, we assume a solution in the form

φ = ψ(z) sin(kx − ωt), (34)

where ψ(z) and ω(k) are to be determined. Substituting (34)
into the Laplace equation (29) gives the ODE:
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d2ψ

dz2
− k2ψ = 0. (35)

A general solution is

ψ(z) = Aekz + Be−kz .

Thus, the velocity potential φ in (34) is given by

φ =
(
Aekz + Be−kz

)
sin(kx − ωt). (36)

The constants A and B are determined from the conditions in
(30) and (31).
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Applying (30):
∂φ

∂z
= 0 at z = 0

gives (
kAe−kH − kBekH

)
sin(kx − ωt) = 0,

=⇒ k
(
Ae−kH − BekH

)
sin(kx − ωt) = 0.

For a nontrivial solution,

sin(kx − ωt) 6= 0 =⇒ Ae−kH = BekH

=⇒ B = Ae−2kH (37)
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We next apply the kinematic condition (31). Before then...

Remark

Suppose we applied condition (31) at z = η instead of the
linearized form at z = 0. Then from (36) we get

∂φ

∂z

∣∣∣
z=η

= k
(
Aekη − Be−kη

)
sin(kx − ωt)

For a small slope of the free surface, kη << 1, we can set
ekη ≈ e−kη = 1. This is e�ectively what we are doing by
applying the surface boundary conditions at z = 0 instead of
at z = η, which was justi�ed using Taylor series expansions.



Joseph Ansong jkansong@ug.edu.gh 47 / 63

Substituting (33) and (36) into (31) gives

k
(
Aekz − Be−kz

)
sin(kx − ωt) = aω sin(kx − ωt)

At z = 0 we have

k(A− B) = aω (38)

=⇒ A− B =
aω

k
=⇒ B = A− aω

k

Employing (37) results in

A− aω

k
= Ae−2kH =⇒ A

(
1− e−2kH

)
=

aω

k

=⇒ A =
aω

k (1− e−2kH)
(39)

∴ B =
aωe−2kH

k (1− e−2kH)
(40)
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From (36) we �nally get the velocity potential

φ =

[
aωekz

k (1− e−2kH)
+

aωe−2kH

k (1− e−2kH)
e−kz

]
sin(kx − ωt).

φ =
aω

k

[
ekz

(1− e−2kH)
+

e−k(z+2H)

(1− e−2kH)

]
sin(kx − ωt).

(41)

Using the fact that

cosh x =
ex + e−x

2
and sinh x =

ex − e−x

2

1− e−2kH = 1− e−kH

ekH
=

ekH − e−kH

ekH



Surface Gravity Waves: Solution

φ(x , z , t) =
aω

k

cosh k(z + H)

sinh kH
sin(kx − ωt) (42)

Recall that

u =
∂φ

∂x
and w =

∂φ

∂z

Thus,

u(x , z , t) = aω
cosh k(z + H)

sinh kH
cos(kx − ωt) (43)

w(x , z , t) = aω
sinh k(z + H)

sinh kH
sin(kx − ωt) (44)
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Surface Gravity Waves: Solution

u(x , z , t) = aω
cosh k(z + H)

sinh kH
cos(kx − ωt) (45)

w(x , z , t) = aω
sinh k(z + H)

sinh kH
sin(kx − ωt) (46)

Remark

Note that since η = a cos(kx − ωt), we see that the u velocity is in phase
with the displacement while the w velocity is 90◦ out of phase with η.

Joseph Ansong jkansong@ug.edu.gh 50 / 63



Joseph Ansong jkansong@ug.edu.gh 51 / 63

0.2
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z
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x

2.0

1.5

1.0

0.5

0.0

z
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Dispersion Relation
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Recall:

∂2φ

∂x2
+
∂2φ

∂z2
= 0.

in the interior of the domain, subject to the conditions

∂φ

∂z
= 0, at z = −H (47)

∂φ

∂z
=
∂η

∂t
at z = 0 (48)

∂φ

∂t
= −gη at z = 0 (49)
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Remark

Note that we solved the Laplace equation by using only the
bottom and kinematic conditions (47) and (48); without
employing the dynamic condition (49). Application of the
dynamic condition (49) results in a relation between the wave
number k and frequency ω.

Substituting (33) and (42) into dynamic condition (32) or
(49), we have

−aω2

k

cosh(kH)

sinh(kH)
cos(kx − ωt) = −ga cos(kx − ωt)

=⇒ ω2

k

cosh(kH)

sinh(kH)
= g

=⇒ ω2 = gk tanh(kH)
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ω =
√

gk tanh(kH) or T =

√
2πλ

g
coth

(
2πH

λ

)
, (50)

where T = 2π/ω is the wave period. The wave speed c = ω/k is related
to the wavelength by

c =

√
g

k
tanh(kH) =

√
gλ

2π
tanh

2πH

λ
(51)

These equations show that the speed of propagation of a wave component
depends on its wavenumber. Waves for which c is a function of k are said
to be dispersive since they separate into individual components. The
relationship in (50) or (51) where ω is a function of k is called a dispersion
relation. This is because it expresses the nature of the dispersive process.
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Approximations for Deep and
Shallow Water Waves
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Remark

The analysis in the previous section is applicable irrespective of the
relationship between the magnitude of λ and the water depth H. Some
interesting simpli�cations arise for shallow water (H/λ� 1) and deep
water (H/λ� 1). We derive approximations for the phase speed for which
(51) takes simple forms.

The behaviour of hyperbolic functions as x →∞ and as x → 0 be
employed for the simpli�cations.
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Approximations

Note that
tanh kH → 1 when kH � 1

tanh kH → kH when kH � 1
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Using λ = 2π/k , we are interested in the cases when

H/λ� 1 or kH � 1 (deep water)

H/λ� 1 or kH � 1 (shallow water)
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Deep Water Waves

kH � 1 : c =
ω

k
=

√
g

k
tanh kH →

√
g

k
=

√
gλ

2π
(52)

c is dependent on k

The wave does not feel the bottom.

Longer waves in deep water propagate faster.

Deep water waves are dispersive: A wave �packet� separates or
disperses.

Within 2% accuracy, the approximation (52) is valied for
H > 0.32λ (i.e., kH > 2). Therefore, surface waves are
classi�ed as deep water waves if the depth is more than
one-third of the wavelength. Deep water waves are dispersive
since the phase speed depends on the wavelength.
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Shallow Water Waves

H/λ� 1 or kH � 1 : c =
ω

k
=

√
g

k
tanh kH →

√
gH

∴ c =
√

gH. (53)

c is independent of k

The wave does feel the bottom; phase speed increases with
water depth.

Shallow water waves are not dispersive: A wave �packet� stays
together.

The approximation gives better than 3% accuracy if H < 0.07λ.
Thus, surface waves are regarded as shallow-water waves if the
water depth is less than 7% of the wavelength.
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