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Abstract The Orienteering Problem (OP) is an important problem in network opti-

mization in which each city in a network is assigned a score and a maximum-score

path from a designated start city to a designated end city is sought that is shorter than a

pre-specified length limit. The Generalized Orienteering Problem (GOP) is a general-

ized version of the OP in which each city is assigned a number of scores for different

attributes and the overall function to optimize is a function of these attribute scores. In

this paper, the function used was a non-linear combination of attribute scores, making

the problem difficult to solve. The GOP has a number of applications, largely in the

field of routing. We designed a two-parameter iterative algorithm for the GOP, and

computational experiments suggest that this algorithm performs as well as or better

than other heuristics for the GOP in terms of solution quality while running faster.

Further computational experiments suggest that our algorithm also outperforms the

leading algorithm for solving the OP in terms of solution quality while maintaining a

comparable solution speed.

Keywords Generalized orienteering problem · Heuristics

1 Introduction

The orienteering problem (OP) is a well established problem in combinatorial opti-

mization. In this problem, there is a set of n nodes or cities, V , and each node i has

an associated non-negative score S(i). If a city is visited on a route, then its score

is gathered (but visiting a city more than once does not yield additional scoring).

Hence, the score associated with a path visiting a set of nodes N is SN =
∑

i∈N S(i).

Algorithms for the OP seek the path from a defined source node (init) to a defined
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destination node (end) that yields the highest score while not exceeding a pre-defined

distance limit, dlim.

The generalized orienteering problem (GOP) differs from the OP in the way in

which total score is calculated. For the GOP, each city i is assignedm attribute scores,

S1(i), S2(i), . . . , Sm(i). Any function of these attribute scores can then be used to

determine a final score for a path. Hence, the GOP is more flexible than the OP.

Though, of course, any function to calculate the score of a path containing a set of

nodesN would be acceptable in the generalized version of the OP, we chose to use the

function presented in Wang et al. (2008) for computational tests. This function inputs

a weightWi for each attribute i, such that
∑m

i=1Wi = 1. For a group of nodes N , the

score of a path visiting these nodes is defined as SN =
∑m

i=1Wi[
∑

j∈N {Si(j)k}]1/k

for some non-negative exponent k. As k approaches infinity, the value of this function

approaches the sum of the maximum scores attained by members of N for each of

the attributes. When k = 1 and m = 1, we have the OP.

The function chosen for analysis is an instance of the submodular orienteering

problem (SOP), a problem for which each subset of nodes in a graph is assigned

a score based on a function f. f is considered a monotone submodular function if

whenever A and B are subsets of the nodes and A ⊆ B , then f (A ∪ {v}) − f (A) ≥

f (B ∪ {v}) − f (B) for any node v and f (A) ≤ f (B). In Chekuri and Pál (2005), an

algorithm is presented to solve the SOP and theoretical results are proven about this

algorithm. Though the function chosen for this paper is an instance of the SOP, it is

important to note that not all GOP functions will be SOP functions.

The GOP has many applications in the field of routing. There have been a wide

range of applications established for the OP in this field, and many of these applica-

tions are actually better suited for the GOP due to the latter’s generalized nature. For

instance, in Golden et al. (1987), the authors describe an application of the OP to the

delivery of home heating fuel. In this application, utility managers would assign each

customer a score based on their urgency of need for home heating fuel and would

select a subset of customers to serve based on need and geography while adhering

to supply limitations. Urgency would take into account each customer’s tank size as

well as historical and seasonal rates of usage. Further, a company might consider

how long a household has been a customer—more loyal heating fuel users should

gain preference. By combining these factors into a single objective function based on

its preferences and then using the GOP, the heating fuel company could make a better

decision about which customers to serve.

There have been several heuristic approaches proposed for the generalized orien-

teering problem. The first is a four-phase heuristic proposed in Ramesh and Brown

(1991). In this approach, the authors took a four-phase approach of vertex insertion,

cost improvement, vertex deletion, and maximal insertions. In Wang et al. (1996),

the authors took a different approach, solving the GOP using an Artificial Neural

Network (ANN) and testing on a dataset representing 27 cities in China. Wang et al.

(2008) and Geem et al. (2005) presented a genetic algorithm and a harmony search

procedure, respectively, to solve the GOP, and each limited testing instances to the

dataset representing Chinese cities.

There have been a large number of heuristics proposed for the OP. One of the

first was a stochastic algorithm due to Tsiligirides (1984). Particularly effective have
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been a heuristic presented in Chao et al. (1996) that focused on record-to-record

improvement and a tabu search procedure presented in Gendreau et al. (1998). The

former outperformed most other leading OP heuristics on instances containing up

to 66 nodes. The latter performed well on larger instances, reporting near-optimal

solutions on instances with as many as 300 nodes on graphs where the distance limit

was small compared to the optimal Hamiltonian tour length and with up to 100 nodes

on graphs where the distance limit was large compared to the optimal Hamiltonian

tour length.

While there have been no effective optimal solutions published for the GOP, much

work has been done in formulating quick optimal solutions for the OP. Though a

number of approaches have been published, the approach that has solved the largest

problems in reasonable runtimes is the branch-and-cut procedure presented in Fis-

chetti et al. (1998). This paper defined a number of classes of instances—including

many that were based on benchmark problems so others could compare results to

optimal values—and solved problems with up to 500 nodes.

In this paper, we present a new approach to the GOP. In Sect. 2, we provide the

details of this new heuristic. In Sect. 3, we compare our results against the most

effective heuristics in the literature for the both the GOP and the OP. We close with

conclusions and future directions for research in Sect. 4.

2 A two-parameter iterative algorithm

In this section, we present a two-parameter iterative algorithm approach to the GOP.

This heuristic maintains a single GOP solution, iteratively applying a series of proce-

dures to the current solution. Pseudocode for the algorithm can be found in Appen-

dix B.

A Process P is the basis for the 2-parameter iterative algorithm. This process

maintains a single solution and performs operations upon it. First, this solution is ini-

tialized as described in Sect. 2.1. Then, the solution undergoes iterative modification,

as described in Sect. 2.3, until it has not undergone improvement for t iterations (t is

a parameter).

This Process P is run repeatedly until a returned solution is worse than the pre-

vious solution that was returned by the process. At that point, the best solution yet

encountered by the heuristic is returned.

The following sections describe the heuristic in detail.

2.1 Initialization

The current solution is initialized using a technique of iteratively appending nodes

to the end of the path. Initially, the partial path contains only the starting node. Each

iteration, i nodes (i is a parameter) not in the current solution are randomly selected,

with repeats allowed. The destination node is not allowed in this selection. Of these

selected nodes, the one that minimizes the sum of the distance between itself and the

current end of the path and the distance between itself and the destination node is

the one selected. This node is added to the end of the current path. The process is



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 10732, Article ID: 9104, Date: 2009-02-28, Proof No: 1

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

« HEUR 10732 layout: Small Extended v.1.2 reference style: mathphys file: heur9104.tex (GIT) aid: 9104 doctopic: OriginalPaper class: spr-small-v1.1 v.2009/02/23 Prn:27/02/2009; 8:17 p. 4/23»

J. Silberholz, B. Golden

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

continued either until all nodes have been added to the path or until the length of the

path would exceed the distance limit if the destination node were added to the end. If

the latter occurs, the destination node replaces the last node of the path, resulting in a

feasible path. Otherwise, the destination node is added to the end of the path.

After this initialization, 2-opt is applied to the solution. The method of 2-opt re-

verses a subpath of a solution if that reversal will reduce the overall length of the

solution. This method is repeatedly applied until no more 2-opt moves are available

for the new solution. Finally, path tightening as described in Sect. 2.2 is applied to

the new solution.

2.2 Path tightening

Path tightening is a local-search method that adds nodes to a solution when its length

is less than the length limit, increasing that solution’s score as much as possible. First,

the score of the path with each exterior node added is calculated, and these modified

scores are sorted, with nodes producing the highest-score paths at the front of the

list. This list is then iterated from the front, with each node being added if it can be

included without violating the length limit. Each node is added at the interior position

of the solution that will result in the shortest total path length. List iteration continues

until no more nodes can be added to the solution.

2.3 Iterative modification

Each iteration, the current solution is modified. First, i unique nodes are removed

from the interior of the solution. Then, a modified version of path tightening, as de-

scribed in Sect. 2.2, is used. In this modified version, the nodes that were just removed

are given the lowest priority in the reinsertions by tightening, regardless of the score

of the path that would be obtained by adding these nodes. In this way, we force the

insertion of new nodes into the solution, helping combat convergence to local max-

ima.

After this procedure, repeated 2-opt is performed on the solution, as described in

Sect. 2.1. Finally, unmodified path tightening, as described in Sect. 2.2, is performed.

3 Computational experiments

3.1 Parameters

Two parameters are used to control the two-parameter iterative algorithm’s perfor-

mance. The first, t, the number of iterations in Process P without improvement before

termination, was set to the value of 4500. This value was one that seemed reasonable

based on preliminary computational experiments. The parameter i, the number of

nodes to choose from each iteration of path initialization and the number of nodes

removed each iterative change, was set to be 4, a value that worked well in computa-

tional experiments.
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3.2 Computational tests

In computational testing, a Systemax Venture H524 computer with 512 MB RAM

and a 3.06 GHz processor was used. All source code was programmed in C. For each

instance considered, the 2-parameter heuristic described in Sect. 2 was run once, with

its final runtime and solution being reported.

3.3 Comparisons to GOP heuristics

For the GOP, we compared our approach with other heuristics on the dataset that has

been the standard for comparison thus far—a 27-city problem in China for which

each of the cities has been rated in terms of its natural beauty, historical interest,

cultural value, and business opportunities. The specifics of this instance can be found

in, for instance, Wang et al. (1996, 2008), Geem et al. (2005). For this dataset, we

considered 5 values of k—1, 3, 4, 5, and 10. For each of these exponent values, we

considered 5 different weight vectors. Four of these gave all the weight to one of the

attributes, and the last gave equal (25%) weight to each attribute. Last, in accordance

with the literature, we set the distance limit to 5,000 kilometers.

Table 1 provides summary results for these computational tests; complete results

are found in Table 6. Each row represents the 5 instances associated with the listed k

value. The columns represent the three algorithms encountered in the literature that

also tested this dataset—the ANN described in Wang et al. (1996), the GA described

in Wang et al. (2008), and the harmony search described in Geem et al. (2005). They

are abbreviated as ANN, WGW-GA, and HS, respectively. Each cell in the table is

split. The first entry is the number of instances with the listed k value for which the

two-parameter iterative algorithm outperformed the algorithm listed in the column

heading. The second number is the number of instances with the listed k value for

which the algorithm listed in the column heading outperformed this paper’s algo-

rithm. The maximum sum of values for any cell is 5, as there were only 5 instances

associated with each row of the table. Any sum less than 5 indicates that the algo-

rithms returned identical scores for at least one of the instances. The harmony search

was only tested on instances with k = 5, which is why most entries under its column

heading are missing.

Detailed results for these computational tests can be found in Appendix A. It is

interesting to note that this paper’s heuristic was never outperformed by any of the

other heuristics. This suggests that it is an effective approach for the GOP. However,

further testing should be done on instances with more nodes to determine the effects

of larger instances on the runtimes and solution qualities of the algorithms. Also,

more testing might be done on the harmony search procedure so there are more points

of comparison.

At the same time, the two-parameter iterative algorithmmaintained fast runtimes—

it averaged 0.4 seconds of runtime per instance. The attribute of instances that had

the largest effect on runtime was the weight array—this paper’s algorithm averaged

0.6 seconds of runtime per instance on problems with even weight distribution but

only 0.4 seconds per instance on the other instances. Table 2 provides a comparison

of the runtimes of the algorithms considered for the GOP. The HS is not included
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Table 1 Comparison of heuristics over 27-node, 4-attribute problem (25 instances). The first entry in each

cell is the number of instances with the exponent k listed in the row for which the two-parameter iterative

algorithm outperformed the heuristic listed on the column heading. The second entry in each cell is the

number of instances with the exponent k listed in the row for which the heuristic listed in the column

heading outperformed the two-parameter iterative algorithm

k WGW-GA ANN HS

1 0/0 0/0 –

3 2/0 2/0 –

4 4/0 2/0 –

5 4/0 3/0 2/0

10 0/0 4/0 –

Total 10/0 11/0 2/0

Table 2 Comparison of heuristic runtimes over 27-node, 4-attribute problem (25 instances). The first

number in each cell is the runtime in seconds normalized to the hardware discussed in Sect. 3.2. The other

number is the runtime in seconds on the original hardware used for testing

k 2-P IA WGW-GA ANN

1 0.2 (0.2) 3.3 (33.2) 5.5 (54.6)

3 0.4 (0.4) 2.8 (27.5) 6.3 (62.8)

4 0.4 (0.4) 2.3 (23.4) 5.2 (52.3)

5 0.4 (0.4) 2.5 (25.5) 5.7 (56.8)

10 0.9 (0.9) 2.4 (24.2) 6.3 (63.1)

because its paper contains no runtimes. Because the WGW-GA and ANN were both

tested on an older computer than the one used to test this paper’s algorithm, direct

comparison of runtimes is not meaningful. However, based on the results in Dongarra

(2008), it seems that conservatively assuming a factor of 10 between the speeds of the

computers will allow an approximate comparison between the runtimes. This factor

is used to normalize the results in Table 2.

Based on the results of Table 2, it appears that even when correcting for hardware

differences, this paper’s two-parameter iterative algorithm is faster than the other ap-

proaches considered for the GOP. However, it is interesting to note that the algorithm

ran slowest when the value of the exponent k was the highest. This was likely caused

because when the exponent is high, a disproportionate number of solutions have very

similar values due to the nature of the function being considered. In general, the 2-P

IA will run slower if many solutions have very similar values in a solution space.

3.4 Comparisons to OP heuristics

While comparison of the two-parameter iterative algorithm to other GOP heuristics

is interesting because it is a comparison of heuristics designed for the same problem,

these comparisons are not as interesting as they might have been because the dataset

tested is small. As a result, we chose to compare our algorithm to OP heuristics
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on larger instances to gauge its flexibility and effectiveness as the number of nodes

increases.

3.4.1 Comparison on small OP instances

A much-considered set of test problems for the OP was published in Tsiligirides

(1984). This source describes three complete graphs, with 21, 32, and 33 nodes. As

these graphs are quite small, two additional graphs, a square-shaped graph of size

66 nodes and a diamond-shaped graph of size 64 nodes were also created in Chao

(1993). For each of the graphs, a number of distance limits are tested. In total, 89

instances were considered. In Chao et al. (1996), results over these instances were

provided for a record-to-record improvement heuristic presented in that paper, as

well as for a stochastic algorithm presented in Tsiligirides (1984) and recoded so

it could be used in comparisons. By testing the two-parameter iterative algorithm’s

performance on these instances, we can directly compare our heuristic’s performance

to the performance of those heuristics.

Table 3 shows summary results over these instances; full results are found in Ta-

ble 7. TA represents the stochastic algorithm from Tsiligirides (1984) and CR repre-

sents the record-to-record improvement heuristic from Chao et al. (1996). The format

of this table is very similar to the format of Table 1. Each row represents a specific

graph, listed based on n, the number of nodes, and ins, the number of distance limits

tested (meaning, essentially, the number of instances represented by the row). Each

cell in the table is split into two values—the number of instances in that row for which

the two-parameter iterative algorithm outperformed the heuristic in the column head-

ing followed by the number of instances for which the heuristic in the column heading

outperformed this paper’s algorithm on the instances. If the two numbers in a cell do

not add up to the ins value for a row, that implies that the heuristics returned the same

result for some of the instances.

Based on the results, it appears that the two-parameter iterative algorithm out-

performed both the record-to-record improvement heuristic (CR) due to Chao et al.

Table 3 Comparison of heuristics over 89 OP instances based on 5 graphs. The first entry in each cell

is the number of instances based on the graph listed in the row for which the two-parameter iterative

algorithm outperformed the heuristic listed in the column heading. The second entry in each cell is the

number of instances based on the graph listed in the row for which the heuristic listed in the column

heading outperformed this paper’s algorithm

Graph data Heuristics

n ins TA CR

32 18 11/0 0/0

21 11 7/0 0/0

33 20 20/0 0/0

66 26 13/1 7/1

64 14 13/1 4/1

Total 89 64/2 11/2
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Table 4 Comparison of heuristic runtimes over 89 OP instances based on 5 graphs. The first number in

each cell is the runtime in seconds normalized to the hardware discussed in Sect. 3.2. The other number is

the runtime in seconds on the original hardware used for testing

Graph Data Heuristics

n ins 2-P IA TA CR

32 18 0.22 (0.22) – 0.04 (19.46)

21 11 0.13 (0.13) – 0.01 (5.07)

33 20 0.24 (0.24) – 0.04 (18.39)

66 26 0.77 (0.77) 0.95 (474.75) 0.32 (158.64)

64 14 0.73 (0.73) 0.77 (383.59) 0.23 (117.02)

(1996) and the stochastic algorithm (TA) due to Tsiligirides (1984) in terms of solu-

tion quality.

The two-parameter iterative algorithm is able to produce good solutions in reason-

able runtimes for these instances, as well. It averaged 0.21 seconds of runtime per

instance on problems generated from the smallest three graphs and 0.75 seconds of

runtime per instance on instances generated from the largest two graphs. Table 4 pro-

vides a comparison of the runtimes of the three algorithms considered. Because the

record-to-record improvement heuristic (CR) and the stochastic algorithm (TA) were

both tested on a Sun 4/370, an older computer than the one used to test this paper’s

algorithm, direct comparison of runtimes is not meaningful. However, based on the

results in Dongarra (2008), it seems assuming a factor of 500 between the speeds

of the computers will allow an approximate comparison between the runtimes. This

factor is used to normalize the results in Table 4.

Results for some instances for the stochastic algorithm (TA) due to Tsiligirides

(1984) are not provided, as they are not published for the tests on the Sun 4/370

found in Chao et al. (1996). As can be seen in the table, this paper’s algorithm (2-P

IA in the table) and the TA algorithm have similar normalized runtimes.

However, the normalized runtime of the record-to-record improvement heuristic

(CR) due to Chao et al. (1996) is quicker than the runtime of the 2-P IA. While this

is the case, the runtime of the CR seems to be increasing more quickly as problem

instance size increases. On the smallest problem instances (with n = 21), the CR ran

roughly 13 times faster than the 2-P IA. On the problem instances with n = 32 and

n = 33, the CR ran roughly 6 times faster than the 2-P IA. Finally, on the problem

instances with n = 64 and n = 66, the CR ran roughly 2.5 times faster than the 2-P

IA. If this trend continues on larger problem instances, the 2-P IA should perform in

similar or quicker runtimes than the CR on larger instances.

3.4.2 Comparison on large TSPLib-based instances

We also tested the two-parameter iterative algorithm on much larger instances de-

scribed in Fischetti et al. (1998). In this paper, the authors described a method of con-

verting TSPLib instances to OP instances. They used the distances from the TSPLib

instances, as described in Reinelt (1991), as the distances in the OP instance and
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assigned a score to each node according to three rules. In the first rule, called Gen-

eration 1, they assigned 1 point to each node, including node 1, which is the start

and finish node in each problem. The second generation technique, called Genera-

tion 2, provides pseudorandom node scoring by assigning 1+ ((7141 ∗ (i − 1) + 73)

mod 100) points to node i, assuming nodes are numbered from 1 to n. The last gener-

ation technique, called Generation 3, assigns 1+ b
99∗dist1i

M
c points to node i, if dist1i

is the distance from the depot (node 1) to the node i andM is the maximum distance

of any node from the depot. In this scoring mechanism, designed to value nodes far

from the depot, no score is associated with the depot. For each instance, the distance

limit was selected as b
Opt(Pbm.)

2
c, where Opt(Pbm.) is the shortest Hamiltonian tour

for that problem.

Fischetti et al. (1998) considered all TSPLib instances ranging in size from 48

nodes to 400 nodes, creating an instance with each score generation technique for

each TSPLib instance. For most instances, the branch-and-cut technique described in

that paper returned an optimal solution within the allotted 5-hour runtime maximum.

As there were 42 TSPLib instances considered and 3 score generation techniques for

each instance, we considered a total of 126 instances of this type.

To date, the best results published on large instances have been those described

in Gendreau et al. (1998), so we chose to compare our results to theirs. Using the C

code tested in that paper, we were able to compare solution qualities and runtimes on

the same computational platform (the one mentioned in Sect. 3.2). Detailed results of

the computational tests for both heuristics can be found in Appendix A.

In Table 5, we compare percentages below optimal of each heuristic on different

ranges of problem sizes. In that table, we report the results of both algorithms on all

the large TSPLib-based instances. For some instances, the branch-and-cut technique

used in Fischetti et al. (1998) did not return an optimal solution within a 5-hour time

limit, so the authors instead listed the best result encountered after 5 hours of com-

putation. The numbers in the table for the two-parameter iterative algorithm and tabu

search represent the average percentage below the optimal solution or best solution

found within 5 hours, whichever was provided, of that heuristic’s results.

We note that, in general, the two-parameter iterative algorithm performed well

in terms of solution quality. This can be seen in the results for larger instances. On

instances with 131–200 nodes, the algorithm’s error was more than 1.5% smaller that

of the tabu search (TS) presented in Gendreau et al. (1998). For problems with more

than 200 nodes, this error gap exceeded 3.3%.

Table 5 Comparison of the average errors from best known solution or optimal. Gendreau et al.’s tabu

search (TS) and the two-parameter iterative algorithm (2-P IA) are compared over 126 instances. Instances

are split into ranges based on number of nodes. In the table, n denotes the number of instances in each size

range

Range n TS err. TS sec. 2-P IA err. 2-P IA sec.1

≤90 24 0.45% 1.36 0.19% 0.72

91–130 42 2.14% 2.99 1.71% 2.44

131–200 33 5.13% 5.68 3.61% 6.01

201–400 27 9.94% 19.53 6.62% 21.28
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At the same time, the runtimes of the two algorithms were comparable, even for

the largest instances. The 2-parameter iterative algorithm executed in slightly shorter

runtimes for small instances, while the TS was slightly quicker for larger datasets.

However, the difference in average runtime per instance was less than 2 seconds even

for the largest instances tested. We can make this direct comparison of the runtimes

because the algorithms considered were coded in the same language, compiled by the

same compiler with the same compiler flags, and run on the same computer.

Of the different score generation attributes of the TSPLib-based instances consid-

ered, the two-parameter iterative algorithm performed the best on instances created

using Generation 2 (the random score generation) and worst on instances created

using Generation 1 (where each city is assigned score 1). The algorithm averaged

3.85% error on Generation 1 instances, 2.15% error on Generation 2 instances, and

2.92% error on Generation 3 instances.

The relatively weak performance on the Generation 1 instances makes sense in

the context of the heuristic, however, as graphs in which each node’s addition would

be equally advantageous in terms of score are pathological for the two-parameter

iterative algorithm. In the tightening phase of the algorithm, as described in Sect. 2.2,

nodes that would add the most to the score of the current solution are greedily added

to the current solution. However, in graphs with score distributions created using

Generation 1, every node not in the current solution is equally likely to be selected,

even though the closer ones would clearly be more advantageous to add than more

distant ones. Thus, the path tightening local search has difficulty converging to locally

optimal solutions for these types of graphs, explaining the comparatively poor results.

In the general sense, the two-parameter algorithm performs best on graphs for

which nearby nodes vary in score, as it strengthens the decisions made by the tight-

ening phase of the algorithm. The two-parameter algorithm performs worst on graphs

for which nearby nodes vary little in score, as was the case in Generation 1 graphs.

3.5 Variability to seed

Due to the greedy nature of a number of the mechanisms in the 2-parameter iterative

algorithm, the algorithm shows a large variability to seed. To test this variability, the

algorithm was run five times on each of the large-scale TSPLib-based instances with

different seeds, and the best and worst solutions of those five runs were collected. The

results of these executions are presented in Table 9. Over the four ranges of problem

sizes (small problems with less than or equal to 90 nodes, medium problems with 91

to 130 nodes, large problems with 131 to 200 nodes, and very large problems with

more than 200 nodes), the variability to seed was directly affected by the problem

size. On the small problems, the best of the five solutions averaged a 0.14% error,

while the worst solution averaged a 0.66% error.

However, on larger problems, there were larger ranges between the best-of-five

and worst-of-five errors. On the medium problems, the best of the five solutions aver-

aged a 0.49% error, while the worst averaged 3.01% above the best-known solution.

On the large and very large problems, the ranges were 2.65% to 5.65% and 3.61% to

7.96%, respectively.

The downside of this variability to seed is that a single run of the algorithm could

span a range of error values, making it more difficult to predict the error of the output
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of a single algorithm execution. In an extreme example, on the problem pr124 with

score generation 3, one of the five executions of the algorithm yielded a solution with

an error of 1.1%, while another execution yielded a solution with an error of 30.2%.

Because the two-parameter iterative algorithm executes quickly (in less than a

minute for nearly all problem instances considered), this large variability to seed im-

plies that running the algorithm a number of times with different seeds and taking

the best result is an effective technique for improving solutions. For the very large

problems considered, if the algorithm had been run 5 times with different seeds and

the best result had been returned, the average error of the 2-parameter iterative al-

gorithm would have been decreased from 6.62% to 3.61%, a sizeable improvement.

Using this technique, a new best solution was found for one of the problem instances

tested. For the problem pr226 with score generation 2, one of the executions of the

2-parameter iterative algorithm returned a solution of 6641, better than the solution of

6615 the branch-and-cut algorithm presented in Fischetti et al. (1998) returned after

five hours of computation.

Therefore, while the two-parameter iterative algorithm’s variability to seed is a

liability if the algorithm is run one time for each problem instance, it can be helpful

if the algorithm is run more than once and the best solution is taken.

4 Conclusions

We presented an effective algorithm for the GOP and tested it on a number of test

problems. We found the heuristic to be effective on small-scale GOP and OP prob-

lems, outperforming existing approaches in a small fraction of their runtime and,

therefore, demonstrating both the flexibility and effectiveness of the new approach.

In computational tests on larger instances, ranging up to 400 nodes in size, we found

our heuristic was effective, producing higher quality solutions than the current best

algorithm for the OP in comparable runtimes.

Much work remains to be done on the GOP. Heuristics for this problem are gen-

erally only being tested on a single small dataset, so it is difficult to gauge the effec-

tiveness of GOP heuristics as problem size increases. Additionally, the literature has

focused on a single nonlinear function for optimization, but other functions should

be tested on the published heuristics.

Acknowledgements We thank Dr. Frédéric Semet and Dr. Michel Gendreau for providing us with the

code used in Gendreau et al. (1998) for comparison purposes.

Appendix A: Detailed computational results

In the appendix, we provide detailed results of the computational tests performed

on the two-parameter iterative algorithm so that others may compare results with

those presented in this paper. We first detail the testing of the 27-node GOP dataset

in Sect. 1.1. Next we describe the testing of the instances presented in Tsiligirides

(1984) and Chao et al. (1996) in Sect. 1.2. After, we discuss the results of testing on

the TSPLib-based instances in Sect. 1.3. Last, we detail the results of variability to

seed testing for this paper’s algorithm on the TSPLib-based instances in Sect. 1.4.
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1.1 Detailed results for GOP testing

For the GOP dataset with 27 nodes and 4 attributes, we tested 5 values of the

exponent—1, 3, 4, 5, and 10, denoted k in Table 6. For each k, five weights are

tested (denotedWt. in the table). The first, denoted as 0 in the table, is an even weight

where each attribute is given a 25% weight. In weight i, i 6= 0, attribute i is given

all the weight. Each instance was tested with distance limit 5,000. For the first three

algorithms—the two-parameter iterative algorithm from this paper (denoted 2-P IA

Table 6 Detailed results for 27-node, 4-attribute GOP dataset. k represents the exponent used and Wt. is

the attribute weighing scheme used. Sln. represents the solutions of the heuristics for the instances and Sec.

represents the runtimes of the heuristics in seconds

Instance 2-P IA WGW-GA ANN HS

k Wt. Avg. Sec. Sln. Sec. Sln. Sec. Sln.

1 0 99.50 0.4 99.50 32.5 99.50 61.2 –

1 1 105.00 0.2 105.00 37.7 105.00 36.0 –

1 2 97.00 0.2 97.00 24.8 97.00 34.8 –

1 3 102.00 0.2 102.00 34.2 102.00 40.8 –

1 4 96.00 0.2 96.00 36.9 96.00 100.2 –

3 0 16.76 0.7 16.58 21.2 16.76 100.8 –

3 1 17.95 0.3 17.95 38.2 17.95 51.0 –

3 2 17.04 0.3 17.04 24.1 16.87 51.0 –

3 3 17.45 0.3 17.45 32.8 17.45 30.0 –

3 4 16.78 0.3 16.67 21.2 16.67 81.0 –

4 0 13.71 0.7 13.66 23.4 13.71 70.2 –

4 1 14.69 0.3 14.60 24.1 14.69 51.0 –

4 2 13.99 0.3 13.96 24.5 13.87 34.8 –

4 3 14.29 0.3 14.29 20.7 14.29 34.8 –

4 4 13.84 0.3 13.78 24.4 13.78 70.8 –

5 0 12.38 0.6 12.28 32.4 12.38 61.2 12.38

5 1 13.10 0.3 13.08 21.9 13.05 46.2 13.08

5 2 12.56 0.3 12.51 22.1 12.51 40.2 12.56

5 3 12.78 0.3 12.78 29.8 12.78 46.2 12.78

5 4 12.43 0.3 12.40 21.1 12.36 90.0 12.40

10 0 10.54 0.7 10.54 24.2 10.53 100.2 –

10 1 10.75 0.5 10.75 24.0 10.73 49.8 –

10 2 10.57 0.5 10.57 23.8 10.56 49.8 –

10 3 10.62 0.4 10.62 23.8 10.62 36.0 –

10 4 10.48 2.3 10.48 25.2 10.47 79.8 –

Computer Systemax

Venture H524

Pentium-III PC Unreported

RT Mult. 1 10 –
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in the table), the genetic algorithm presented in Wang et al. (2008) (denoted WGW-

GA in the table) and the Artificial Neural Network presented in Wang et al. (1996)

(denoted ANN in the table)—Sln. and Sec. are, respectively, the solution and seconds

of runtime. The results for the 2-P IA are from this paper’s research and the other re-

sults are presented in Wang et al. (2008). For the harmony search presented in Geem

et al. (2005) (denoted HS in the table), only a solution column is provided as no run-

times were presented for that algorithm. Additionally, the algorithm was only tested

on instances with k = 5.

At the bottom of the table, the Computer row denotes the computer used to test the

algorithm in the column heading. The RT Mult. row denotes a reasonable multiplier to

account for hardware differences, based on the results presented in Dongarra (2008).

For instance, the multiplier of 10 in the ANN column states that we expect the hard-

ware used to test the ANN heuristic to execute the algorithm roughly 10 times slower

than we would expect the hardware described in Sect. 3.2 to execute the algorithm.

1.2 Detailed results for small-scale OP tests

In this section, we consider the testing of instances generated from graphs published

in Tsiligirides (1984) and Chao (1993). The first three graphs, presented in Tsiligiri-

des (1984), have sizes of 32, 21, and 33 nodes, respectively, and are named 1, 2, and 3,

respectively, under the Prob. heading in Table 7. The remaining two graphs, detailed

in Chao (1993), have sizes of 66 and 64 nodes, respectively. They are named 5 and 6,

respectively, under the Prob. heading in the table. Problem 4, as defined in Chao et al.

(1996), is nearly identical to problem 1, so it was not tested. For each graph, instances

were generated by using a range of dlim values, which are labeled in the table. In ad-

dition to the two-parameter iterative algorithm (2-P IA), we considered two other

heuristics for comparison—the record-to-record improvement approach described in

Chao et al. (1996) (labeled CR in the table) and the stochastic algorithm described

in Tsiligirides (1984) (labeled TA in the table). For each algorithm, the Sln. and Sec.

columns respectively list the solution and runtime reported for the heuristic on the

labeled instance.

At the bottom of the table, the Computer row denotes the computer used to test the

algorithm in the column heading. The RT Mult. row denotes a reasonable multiplier to

account for hardware differences, based on the results presented in Dongarra (2008).

For instance, the multiplier of 500 in the CR column states that we expect the hard-

ware used to test the CR heuristic to execute the algorithm roughly 500 times slower

than we would expect the hardware described in Sect. 3.2 to execute the algorithm.

1.3 Detailed results for large-scale OP tests

In this next section, we consider the large-scale OP instances generated from TSPLib

instances using the scoring techniques described in Fischetti et al. (1998). For each

TSPLib instance, labeled Name in Table 8, we created three OP instances, using

score generation techniques Generation 1, Generation 2, and Generation 3 detailed

in Fischetti et al. (1998) and Sect. 3.4.2. For each instance, the distance limit was set

as half the distance of the optimal traveling salesman tour for the TSPLib instance.
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Table 7 Detailed results for the 89 small-scale OP instances tested. Sln. labels the solutions of the heuris-

tics and Sec. labels the runtime of the heuristic in seconds

Instance 2-P IA TA CR

Prob. dlim Sln. Sec. Sln. Sln. Sec.

1 5 10 0.14 10 10 0.67

1 10 15 0.18 15 15 0.80

1 15 45 0.21 45 45 2.28

1 20 65 0.30 65 65 17.49

1 25 90 0.26 90 90 9.01

1 30 110 0.26 110 110 31.92

1 35 135 0.25 135 135 25.25

1 40 155 0.25 150 155 16.76

1 46 175 0.25 170 175 21.58

1 50 190 0.25 185 190 24.91

1 55 205 0.24 195 205 24.67

1 60 225 0.23 220 225 24.28

1 65 240 0.22 235 240 23.26

1 70 260 0.21 255 260 25.09

1 73 265 0.20 260 265 25.24

1 75 270 0.19 265 270 28.53

1 80 280 0.18 270 280 26.84

1 85 285 0.17 280 285 21.71

2 15 120 0.15 120 120 1.29

2 20 200 0.11 190 200 2.24

2 23 210 0.12 205 210 4.45

2 25 230 0.12 230 230 5.65

2 27 230 0.13 230 230 6.37

2 30 265 0.14 250 265 6.18

2 32 300 0.14 275 300 7.21

2 35 320 0.14 315 320 7.81

2 38 360 0.14 355 360 6.84

2 40 395 0.13 395 395 7.14

2 45 450 0.11 430 450 0.61

3 15 170 0.23 100 170 4.37

3 20 200 0.26 140 200 5.16

3 25 260 0.26 190 260 9.40

3 30 320 0.28 240 320 9.96

3 35 390 0.27 290 390 15.38

3 40 430 0.26 330 430 18.65

3 45 470 0.26 370 470 26.84

3 50 520 0.25 410 520 28.74

3 55 550 0.24 450 550 30.27

3 60 580 0.24 500 580 27.68
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Table 7 (Continued)

Instance 2-P IA TA CR

Prob. dlim Sln. Sec. Sln. Sln. Sec.

3 65 610 0.22 530 610 25.02

3 70 640 0.24 560 640 29.82

3 75 670 0.23 590 670 29.25

3 80 710 0.23 640 710 30.14

3 85 740 0.32 670 740 28.30

3 90 770 0.19 690 770 24.43

3 95 790 0.20 720 790 22.33

3 100 800 0.19 760 800 0.67

3 105 800 0.18 770 800 0.60

3 110 800 0.18 790 800 0.72

Instance 2-P IA TA CR

Prob. dlim Sln. Sec. Sln. Sec. Sln. Sec.

5 5 10 0.31 10 18.1 10 1.05

5 10 40 0.38 40 34.2 40 0.46

5 15 120 0.44 100 68.2 120 4.33

5 20 205 0.57 190 151.3 195 6.17

5 25 290 0.53 290 144.3 290 73.42

5 30 400 0.55 400 188.9 400 54.82

5 35 465 0.57 460 237.2 460 32.42

5 40 575 0.85 575 288.5 575 98.92

5 45 650 0.64 645 329.3 650 58.13

5 50 730 0.63 730 373.5 730 68.05

5 55 825 0.66 820 414.9 825 65.23

5 60 915 1.26 915 461.3 915 84.59

5 65 980 0.70 980 495.2 980 82.18

5 70 1070 0.61 1070 532.4 1070 119.00

5 75 1140 0.65 1140 566.7 1140 116.70

5 80 1215 1.06 1215 598.8 1215 108.93

5 85 1270 0.68 1265 629.1 1270 132.45

5 90 1320 0.61 1340 655.5 1340 502.41

5 95 1395 1.38 1390 682.4 1380 467.13

5 100 1465 1.59 1455 711.1 1435 128.56

5 105 1520 0.89 1515 736.4 1510 316.30

5 110 1560 1.27 1550 761.4 1550 469.94

5 115 1595 0.72 1590 783.5 1595 474.64

5 120 1635 1.10 1635 807.9 1635 357.98

5 125 1670 0.68 1655 826.2 1655 268.86

5 100 1465 1.59 1455 711.1 1435 128.56

5 105 1520 0.89 1515 736.4 1510 316.30
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752

Table 7 (Continued)

Instance 2-P IA TA CR

Prob. dlim Sln. Sec. Sln. Sec. Sln. Sec.

5 110 1560 1.27 1550 761.4 1550 469.94

5 115 1595 0.72 1590 783.5 1595 474.64

5 120 1635 1.10 1635 807.9 1635 357.98

5 125 1670 0.68 1655 826.2 1655 268.86

5 130 1680 0.56 1670 847.3 1680 32.05

6 15 84 0.56 90 25.1 96 13.01

6 20 294 0.53 258 107.3 294 27.86

6 25 390 0.58 354 183.9 390 238.90

6 30 474 0.64 432 180.3 474 74.48

6 35 570 0.59 516 248.9 570 139.78

6 40 714 0.66 642 316.9 714 137.90

6 45 816 0.82 732 372.9 816 204.98

6 50 900 1.43 828 423.9 900 231.57

6 55 984 0.74 906 482.9 984 246.18

6 60 1062 0.67 978 527.9 1044 264.77

6 65 1116 0.69 1020 568.5 1116 232.57

6 70 1188 0.65 1110 608.4 1176 230.95

6 75 1236 0.66 1152 645.3 1224 223.12

6 80 1284 0.94 1200 678.9 1272 212.27

Computer Systemax Venture H524 Sun 4/370

RT Mult. 1 500

These distances are listed as dlim in Table 8. We note that the dlim for problem gr229

was incorrectly listed as 1,765 in Fischetti et al. (1998). The correct value, 67,301,

is listed in Table 8. For each of the generations for each instance, Opt. is the optimal

solution published in Fischetti et al. (1998) for the instance. For the 10 instances for

which the solver in Fischetti et al. (1998) reached its time limit, 5 hours, the best

solution encountered in the 5 hours of computation is listed in bold. Two algorithms,

the 2-parameter iterative algorithm from this paper (2-P IA in the table) and the tabu

search from Gendreau et al. (1998) (TS in the table) are compared. For each score

generation technique and each heuristic, the Sln. column represents the solution for

the specified algorithm, and the Sec. column represents the runtime in seconds of the

specified algorithm.

All heuristics in this table were tested on the same hardware, which is described

in Sect. 3.2.

1.4 Detailed results for variability to seed tests

In this last section, and corresponding Table 9, we consider the variability to seed

testing on the large-scale OP instances generated from TSPLib instances using the
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scoring techniques described in Fischetti et al. (1998). Problem instances for this

testing are as described in Sect. 1.3. For each of the generations for each instance,Opt.

is the optimal solution published in Fischetti et al. (1998) for the instance. For the 10

instances for which the solver in Fischetti et al. (1998) reached its time limit, 5 hours,

the best solution encountered in the 5 hours of computation is listed in bold. The

2-parameter iterative algorithm from this paper is the only algorithm tested for these

results. For each instance, the algorithm was executed 5 times. For each instance, the

Wst. column represents the worst of the 5 solutions, the Best column represents the

best of the 5 solutions, the Avg. column represents the average of the 5 solutions, the

σ column represents the standard deviation of the 5 solutions, and the Sec. column

represents the average runtime in seconds needed to obtain the solutions.

The hardware described in Sect. 3.2 was used to collect this data.

Appendix B: Pseudocode

Pseudocode for the 2-parameter iterative algorithm follows. The algorithm is

based on a Process P . The framework of the heuristic follows, and we then describe

Process P .

1. Get a solution S by running Process P .

2. Repeatedly complete Step 1 until the score of the new solution returned by Process

P does not exceed the score of the previous solution returned.

3. Return the best solution S encountered during iteration.

Process P pseudocode follows.

1. Input: Parameters i and t , graph G = (V ,E), distance matrix d for which dab is

the distance between vertices a and b, start node s, destination node e, distance

limit l, and score(S), a function that returns the score of a solution S.

2. Initialize solution S to contain the single node s.

3. While adding node e to the end of S would not cause the length of S to exceed the

distance limit l.

(a) Randomly select i nodes (with repeats allowed), s.t. each is not in S and each

is not e. Store these i nodes in set L. If all nodes except e have been added

to S, then add e to the end and return the final solution.

(b) If z is the last vertex in S, then select b ∈ L s.t. ∀q ∈ L,dzb +dbe ≤ dzq +dqe.

(c) Add b to the end of S.

4. Replace the last vertex in S with e.

5. While ∃ edges (a, b), (c, d) ∈ S s.t. dab + dcd > dac + dbd , remove edges (a, b)

and (c, d) from S and add edges (a, c) and (b, d) to S.

6. Place the vertices not in S in a list L, such that Lm is the mth element of the

list. Define function sp(S, k) = score(T ), where T is S with vertex k inserted

at arbitrary location. Insert the elements into L such that sp(S,Lm) < sp(S,Lo)

implies m > o.

7. Define set T = {Lm ∈ L,Lm /∈ S : ∃(a, b) ∈ S : the length of S is less than l if

edge (a, b) is removed from S and edges (a,Lm) and (Lm, b) are added to S}.
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8. While |T | > 0

(a) Select Lb ∈ T s.t. b ≤ j ∀Lj ∈ T .

(b) Select edge (v,w) ∈ S s.t. dvLb
+dLbw −dvw ≤ dxLb

+dLby −dxy ∀(x, y) ∈ S.

(c) Remove edge (v,w) from S and add edges (v,Lb) and (Lb,w) to S.

(d) Redefine T as in Step 7.

9. Flag current solution S as the best solution discovered and set y, the number of

iterations since the last improvement in the best solution, to be 0.

10. While y ≤ t

(a) Randomly select i unique nodes in S, each of which is not s or e, and store

them in set R.

(b) For each a ∈ R, let b(S, a) be the node in S before a and let a(S, a) be the

node in S after a. Remove edges (b(S, a), a) and (a, a(S, a)) and add edge

(b(S, a), a(S, a)).

(c) Place the vertices not in S and not in R in a list L, such that Lm is the mth

element of the list. Define function sp(S, k) as in Step 6. Insert the elements

into L such that sp(S,Lm) < sp(S,Lo) implies m > o.

(d) Add the contents of R in arbitrary order to the end of L.

(e) Repeat Steps 7 through 8 with L to complete modified path tightening.

(f) While ∃ edges (a, b), (c, d) ∈ S s.t. dab + dcd > dac + dbd , remove edges

(a, b) and (c, d) from S and add edges (a, c) and (b, d) to S.

(g) Repeat Steps 6 through 8 to complete unmodified path tightening.

(h) If score(S) is higher than the score of the best solution yet discovered, flag

current solution S as the best solution discovered and set y = 0. Otherwise,

set y = y + 1.

11. Output: The solution flagged as the best solution discovered.
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