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Considering small amplitude motions results in
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To obtain equations governing the propagation of internal gravity
waves, we assume that the �ow is superimposed on a �background�
state (i.e. it is a perturbation of a known static background) with
only vertical dependences such that

p = p0(z) + p′(x , y , z , t) (11)

ρ = ρ0(z) + ρ′(x , y , z , t) (12)

and the static background density and pressure are in hydrostatic
balance:

dp0
dz

= −gρ0 (13)

Substituting (11)-(12) into (6)-(10), equations (6)-(7) become
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where

b = −gρ′

ρ∗
(17)

From (10) [∂ρ/∂t = −w(dρ0/dz ] we have
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= −w dρ0

dz
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= −ρ∗w
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∴
∂b
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+ wN2 = 0 (19)

where we used (17) and the buoyancy frequency or Brunt-Väisälä
frequence, N, is de�ned as
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N2 = − g

ρ∗

dρ0
dz

. (20)

It describes the frequency that a vertically displaced �uid will
oscillate at in an environment with background strati�cation given
by dρ0/dz . This can be derived from �rst principles.
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Consider �uid in a background density, ρ0(z), that is continuously
decreasing with height. Consider a �uid parcel of density ρ∗ = ρ0(z0)
situated initially at a vertical level z0. If the parcel is displaced vertically
by a small distance δz , it will maintain its density which is di�erent from
that of the surrounding �uid (by neglecting thermodynamic e�ects). It
therefore experiences a buoyancy force.
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mass × acceleration = Forcebuoyancy

=⇒ ρ∗
d2δz
dt2

= −δρg

where δρ is the density di�erence between the
�uid parcel and the surrounding �uid at its
displaced position. Because the displacement
|δz | is small, the density di�erence can be
written in terms of δz to get δρ ≈ −dρ0

dz δz
Therefore, we get

ρ∗
d2δz
dt2

= g
dρ0
dz

δz =⇒ d2δz
dt2
− g

ρ∗

dρ0
dz

δz = 0.

This can be written as the �spring equation�:

d2δz
dt2

+ N2δz = 0

where N is the buoyancy frequency (20).
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In summary, the equations governing linear internal wave motions in
a continuously strati�ed ambient are given by
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Derive a single equation for the vertical velocity w , from (21)-(25).
Taking the derivative ∂/∂z of (22) and ∂/∂y of (23) gives
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Similarly, taking ∂/∂z of (21) and ∂/∂x of (23) gives

∂

∂z
(21)→ ∂

∂t

(
∂u

∂z

)
− f

∂v

∂z
= − 1

ρ∗

∂

∂x

(
∂p

∂z

)
∂

∂x
(23)→ ∂

∂t

(
∂w

∂x

)
= − 1

ρ∗

∂

∂x

(
∂p

∂z

)
+
∂b

∂x

Subtracting the second equation from the �rst gives

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
− f

∂v

∂z
= −∂b

∂x

=⇒ ∂

∂t

(
∂u

∂z
− ∂w

∂x

)
= f

∂v

∂z
− ∂b

∂x
(27)



Internal Gravity Waves: Governing Equations

Joseph Ansong jkansong@ug.edu.gh 16 / 43

Finally, taking ∂/∂y of (21) and ∂/∂x of (22) gives

∂

∂y
(21)→ ∂

∂t

(
∂u

∂y

)
− f

∂v

∂y
= − 1

ρ∗

∂

∂y

(
∂p

∂x

)
∂

∂x
(22)→ ∂

∂t

(
∂v

∂x

)
+ f

∂u

∂x
= − 1

ρ∗

∂

∂y

(
∂p

∂x

)
Subtracting the second equation from the �rst gives
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where we used the continuity equation (24).
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Next plan of attack is to eliminate the u and v terms. We're going
to do: ∂2/∂y∂t of (26) and ∂2/∂x∂t of (27).
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Equation (29) minus (30) gives
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The Coriolis term can be re-written using (28) and the last
(buoyancy) term using (25).
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To solve (31), we need to specify boundary conditions at the surface
and bottom of our domain. The simplest surface condition employs
the so-called rigid-lid approximation in which the vertical velocity is
taken to be zero at the mean level z = 0:

w = 0 at z = 0. (32)

The simplest bottom boundary condition is obtained by assuming a
�at bottom, with water depth H, such that

w = 0 at z = −H. (33)

Details of the rigid-lid approximation and the bottom boundary
condition are in the notes.
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∂2

∂t2
∇2w + f 2

∂2w

∂z2
+ N2∇2

hw = 0

w = 0 at z = 0

w = 0 at z = −H

WE WILL BE BACK!!
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Basic Properties of Internal Waves from the dispersion relation:

Direction of propagation

Particle motion

Phase and group velocity
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Consider waves propagating in the x−direction, taking ∂/∂y = 0,
and get the equation

∂2

∂t2
wxx + f 2wzz + N2wxx = 0 , (34)

Consider a wave for which

w = w0e
i(kx+mz−ωt) (35)

where w0 is the amplitude of �uctuations. Substituting (35) into
(34) gives the dispersion relation

ω2 =
f 2m2 + k2N2

k2 +m2
. (36)
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For simplicity consider waves in a non-rotating frame of reference,
f = 0:

ω2 =
k2

k2 +m2
N2 . (37)

The wave frequency is taken to be positive, and the direction of
propagation is determined by the wavenumber vector

~K = K = (k , m) = |K|(cos θ, sin θ), (38)

where θ is the angle between the phase velocity vector c (and
therefore K) and the horizontal direction (see Figure in next slide).
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From (37)

ω2 =
k2

k2 +m2
N2 =

k2

| ~K |2
N2

But cos θ =
k

| ~K |

ω = N cos θ,
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ω = N cos θ , (39)

θ = tan−1(m/k), −π/2 ≤ θ ≤ π/2 (40)

and θ is restricted to lie between −π/2 and π/2 so that the
frequency in (39) is non-negative.

Remark

Equation (39) shows that

the frequency of an internal wave in a strati�ed �uid depends
only on the direction of the wavenumber vector and not on the
magnitude of the wavenumber. This is in contrast with surface
and interfacial waves, for which frequency depends only on the
magnitude.

the frequency lies in the range 0 < ω ≤ N. Therefore N is the
maximum possible frequency of internal waves in a strati�ed
�uid.
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Basic Properties of Internal Waves from the dispersion relation:

Direction of propagation

Particle motion

Phase and group velocity
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Suppose the �uid motion is given by (35),

w = w0e
i(kx+mz−ωt) and u = u0e

i(kx+mz−ωt)

such that

∂w

∂z
= imw0e

i(kx+mz−ωt) = imw and
∂u

∂x
= iku

Thus, from the continuity equation we have

iku + imw = 0 =⇒ ku +mw = 0

K · u = 0 (41)

where u = (u, w), showing that the particle motion is perpendicular
to the wavenumber vector (see Figure in next slide; in physical
space).
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Fluid motion is parallel to lines of constant phase lines.

So the angle θ in (39) can now be interpreted as the angle
between the particle motion and the vertical direction (see
Figure on right). In real space, it is measured counterclockwise
from the vertical.

In general, the sign of θ is determined by the sign of the ratio
m/k (see equation 40); for a wave propagating to the right
(k > 0), θ is positive if crests move upward (m > 0) and
negative if crests move downward (m < 0).
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The angle θ is also a measure of the wave frequency relative to the
buoyancy frequency (39). So if the frequency is known, we can
compute

θ = ± cos−1(ω/N), (42)

where the sign is determined by the sign of m/k .
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Remark (Limiting Cases)

The maximum frequency ω = N occurs when θ = 0, that is
when the particles move up and down vertically. This happens
for m = 0 (see equation 37), showing that the motion is
independent of the z−coordinate. So the fastest frequency
waves have in�nitely large vertical wave lengths (since
λm = 2π/m), with lines of constant phase lying parallel to the
z-axis.

The frequency ω = 0 for θ = π/2, that is when the particle
motion is purely horizontal. So waves with nearly zero frequency
have crests that lie almost parallel to the horizontal axis.
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Basic Properties of Internal Waves from the dispersion relation:

Direction of propagation

Particle motion

Phase and group velocity
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For a one-dimensional wave having structure in the x-direction alone,
the phase speed is de�ned by

cp =
ω

k
=
λ

T

which means the crest moves one wavelength λ in the time of one
wave period T . For waves having structure in two or three
dimensions, the phase velocity can be described by imagining setting
on a crest and moving in the direction of the wavenumber vector.
Thus, the phase velocity is de�ned by

c =
ω

|~k |
k̂ =

ω

|~k|2
~k =

ω

|~k |2
(k , m) (43)

where k̂ = ~k/|~k | is the unit vector in the direction of ~k , (see Figure
in next slide).
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In two dimensions, the group velocity cg is de�ned as

cg =
∂ω

∂k
ix +

∂ω

∂m
iz =

(
∂ω

∂k
,
∂ω

∂m

)
(44)

where ix and iz are unit vectors in the x and z directions
respectively. From the dispersion relation (37) we have
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∂ω

∂k
=

Nm2

(k2 +m2)3/2
=

Nm2

|~k|3
∂ω

∂m
=

−Nmk

(k2 +m2)3/2
=
−Nmk

|~k|3

∴ cg =
Nm

|~k|3
(m,−k) (45)
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Thus, from (43) and (45):

c =
ω

|~k|2
(k,m), cg =

Nm

|~k|3
(m,−k)

we get

cg · c = 0 (46)
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showing that the phase and group velocity vectors of internal waves
are perpendicular. This means that while crests are moving in the
direction of the wavenumber vector, the wave packet as a whole is
moving in a direction that is parallel to the crests. From (38) and
39, the phase and group velocity may written in the form

c =
N

|~k|
(cos2 θ, sin θ cos θ) =

N cos θ

|~k |
(cos θ, sin θ) (47)

cg =
N

|~k|
(sin2 θ, − sin θ cos θ) =

N sin θ

|~k|
(sin θ, − cos θ) (48)

This shows that the horizontal components of c and cg are in the
same direction, while their vertical components are opposite. Thus,
if crests move upward the wavepacket as a whole moves downward
and vice versa, as depicted in Figure
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This shows that the horizontal components of c and cg are in the
same direction, while their vertical components are opposite. Thus,
if crests move upward the wavepacket as a whole moves downward
and vice versa (see Figure).



Introduction: Continuously strati�ed �uid

Joseph Ansong jkansong@ug.edu.gh 39 / 43

dennou-k.gaia.h.kyoto-u.ac.jp


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



Introduction: Continuously strati�ed �uid

Joseph Ansong jkansong@ug.edu.gh 40 / 43

Axisymmetric waves...

Waves propagate down as
conical beams

Ansong & Sutherland (2010)
JFM, Vol. 648
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The St. Andrews Cross
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This was �rst illustrated by Mowbray & Rarity (1967) by oscillating a
cylinder at frequeny ω in a tank �lled with uniformly stratifed salt
water. Energy radiated outward along four beams in a cross-shaped
pattern: `St. Andrews Cross', because of its resemblance to the
Scottish �ag.
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Flag of Scotland
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