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Repeat: equations governing linear internal wave motions in a
continuously strati�ed ambient:

∂u

∂t
− fv = − 1

ρ∗

∂p′

∂x
(1)

∂v

∂t
+ fu = − 1

ρ∗

∂p′

∂y
(2)

∂w

∂t
= − 1

ρ∗

∂p′

∂z
+ b (3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4)

∂b

∂t
+ wN2 = 0 (5)

Combine to form a single equation in w and...



Internal Gravity Waves: Problem
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Solve

∂2

∂t2
∇2w + f 2

∂2w

∂z2
+ N2∇2

hw = 0 , (6)

using the method of vertical normal modes subject to the boundary
conditions:

w = 0 at z = 0. (7)

w = 0 at z = −H. (8)



Internal Gravity Waves: Solution Approach
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Consider waves propagating in the x−direction (∂/∂y = 0) since the
problem is horizontally isotropic. We seek solutions of the form

w = W (z)e i(kx−ωt), (9)

where the frequency ω is taken to be positive. Substituting into (6)
gives the ordinary di�erential equation for W :

W ′′(z) + k2
N2(z)− ω2

ω2 − f 2
W (z) = 0 (10)

Employing the boundary conditions (7)-(8), we get the boundary
conditions for W to be

W = 0 at z = 0, −H. (11)
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Thus, (10)-(11) forms a Sturm-Liouville problem, which, for a �xed
frequency ω, has an in�nite number of solutions Wn (called
eigenfunctions or vertical modes) with corresponding eigenvalues kn.
From the governing equations (1)-(5), the other variables
(u, v , p, b) with their W (z) counterparts (U(z), V (z), P(z), B(z))
can be written in terms of W :

U =
i

k
W ′; V =

f

ωk
W ′; P = iρ∗

ω2 − f 2

ωk2
W ′; B = − iN2

ω
W

(12)

Equations (10) and (11) imply that the vertically integrated
horizontal velocities are zero:∫

0

−H
udz = 0;

∫
0

−H
vdz = 0. (13)

This feature is a distinguishing property of internal gravity waves
compared to surface waves.
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The general solution of w is given by a superposition of wave
components such that

w =
∑
n

Wn(z)
[
a±n exp i(k±n x − ωt)

]
(14)

where a±n are arbitrary complex constants, and the + and −
superscripts describe rightward and leftward propagating waves
respectively. As usual, the real part of (13) is meant.



Oscillatory versus exponential behaviour
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From (10), let

m2 = k2
N2(z)− ω2

ω2 − f 2
. (15)

Solutions to (10) may exhibit two kinds of behaviour, depending on
the sign of m2. In the parts of the water column where m is real
(m2 ≥ 0), the waves are oscillatory. This then implies that one of
the following inequalities must hold throughout this part of the water
column:

N(z) ≤ ω ≤ |f | or |f | ≤ ω ≤ N(z).



Oscillatory versus exponential behaviour
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N(z) ≤ ω ≤ |f | or |f | ≤ ω ≤ N(z). (16)

In the ocean and atmosphere, the most common situation is
N > |f |. The second condition is therefore consistent with our
previous analysis in which f = 0. Thus, in the presence of rotation
the internal wave frequency is additionally bounded below (or above)
by |f |.

In the case when m2 < 0 (i.e. outside the intervals in (16)), we get
the so-called evernescent waves: an exponential-like decay of waves
away from the source; there is a rapid decrease of the
wave-amplitude.



Orthogonality of eigenfunctions
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It can be shown that the eigenfunctions in the Sturm-Liouville
problem are orthogonal to each other. Let Wn be an eigenfunction
of (10) with corresponding eigenvalue Kn such that

W ′′
n (z) + k2n

N2(z)− ω2

ω2 − f 2
Wn(z) = 0 (17)

Suppose Wl is another eigenfunction with eigenvalue kl 6= kn.
Multiply W ′′

n by Wl , and integrate by part twice to get∫
0

−H
WlW

′′
n dz = WlW

′
n

∣∣∣0
−H
−
∫

0

−H
W ′

l W
′
ndz

= −W ′
l Wn

∣∣∣0
−H

+

∫
0

−H
W ′′

l Wndz

=⇒
∫

0

−H
WlW

′′
n dz =

∫
0

−H
W ′′

l Wndz
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Thus, multiplying (17) by Wl and integrating yields∫
0

−H
W ′′

l Wndz + k2n

∫
0

−H

N2(z)− ω2

ω2 − f 2
WnWldz = 0

Since Wl with corresponding kl satis�es (17), we let

W ′′
l = −k2l

N2(z)− ω2

ω2 − f 2
Wl

in the previous equation to get

(k2n − k2l )

∫
0

−H

N2(z)− ω2

ω2 − f 2
WnWldz = 0

By assumption kl 6= kn so we have∫
0

−H

N2(z)− ω2

ω2 − f 2
WnWldz = 0 (18)



Solution Approach
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W ′′(z) + k2
N2(z)− ω2

ω2 − f 2
W (z) = 0

For special choices of N, say N =constant (uniform
strati�cation), the equation may be solved analytically by the
method of characteristics (which makes no assumptions about
the boundaries) or the method of vertical normal modes (which
requires the boundaries to be �at).

For a general N(z) pro�le with non-�at boundaries, the
equation has to be solved numerically.



Solution: Uniform Strati�cation
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The problem is to determine the eigvenvalues kn and their relation to
the frequency ω (i.e. the dispersion relation), and also determine the
vertical structure of the eigenfunctions or modes, Wn. For
N =constant, the equation and boundary conditions become

W ′′(z) +m2W (z) = 0

W = 0 at z = 0,−H

where

m2 = k2
N2(z)− ω2

ω2 − f 2
.

For wave-like solutions we assume N > |f | and emply |f | ≤ ω ≤ N.

The general solution is given by...



Solution: Uniform Strati�cation
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W (z) = C1 sinmz + C2 cosmz . (19)

We can solve (19) straightaway using the boundary conditions, but
for a systematic solution procedure in other cases where N is not
constant, we recast (19) together with the boundary conditions
W = 0 at z = 0 and z = −H in the matrix form(

0 1
− sinmH cosmH

)(
C1

C2

)
=

(
0
0

)
(20)



Uniform Strati�cation: Dispersion relation
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For non-trivial solutions for the pair (C1,C2), the determinant of the
matrix in (20) must be zero. Thus sinmH = 0 so that

mn = ±nπ

H
, for n = 1, 2, 3, · · · . (21)

From equation (15): m2 = k2N
2(z)−ω2
ω2−f 2

we get the dispersion relation

kn = ±nπ

H

(
ω2 − f 2

N2 − ω2

)1/2

, n = 1, 2, 3, · · · (22)

ω2 =
N2k2 + f 2

(
nπ
H

)2
k2 +

(
nπ
H

)2 (23)



Uniform Strati�cation: Modal Structure
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From (19): W (z) = C1 sinmz + C2 cosmz

and applying the boundary conditions (W = 0 at z = 0,−H) implies
C2 = 0 and C1 is arbitrary. Let C1 = 1 (i.e. normalizing the
amplitude to 1). So the vertical modes become

Wn(z) = sin
(nπz

H

)
, n = 1, 2, 3, · · · (24)



Uniform Strati�cation: Modal Structure
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Now consider (14):

w =
∑
n

Wn(z)
[
a±n exp i(k±n x − ωt)

]
We consider rightward propagating waves k = k+, assume an to be
real, and taking the real part gives

w =
∑
n

an sin
(nπz

H

)
cos(knx − ωt) (25)

From equation (12):

U =
i

k
W ′; V =

f

ωk
W ′; P = iρ∗

ω2 − f 2

ωk2
W ′; B = − iN2

ω
W

we the structure of the other variables by considering the real parts
of the complex expressions:



Uniform Strati�cation: Modal Structure
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u = −
∑
n

an
nπ

knH
cos
(nπz

H

)
sin(knx − ωt) (26)

v =
f

ω

∑
n

an
nπ

knH
cos
(nπz

H

)
cos(knx − ωt) (27)

p = −ρ∗
ω2 − f 2

ω

∑
n

an
nπ

k2nH
cos
(nπz

H

)
sin(knx − ωt) (28)

b =
N2

ω

∑
n

an sin
(nπz

H

)
sin(knx − ωt) (29)

Next, we derive the isopycnal displacements (levels of constant
density). Let the isopycnal at depth z0 be represented by

z = z0 + ζ(t, x , z0)

Thus, we have

w(t, x , z) =
∂ζ

∂t
(t, x , z0) + u(t, x , z)

∂ζ

∂x



Uniform Strati�cation: Modal Structure
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w(t, x , z) =
∂ζ

∂t
(t, x , z0) + u(t, x , z)

∂ζ

∂x

Performing a Taylor expansion about z = z0, and neglecting
nonlinear terms, gives

w(t, x , z0) =
∂ζ

∂t
(t, x , z0)

Therefore, the isopycnal displacement ζ becomes

ζ = − 1

ω

∑
n

an sin
(nπz

H

)
sin(knx − ωt) (30)

where we substitute z0 by z . Equation (29) shows that ζ = −b/N2.
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Uniform Strati�cation: Modal Structure
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Uniform Strati�cation: Isopycnals for n=3
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Uniform Strati�cation: Superpostion of modes
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Uniform Strati�cation: Summing the U modal structures
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Uniform Strati�cation: superposition
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In this case, the vertical modal structure of the solution is
sinusoidal, Wn(z) = sin(nπz/H). We can interpret each
eigenfunction as a standing wave in the vertical, i.e. a
combination of up- and downward propagating waves with
vertical wave number mn = nπ/H.

From the dispersion relation, we can show that

mn

kn
= ±N2 − ω2

ω2 − f 2

which is independent of modenumber n. Thus, one and the
same angle, in the x , z−plane, is common for all modes.

So it's not so surprising to �nd a well-de�ned pattern of
diagonals when modes are superimposed. Note that mn/kn
denotes the tangent of the angle that ~k = (k ,m) makes with
the horizontal.



Tidal beam in the Bay of Biscay
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Path of an internal tide
beam generated over the
continental shelf break in
the Bay of Biscay. CTD
yoyoing is used to
determine the depth (in
circles) of maximum
vertical isopycnal
excursion. Depths follow
theoretical path of
internal tide propagation.
(Pingree R.D. & New
A.L. 1991)



Oceanic buoyancy frequency
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