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Interfacial Waves



Motivation: History of 'dead water' phenomenon
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Ships entering Norwegian fjords experienced increased drag

It was a mystery for several years and attributed to 'dead water'

First reported by Norwegian explorer Fridtjöf Nansen during his North
poler expedition in 1893 on his ship Fram



Motivation: First global model of internal tides
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The �rst global simulation of internal tides constructed a 2-layer
model and a 10-layer model with similar propagation features.

There are hot-spots around the global ocean where internal tides are
generated by tidal �ow over topography.

Harper L. Simmons, Robert W. Hallberg, & Brian K. Arbic (2004)



Recap: Surface Gravity Waves
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∂φ

∂t
= −gη

∂φ

∂z
=
∂η

∂t

at z = 0

∂2φ

∂x2
+
∂2φ

∂z2
= 0

∂φ

∂z
= 0 at z = −H



Interfacial Waves: Problem Setup
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Plan of Attack

Solve the Laplace equation in both layers

Apply the continuity of p and w at the interface



Interfacial Waves: Problem Setup
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∂2φ1
∂x2

+
∂2φ1
∂z2

= 0 (1)

∂2φ2
∂x2

+
∂2φ2
∂z2

= 0 (2)

with the conditions

φ2 → 0 at z → −∞ (3)

∂φ1
∂z

=
∂η

∂t
at z = 0 (4)

∂φ1
∂t

= −gη at z = 0 (5)

∂φ1
∂z

=
∂φ2
∂z

=
∂ζ

∂t
at z = −H (6)

ρ1
∂φ1
∂t

+ ρ1gζ = ρ2
∂φ2
∂t

+ ρ2gζ at z = −H (7)



Interfacial Waves: Solution

Assume displacements:

η = ae i(kx−ωt) (8)

ζ = be i(kx−ωt) (9)

where a can be real but b should be left complex since η and ζ may not be
in phase. The use of complex notation here is to simplify the algebra. Note
that only the real part of the equation is meant.

Seek separable solutions

The boundary conditions imply separable solutions of the form

φ1 =
(
Aekz + Be−kz

)
e i(kx−ωt) (10)

φ2 = Cekze i(kx−ωt) (11)
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We are left with the problem of �nding A,B and C , as well as
the relationship between amplitudes a and b. Applying (4) we
have

∂φ1
∂z

= k
(
Aekz − Be−kz

)
e iθ = −iaωe iθ,

and at z = 0, we get

k(A− B) = −iaω

=⇒ A− B = − iaω

k
(12)

where θ = kx − ωt. Applying (5), we have

∂φ1
∂t

= −iω
(
Aekz + Be−kz

)
e iθ = −gaωe iθ,

and at z = 0, we get

A+ B =
ga

iω
= −i ag

ω
(13)



Interfacial Waves: Solution
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Summing (12) and (13) results in

2A = i
(
−ag

ω
− aω

k

)
=⇒ A = −ai

2

(ω
k
+

g

ω

)
(14)

=⇒ B = − iag

ω
− A = − iag

ω
+

ai

2

(ω
k
+

g

ω

)
=⇒ B =

ai

2

(ω
k
− g

ω

)
(15)

From (6):
∂φ1
∂z

=
∂φ2
∂z

z = −H

=⇒ k
(
Aekz − Be−kz

)
e iθ = −kCekzωe iθ

At z = −H, we have



Interfacial Waves: Solution
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Ae−kH − BekH = Ce−kH

=⇒ C = A− Be2kH

C = −ai

2

(ω
k
+

g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH (16)

To determine the relationship between a and b, we may use
either

∂φ1
∂z

=
∂ζ

∂t
or

∂φ2
∂z

=
∂ζ

∂t

from equation (6). Employing the latter equation for
simplicity, we have

kCekze iθ = −iωbe iθ

and at z = −H:



Interfacial Waves: Solution

Joseph Ansong jkansong@ug.edu.gh 13 / 34

b =
k

−iω
Ce−kH =

ik

ω
Ce−kH

=⇒ b =
ik

ω

{
−ai

2

(ω
k
+

g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH

}
e−kH

∴ b =
a

2

(
1+

gk

ω2

)
e−kH +

a

2

(
1− gk

ω2

)
ekH (17)



Interfacial Waves: Solution
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Recapitulating, the velocity potentials are given by (10)-(11):

φ1 =
(
Aekz + Be−kz

)
e i(kx−ωt)

φ2 = Cekze i(kx−ωt)

with the constants given by

A = −ai

2

(ω
k
+

g

ω

)
(18)

B =
ai

2

(ω
k
− g

ω

)
(19)

C = −ai

2

(ω
k
+

g

ω

)
− ai

2

(ω
k
− g

ω

)
e2kH (20)

b =
a

2

(
1+

gk

ω2

)
e−kH +

a

2

(
1− gk

ω2

)
ekH . (21)



Interfacial Waves: Solution

Solution

φ1 = −
ia

2

[(ω
k
+

g

ω

)
ekz −

(ω
k
− g

ω

)
e−kz

]
e i(kx−ωt)

φ2 = −
ia

2

[(ω
k
+

g

ω

)
+
(ω
k
− g

ω

)
e2kH

]
ekze i(kx−ωt)

The velocities in the upper and lower layers can now be obtained via:

Velocities

(u1,w1) =

(
∂φ1
∂x

,
∂φ1
∂z

)
(u2,w2) =

(
∂φ2
∂x

,
∂φ2
∂z

)
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Interfacial Waves
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Dispersion relation



Interfacial Waves

For the dispersion relation, we employ the dynamic conditions (7):

ρ1
∂φ1
∂t

+ ρ1gζ = ρ2
∂φ2
∂t

+ ρ2gζ at z = −H

After a few pages of algebra, the result can be written as (homework :) )

Dispersion relation

(
ω2

gk
− 1

){
ω2

gk
[ρ1 sinh(kH) + ρ2 cosh(kH)]− (ρ2 − ρ1) sinh(kH)

}
= 0.

(22)

Equation (22) shows that there are two possible roots, resulting in the
barotropic or surface mode and the baroclinic or internal modes as
discussed next.
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Interfacial Waves: Barotropic mode
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From (22), one of the roots is given by(
ω2

gk
− 1

)
= 0

∴ ω2 = gk . (23)

This is the same dispersion relation we obtained for a deep-water
water wave. Equation (21) :

b =
a

2

(
1+

gk

ω2

)
e−kH +

a

2

(
1− gk

ω2

)
ekH

shows that

b = ae−kH



Interfacial Waves: Problem Setup
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Displacement

η = ae i(kx−ωt)

ζ = be i(kx−ωt)



Interfacial Waves: Barotropic mode
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b = ae−kH (24)

Remark

This implies that the amplitude at the interface is smaller than that
at the surface by a factor e−kH . Also, equation (24) together with
(8)-(9) shows that the motions of the free surface and the interface
are locked in phase. That is, they go up or down simultaneously.
This mode is similar to a gravity wave propagating on the free
surface of the upper liquid, in which the motion decays as e−kz from
the free surface. It is called the barotropic mode.



Summary: Barotropic Mode

The �rst expression gives the barotropic (surface) mode:

Barotropic Mode

ω =
√
gk

and (15) implies b = ae−kH

Important:

The barotropic mode behaves like deep water waves

The amplitude at the interface is smaller than that at the surface by
the factor e−kH

The motions of the free surface and interface are locked in phase.
They move up and down simultaneously.

The barotropic mode is similar to surface waves propagating in the
upper layer �uid.

Joseph Ansong jkansong@ug.edu.gh 21 / 34



Barotropic Mode
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Barotropic Mode
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Interfacial Waves: Baroclinic or Internal mode
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From (22), the second root is given by

ω2

gk
[ρ1 sinh(kH) + ρ2 cosh(kH)]− (ρ2 − ρ1) sinh(kH) = 0

=⇒ ω2 =
gk(ρ2 − ρ1) sinh(kH)

ρ1 sinh(kH) + ρ2 cosh(kH)
(25)

We can determine the relation between a and b by substituting (25)
into (21). From (25) we have

gk

ω2
=
ρ2 cosh kH + ρ1 sinh kH

(ρ2 − ρ1) sinh kH
,

and so

1− gk

ω2
= 1− sinh kH + (ρ2/ρ1) cosh kH

[(ρ2 − ρ1)/ρ1] sinh kH
(26)

and



Interfacial Waves: Baroclinic or Internal mode
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1+
gk

ω2
= 1+

sinh kH + (ρ2/ρ1) cosh kH

[(ρ2 − ρ1)/ρ1] sinh kH
.

Substituting the last two equations into (21) and after some algebra
gives

b = −a
(

ρ1
ρ2 − ρ1

)
(cosh kH + sinh kH) = −a

(
ρ1

ρ2 − ρ1

)
ekH

=⇒ a = −b
(
ρ2 − ρ1
ρ1

)
e−kH . (27)

From (8) and (9), we have

η =
a

b
ζ

∴ η = −ζ
(
ρ2 − ρ1
ρ1

)
e−kH . (28)



Interfacial Waves: Baroclinic or Internal mode
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η = −ζ
(
ρ2 − ρ1
ρ1

)
e−kH

Remark

Equation (28) shows that η and ζ have opposite signs, and if
the density di�erence is small, the interface displacement is
much larger than the surface displacement.

This is one reason why it is important to study internal waves
because under nonlinear conditions, the waves can break and
mix the interior of the ocean thereby changing the local
strati�cation.

Secondly, large amplitude internal waves carry more energy as
they propagate away from where they are generated.



Interfacial Waves: Baroclinic or Internal mode
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η = −ζ
(
ρ2 − ρ1
ρ1

)
e−kH

Remark

It can also be shown that the horizontal velocity changes sign
across the interface (see Figure on next slide).

The analysis above shows that the presence of a density
di�erence generates a motion that is quite di�erent from the
barotropic behaviour.



Barotropic vs Baroclinic Mode
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Baroclinic Mode
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Baroclinic Mode
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Baroclinic currents
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Shallow Water (Long Wave) Approximation
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Assume wavelengths are large compared to the upper layer depth.

H/λ� 1 or kH � 1 (shallow water)

sinh kH → kH when kH � 1

cosh kH → 1 when kH � 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

sinh
cosh
tanh



Shallow Water (Long Wave) Approximation

Then the dispersion relation (25) becomes

ω2 =
k2Hg(ρ2 − ρ1)

ρ2
= k2Hg ′

where g ′ is called the reduced gravity and de�ned as

g ′ =
g(ρ2 − ρ1)

ρ2

Phase Speed & Displacements

Thus, we get

c =
√

g ′H

η = −ζ
(
ρ2 − ρ1
ρ1

)
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