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Summary. The Generalized Traveling Salesman Problem (GTSP) is a modification of the 

Traveling Salesman Problem in which nodes are partitioned into clusters and exactly one 

node from each cluster is visited in a cycle.  It has numerous applications, including airplane 

routing, computer file sequencing, and postal delivery.  To produce solutions to this 

problem, a genetic algorithm (GA) heuristic mimicking natural selection was coded with 

several new features including isolated initial populations and a new reproduction 

mechanism.  During modeling runs, the proposed GA outperformed other published 

heuristics in terms of solution quality while maintaining comparable runtimes.   
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1  Introduction 
 

The Generalized Traveling Salesman Problem (GTSP) is a variant of the well-

known Traveling Salesman Problem (TSP).  As in the TSP, the graph considered 

consists of n nodes, and the cost between any two nodes is known.  The GTSP 

differs from the TSP in that the node set is partitioned into m clusters.  An optimal 

GTSP solution is a cycle of minimal cost that visits exactly one node from each 

cluster.   

The GTSP has numerous real-world applications including airplane routing [9], 

mail delivery [6], warehouse order picking [9], welfare agency routing [13], 

material flow system design [6], vehicle routing [6], and computer file sequencing 

[5].  Finding efficient solutions to complex GTSP problems is vital to many 

disciplines, especially as agencies struggle to cope with today’s increased 

transportation costs due to higher fuel prices.   

Several GTSP variations have emerged based upon the specifics of the set of 

nodes considered.  This paper assumes symmetric costs or distances, that is, cij = 

cji, where cij is the cost or distance between nodes i and j.  This means that the 
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direction of travel between two nodes doesn’t affect the cost.  Additionally, some 

versions of the GTSP require that at least one node from each cluster be visited, 

instead of exactly one.  While these two variations are equivalent as long as the 

triangle inequality holds, it may cost less to visit extra nodes if the triangle 

inequality does not hold.  This paper assumes that exactly one node from each 

cluster is visited, an approach that is sometimes called the Equality GTSP (E-

GTSP) [2].   

Ideally, an exact algorithm, or one that always produces optimal solutions, 

would be most desirable.  However, use of such procedures, like the one presented 

in [3], is not always feasible, because they tend to have prohibitively long runtimes 

for problems defined on a large number of nodes or clusters.  For instance, the 

authors of [3] did not attempt to run their exact algorithm on problems larger than 

442 nodes or 89 clusters because runtime of their algorithm was rapidly 

approaching one day.  This shortcoming introduces the need for quicker heuristic 

methods, or approximate algorithms, which provide reasonable solutions to a 

problem in shorter runtimes.  Examples of some heuristics for the GTSP include 

Snyder and Daskin’s Genetic Algorithm (S+D GA) solution [14], Renauld and 

Boctor’s GI
3
 heuristic [11], Noon’s generalized nearest neighbor heuristic with GI

3
 

improvement (NN) [11], and Fischetti et al.’s Lagrangian and root-node heuristics 

[3].  

A genetic algorithm (GA) is a heuristic that mimics the process of natural 

selection.  In such an algorithm, a population slowly converges to a final individual 

with an associated objective value after a number of iterations each of which 

corresponds to a new generation of that population.  To facilitate this, the most 

desirable solutions within the population are assigned the highest survival rate from 

one generation to the next.   

GAs store a population of chromosomes, each of which is a candidate solution 

for its corresponding problem (in this case, the GTSP).  In each generation 

(iteration) of the heuristic, several operations are performed on the chromosomes to 

improve the overall fitness (i.e., cost) of the population.  First, replication can 

occur, in which chromosomes are directly passed along to the next generation.  

These chromosomes are selected with a weighting system favoring better (lower) 

total cycle costs.  Then, crossover, or reproduction, can occur — the GA equivalent 

of two parents mating and producing two children, both of whom bear a 

resemblance to each parent.  Crossover operators that facilitate this reproduction 

include the partially mapped crossover (PMX) found in [4], the maximal 

preservative crossover (MPX) found in [8], and the ordered crossover (OX) found 

in [2].  A comparison of different crossovers used for the TSP can be found in [15].  

Finally, mutation, a process that alters randomly selected portions of the 

chromosome, is also possible.  For the GTSP, a common method of mutation is 

inversion, following [7], which is considered later in this paper.   

Using the basic structure of a GA as defined in [7], this paper explores effective 

alternative genetic structures and crossover operators.  This paper supplements the 

current literature by testing an effective algorithm that uses these GA 

improvements.  The proposed GA generates high quality solutions to instances of 

the GTSP in reasonable runtimes.   
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2  The Genetic Algorithm 
 

Data were collected on a Dell Dimension 8400 with 1.0 GB RAM and a 3.0 GHz 

Intel Pentium 4 processor, using programs coded in Java 1.4 and run on the Eclipse 

platform.  This paper’s GA was developed based upon a general discussion of 

heuristics developed for the TSP in [7].  Due to the simplicity and effectiveness of 

using a path representation of a TSP, as described in [7], a path representation was 

used for the storage of GTSP candidate solutions in chromosomes.   

 

2.1  Path Representation 

 

In the path representation, the most natural and simplistic way to view GTSP 

pathways, each consecutive node in the representation is listed in order.  For 

instance, the chromosome ( 1 5 2 ) represents the cycle visiting node 1, then node 

5, then node 2, and finally returning to node 1.  Advantages of this representation 

include simplicity in fitness evaluation, as the total cost of a cycle can easily be 

calculated by summing the costs of each pair of adjacent nodes, and the usefulness 

of the final representation, as it directly lists all of the nodes and the order in which 

they are visited.  However, a shortcoming of this representation is that it carries no 

guarantee that a randomly selected representation will be valid for the GTSP, 

because there is no guarantee that each cluster is represented exactly once in the 

pathway without specialized procedures or repair algorithms.   

 

2.2  Population Initialization 

  

At the beginning of the GA, each new chromosome was generated by continuously 

selecting random nodes and adding them to the new chromosome one by one 

provided that another node from the same cluster had not already been 

incorporated.  An initial population consists of 50 of these chromosomes, a size 

which was deemed reasonable considering examples provided in [7].   

 

2.3  Crossover 

  

A novel reproductive method based upon the TSP ordered crossover (OX) 

operator proposed by Davis in [2] was used.  The TSP’s OX crossover randomly 

selects two cut points on one of two parent chromosomes.  The nodes between 

these two points on the first parent are maintained in their same locations, and the 

remaining non-duplicate nodes from the second parent are placed, in order, at the 

remaining locations of the offspring, yielding a child containing ordered genetic 

material from both parents.  For instance, from two parents p1 = ( 1 | 5 4 | 3 2 ) and  

p2 = ( 2 | 3 5 | 1 4 ), with cut points denoted by vertical bars, the material (genes) 

between the cut points in p1, nodes 5 and 4, are maintained and the non-duplicate 

nodes from p2, copied in order from after the second breakpoint, are nodes 1, 2, and 

3.  Insertion of these nodes into the offspring would yield a final chromosome  

c1 = ( 3 5 4 1 2 ).  Note that the inserted material, which was added after the second  
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Table 1.  Example’s explicit, symmetric distance matrix 

Node (Cluster) 1 2 3 4 5 6 7 8 9 10 11 12 

1 (1) 0 41 31 86 25 57 7 13 21 19 41 47 

2 (1) 41 0 38 74 43 98 35 31 11 48 24 69 

3 (2) 31 38 0 50 89 7 30 74 69 16 20 58 

4 (2) 86 74 50 0 89 92 34 9 69 13 44 79 

5 (3) 25 43 89 89 0 56 28 35 68 86 82 83 

6 (3) 57 98 7 92 56 0 85 52 32 77 31 46 

7 (4) 7 35 30 34 28 85 0 59 47 36 42 18 

8 (4) 13 31 74 9 35 52 59 0 43 86 81 74 

9 (5) 21 11 69 69 68 32 47 43 0 50 16 95 

10 (5) 19 48 16 13 86 77 36 86 50 0 29 8 

11 (6) 41 24 20 44 82 31 42 81 16 29 0 19 

12 (6) 47 69 58 79 83 46 18 74 95 8 19 0 

 

cut point, wraps around to the beginning of the chromosome when it reaches the 

end, providing for a complete offspring.  Maintaining the same cut points, the other 

offspring would be ( 4 3 5 2 1 ).  An illustration of the OX operation is provided in 

[7] on pp. 217-218.   

A simple modification to convert this crossover to the GTSP involves insertion 

of nodes from the second parent whose clusters do not coincide with those of the 

selected nodes from the first parent.   

The initial crossover mechanism was further modified by adding a rotational 

component.  Nodes selected for insertion from the second chromosome were 

rotated, and numerous orientations of the nodes to be inserted were considered.  

For instance, instead of simply inserting the nodes from the second parent in the 

previous example in the order 1-2-3, the orderings 2-3-1 and 3-1-2 were also 

considered, and the ordering which created an offspring with the least cost was 

added.  Though a large number of orderings are considered for larger subtours from 

the second parent, little computation time is expended, as only two cost evaluations 

are needed to determine the effectiveness of a rotation, each directly at a cut point.  

An additional component of this rotational crossover, which allows reversals of 

strings to be inserted, was also implemented.  This would have yielded the 

additional consideration of orderings 3-2-1, 2-1-3, and 1-3-2.  This reversed 

insertion is applicable only to a symmetric GTSP, because each reversed string 

would have to be completely reevaluated for an asymmetric GTSP dataset.  This 

modified crossover, including both the rotational and reverse rotational 

components, will be referred to as the rotational ordered crossover, or rOX.   

The rOX was further modified with an additional rotational component at the 

cut points.  This operator rotates both of the bordering nodes from the second 

parent through each of the possible nodes within its cluster, selecting the one that 

would minimize the final cost of the tour.  While this modification required 

significantly more runtime, it produced better solutions that tended to increase 

population diversity.  It did so by increasing the one-generation survival probability 

of a promising new orientation of solutions that has not yet been locally optimized 

but may eventually produce better results than the current best result.  This further 
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improvement on the rOX will, hereafter, be referred to as the modified rotational 

ordered crossover, or mrOX.  As this crossover is a defining characteristic of this 

paper’s heuristic, the algorithm presented in this paper will be referred to as the 

mrOX GA.  An example is provided in Table 1.  Consider two parents, p1 and p2.  

They are defined based on the distance matrix provided in Table 1, and cut points 

were selected around the middle two nodes.   

 

p1 = ( 12 1 | 3 10 | 6 8 ) with cost = 297 

p2 = ( 2 4 | 6 8 | 10 12 ) with cost = 381 

 

Nodes 3 and 10, which are between the cut points in p1, are in clusters 2 and 5.  

After the right cut point (with wrap-around), p2 visits clusters 5, 6, 1, 2, 3, and 4.  

Removing clusters 2 and 5 (to ensure that chromosome produced contains exactly 

one constituent of each cluster, making it legal) leaves, in order, clusters 6, 1, 3, 

and 4.  Forward rotation yields the following orderings of clusters —  

 

6, 1, 3, 4 

1, 3, 4, 6 

3, 4, 6, 1 

4, 6, 1, 3.   

 

Reverse rotation yields the following orderings of clusters —  

 

4, 3, 1, 6 

3, 1, 6, 4 

1, 6, 4, 3 

6, 4, 3, 1.   

 

If the rOX were being performed, the nodes from p2 in the clusters listed above 

would be inserted in order to the right of the nodes retained from p1, wrapping 

around the chromosome if necessary.  However, as an mrOX is being performed, 

full rotation is completed on the two clusters that border the retained nodes (the 

first and last clusters listed above).  Thus, for the first list of clusters (6, 1, 3, 4), it 

is clear that the nodes to be inserted from p2 are 12, 2, 6, and 8.  However, in the 

mrOX, rotating through the bordering clusters also yields orderings 11, 2, 6, 8;  

12, 2, 6, 7; and 11, 2, 6, 7.  These four possible insertion orders are the top four 

orderings considered in Table 2.  Table 2 contains all of the 32 possible orderings 

considered by the mrOX crossover, along with the associated cost of each 

considered pathway.  It should be noted that, given a node set with n nodes, m 

clusters, and a distance between cut points of d, and an ordering of clusters from p2 

named w, the number of chromosomes considered is )(*
1

gfi

m

i

i rrrR +∑
=

β .  R is the 

reversal constant which equals 2 if reversals are considered (the space is 

symmetric) and 1 if not, and βi is the cluster exclusion constant which equals 1 if a 

cluster is outside of the cut points retained from p1 and 0 if it is contained between  
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Table 2.  Chromosomes considered in example mrOX crossover 
 Rotational Crossover | Reverse Rotational Crossover 

pos1 pos2 pos3 pos4 pos5 pos6 cost pos1 pos2 pos3 pos4 pos5 pos6 cost 

6 8 3 10 12 2 317 2 12 3 10 8 6 379 

6 8 3 10 11 2 293 2 12 3 10 7 6 362 

6 7 3 10 12 2 306 2 11 3 10 8 6 296 

6 7 3 10 11 2 282 2 11 3 10 7 6 279 

8 12 3 10 2 6 346 12 8 3 10 6 2 408 

8 12 3 10 1 6 276 12 8 3 10 5 2 362 

8 11 3 10 2 6 315 12 7 3 10 6 2 308 

8 11 3 10 1 6 245 12 7 3 10 5 2 262 

12 2 3 10 6 8 326 8 6 3 10 2 12 266 

12 2 3 10 5 8 318 8 6 3 10 1 12 215 

12 1 3 10 6 8 297 8 5 3 10 2 12 331 

12 1 3 10 5 8 289 8 5 3 10 1 12 280 

2 6 3 10 8 12 350 6 2 3 10 12 8 286 

2 6 3 10 7 12 244 6 2 3 10 11 8 314 

2 5 3 10 8 12 377 6 1 3 10 12 8 238 

2 5 3 10 7 12 271 6 1 3 10 11 8 266 

 

the cut points.  
)mod()1( dmxi

of −+=  and 
)mod()1( dmxi

og −−= .  ri is a function that returns 

the number of nodes in a cluster i, xi is a function that returns the position of a 

cluster i in w, and oq is the cluster at a certain position q in w.  This equation returns 

32 when considering the example crossover provided in Table 2.   

As ( 8 6 3 10 1 12 ) is the possible offspring with the lowest cost, 215, this 

bolded entry in Table 2 becomes the actual offspring of p1 and p2.  It should be 

noted that the standard OX crossover, when applied to this situation, returns the 

chromosome ( 6 8 3 10 12 2 ), with cost of 317.   

To improve the speed of crossover execution, the distance between cut points 

on the first parent was increased, decreasing the number of necessary comparisons.  

The first cut point was randomly selected, and if it was on the right side of the 

chromosome, the other point was inserted at position 1
2

2 +




 m
rand .  Otherwise, the 

point was inserted at position 





−

2

2 m
randm .  In these expressions, rand is a random 

real number on [0, 1) and m is the number of clusters in the dataset.   

 

2.4  Population Structure 

  

Additional improvements were made to the fundamental structure of a GA.  First, 

to maintain diversity, no duplicate chromosomes (including rotations or reversals 

of the same chromosome) were allowed to coexist in a population.  This is easily 

facilitated by maintaining the position of the cluster 1 gene in each of the 

chromosomes in the population for easier comparison to determine similarity.   

Instead of a standard GA structure, which involves the evolution of one 

population of chromosomes into a final solution, the new structure involves 

isolating several groups of chromosomes for a relatively short time at the beginning 

of the solution procedure and using less computationally intensive genetic 
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procedures and local improvement to rapidly generate reasonable solutions.  Then, 

the best chromosomes from each of the smaller populations are merged into a final 

population, which is improved with a standard genetic algorithm structure.  For the 

algorithm presented in this paper, seven isolated populations were maintained, each 

containing 50 chromosomes.  After none of the populations produced a new best 

solution in 10 generations, the best 50 solutions from the combined pool of 350 

became the final population to be improved.  To ensure the speed of convergence 

of the initial populations, each used the rOX crossover and quicker local 

improvement heuristics (see Section 2.6).   

In each generation, 20 of the 50 chromosomes in the population remained 

unaltered through replication from the previous generation.  Instead of directly 

selecting these individuals, the thirty non-replicated chromosomes were selected 

through a spinner procedure, in which each chromosome was given a probability of 

death (with all probabilities adding to 1), and a spinner was spun to determine 

which chromosomes died.  The affinity for death, adi, was calculated as 
deathPow

bestii ccad )( −=
 
for each chromosome of index i, where ci is the cost of that 

solution, cbest is the cost of the best (least cost) solution in the population, and 

deathPow is a constant that controls algorithmic convergence.  The deathPow was 

set at 0.375, which was determined by experimentation to provide reasonable 

population diversities and convergence speeds.  The probability of death of each 

individual chromosome was calculated by dividing each adi by ∑
=

50

1i

iad .   

 

2.5  Reproduction 

  

In each generation, the last 30 chromosomes added were individuals produced 

through reproduction.  Parents were determined through a spinner selection similar 

to that used to determine death.  The affinity for reproduction, ari, was calculated 

as 
reprodPow

iworsti ccar )( −=  for each chromosome of index i, where ci is the cost of 

that solution, cworst is the cost of the worst (most costly) solution in the population, 

and reprodPow is a constant that controls algorithmic convergence.  The 

reprodPow was set at 0.375, which was determined by experimentation to provide 

reasonable population diversities and convergence speeds.  The probability of 

reproduction of each individual chromosome was calculated by dividing each ari 

by ∑
=

50

1i

iar .  Individual chromosomes can be selected more than once for 

reproduction.   

Once a list of 30 parents was generated, each pair produced two children.  

Before isolated populations merged, each child was generated with the rOX 

crossover, but subsequent generations of offspring were created using the mrOX 

crossover.   

 

2.6  Local Improvement Heuristics 
  

Local improvement heuristics, which apply a set of transformations to a single 

solution, significantly improve the performance of GAs [14].  Thus, the popular 2-
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opt local improvement heuristic was implemented.  In the context of a Euclidean 

GTSP, in which all nodes are points on a plane, this is equivalent to uncrossing two 

crossed pathways.   

Additionally, the swap operator described in [14] was used to further strengthen 

local optimization in the solution.  The swap operator removes each node from the 

tour and replaces it in every other possible position, selecting the first position that 

improves overall solution quality.  In replacement, the node can be rotated through 

its cluster.  Consider the example below, which uses the distance matrix from Table 

1.   

The chromosome considered is ( 2 12 3 5 7 9 ), with a cost of 302.  The first 

node to be considered is 2.  Insertion into each other possible position in the 

chromosome yields possible solutions ( 12 2 3 5 7 9 ), ( 12 3 2 5 7 9 ),  

( 12 3 5 2 7 9 ), ( 12 3 5 7 2 9 ), and ( 12 3 5 7 9 2 ).  The costs of these solutions 

are, respectively, 366, 309, 367, 316, and 302.  Since none of these new 

positionings produced an improvement in solution cost, the other node in 2’s 

cluster, 1, is considered in each position as a replacement for 2.  The first 

chromosome considered, ( 1 12 3 5 7 9 ), has a cost of 290, which is lower than the 

cost of the initial chromosome considered, and thus becomes the final solution 

produced by the swap operation.   

For the initial isolated populations, a lower level of local optimization was used 

to shorten runtime, in which the best chromosome found in the previous generation 

replaces the first chromosome in the current population if it is not already present, 

and the best chromosome in the current generation receives exactly one two-opt (or 

one swap if all available 2-opts are exhausted).   

After the isolated populations are merged, each child produced with a better 

fitness (lower cost) than its parents receives full local improvement, which involves 

carrying out 2-opts until none are available and then swaps until none are available.  

Since a swap could cause a two-opt to become available, and vice versa, the cycle 

is repeated until no more local improvements are available.  Full local optimization 

is also used on a randomly selected 5% of the new chromosomes produced through 

reproduction to improve diversity and solution quality at the cost of increased 

runtime.   

 

2.7  Mutation 
  

To facilitate mutation and thus improve population diversity, each chromosome in 

the population had a 5% probability of being selected for mutation, a rate similar to 

those used in example algorithms in [7].  If selected, two cut points were randomly 

selected from each chromosome’s interior, and the nodes between these two points 

were reversed.  If p1 = ( 1 | 5 4 | 3 2 ), with the selected cut points denoted by the 

vertical bars, then the inverted chromosome p1′ = ( 1 4 5 3 2 ).   

 

2.8  Termination Conditions 

  

The algorithm terminated after the merged population did not produce a better 

solution for 150 generations.  This termination generation count is larger than that 
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of most genetic algorithms because the heuristic proposed has less local 

optimization than most other approaches.   

 

3  Computational Experiments 
 

The Snyder and Daskin GA (S+D GA) was selected for machine-independent 

comparison with this paper’s mrOX GA both because it is also a genetic algorithm, 

and thus comparable, and because it produced some of the best heuristic results for 

the GTSP to date, as detailed in [14].  We implemented the S+D GA, whose 

attributes are detailed in [14].  In particular, we coded it in Java to produce 

comparable runtimes and to allow comparisons with our GA for larger datasets 

than those tested in [14].  The Java implementation had nearly identical 

performance to the Snyder and Daskin program over the datasets cited in [14], 

which ranged in size from 48 to 442 nodes.  A two-sided paired t-test comparing 

results of five trials for each dataset considered in [14] with a null hypothesis that 

the algorithms were identical yielded a p-value of 0.9965, suggesting near-identical 

results.  Because all heuristics rely heavily on random numbers, it is expected that 

the results are slightly different from the published values.   

The datasets tested, as with all testing sets considered in this paper, were 

acquired from Reinelt’s TSPLib [10].  This data source was selected because of 

easy Internet accessibility at softlib.rice.net, and because most papers concerning 

GTSP heuristics have used these datasets.   

Each dataset was clustered using the procedure “CLUSTERING” described in 

Section 6 of [3] and implemented in, for example, [11] and [14].  This method 

clusters nodes based on proximity to each other, iteratively selecting  5/nm =  

centers of clusters such that each center maximizes its distance from the closest 

already-selected center.  Then, all n nodes are added to the cluster whose center is 

closest.   

Computational tests were run on the data.  Since Fischetti et al.'s branch and cut 

(B&C) algorithm provided exact values for TSPLib datasets with size 48 ≤ n ≤ 442 

in [3], direct comparisons with the optimal values were possible on these datasets.   

Table 3 follows the format in [14] and provides for each dataset a comparison 

of percentage above optimal and runtime for the heuristics considered, with bolded 

entries denoting the best average heuristic solution quality on a dataset.  The entries 

that are not bolded even though they have the value 0.00 indicate that modeling 

runs were not perfectly optimal, but that the average percentage above optimal 

rounded down to 0.00.  The “Dataset Name” category identifies the name of the 

dataset considered, with the number of clusters preceding the name and the number 

of nodes following.  For each grouping of columns, “Pct” denotes the average 

percentage above optimal of the run or runs and “Time” denotes the average 

runtime of the run or runs, in seconds.  The “# Trials” row details the number of 

trials run per dataset for each algorithm, and the “Platform” row contains the 

computing platform on which testing was performed.  The “GI
3
” column refers to 

Renaud and Boctor’s GI
3
 heuristic found in [11], the “NN” column refers to 

Noon’s generalized nearest neighbor heuristic followed by GI
3
 improvement found  
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Table 3.  Comparison of heuristic solution qualities and runtimes 
 mrOX GA S+D GA GI3 NN FST-Lagr FST-Root B&C 

Dataset Name Pct Time Pct Time Pct Time Pct Time Pct Time Pct Time Time 

10ATT48 0.00 0.36 0.00 0.18 * * * * 0.00 0.90 0.00 2.10 2.10 

10GR48 0.00 0.32 0.00 0.08 * * * * 0.00 0.50 0.00 1.90 1.90 

10HK48 0.00 0.31 0.00 0.08 * * * * 0.00 1.10 0.00 3.80 3.80 

11EIL51 0.00 0.26 0.00 0.08 0.00 0.30 0.00 0.40 0.00 0.40 0.00 2.90 2.90 

12BRAZIL58 0.00 0.78 0.00 0.10 * * * * 0.00 1.40 0.00 3.00 3.00 

14ST70 0.00 0.35 0.00 0.07 0.00 1.70 0.00 0.80 0.00 1.20 0.00 7.30 7.30 

16EIL76 0.00 0.37 0.00 0.11 0.00 2.20 0.00 1.10 0.00 1.40 0.00 9.40 9.40 

16PR76 0.00 0.45 0.00 0.16 0.00 2.50 0.00 1.90 0.00 0.60 0.00 12.90 12.90 

20RAT99 0.00 0.50 0.00 0.24 0.00 5.00 0.00 7.30 0.00 3.10 0.00 51.40 51.50 

20KROA100 0.00 0.63 0.00 0.25 0.00 6.80 0.00 3.80 0.00 2.40 0.00 18.30 18.40 

20KROB100 0.00 0.60 0.00 0.22 0.00 6.40 0.00 2.40 0.00 3.10 0.00 22.10 22.20 

20KROC100 0.00 0.62 0.00 0.23 0.00 6.50 0.00 6.30 0.00 2.20 0.00 14.30 14.40 

20KROD100 0.00 0.67 0.00 0.43 0.00 8.60 0.00 5.60 0.00 2.50 0.00 14.20 14.30 

20KROE100 0.00 0.58 0.00 0.15 0.00 6.70 0.00 2.80 0.00 0.90 0.00 12.90 13.00 

20RD100 0.00 0.51 0.00 0.29 0.08 7.30 0.08 8.30 0.08 2.60 0.00 16.50 16.60 

21EIL101 0.00 0.48 0.00 0.18 0.40 5.20 0.40 3.00 0.00 1.70 0.00 25.50 25.60 

21LIN105 0.00 0.60 0.00 0.33 0.00 14.40 0.00 3.70 0.00 2.00 0.00 16.20 16.40 

22PR107 0.00 0.53 0.00 0.20 0.00 8.70 0.00 5.20 0.00 2.10 0.00 7.30 7.40 

24GR120 0.00 0.66 0.00 0.32 * * * * 1.99 4.90 0.00 41.80 41.90 

25PR124 0.00 0.68 0.00 0.26 0.43 12.20 0.00 12.00 0.00 3.70 0.00 25.70 25.90 

26BIER127 0.00 0.78 0.00 0.28 5.55 36.10 9.68 7.80 0.00 11.20 0.00 23.30 23.60 

28PR136 0.00 0.79 0.16 0.36 1.28 12.50 5.54 9.60 0.82 7.20 0.00 42.80 43.00 

29PR144 0.00 1.00 0.00 0.44 0.00 16.30 0.00 11.80 0.00 2.30 0.00 8.00 8.20 

30KROA150 0.00 0.98 0.00 0.32 0.00 17.80 0.00 22.90 0.00 7.60 0.00 100.00 100.30 

30KROB150 0.00 0.98 0.00 0.71 0.00 14.20 0.00 20.10 0.00 9.90 0.00 60.30 60.60 

31PR152 0.00 0.97 0.00 0.38 0.47 17.60 1.80 10.30 0.00 9.60 0.00 51.40 94.80 

32U159 0.00 0.98 0.00 0.55 2.60 18.50 2.79 26.50 0.00 10.90 0.00 139.60 146.40 

39RAT195 0.00 1.37 0.00 1.33 0.00 37.20 1.29 86.00 1.87 8.20 0.00 245.50 245.90 

40D198 0.00 1.63 0.07 1.47 0.60 60.40 0.60 118.80 0.48 12.00 0.00 762.50 763.10 

40KROA200 0.00 1.66 0.00 0.95 0.00 29.70 5.25 53.00 0.00 15.30 0.00 183.30 187.40 

40KROB200 0.05 1.63 0.01 1.29 0.00 35.80 0.00 135.20 0.05 19.10 0.00 268.00 268.50 

45TS225 0.14 1.71 0.28 1.09 0.61 89.00 0.00 117.80 0.09 19.40 0.09 1298.40 37875.90 

46PR226 0.00 1.54 0.00 1.09 0.00 25.50 2.17 67.60 0.00 14.60 0.00 106.20 106.90 

53GIL262 0.45 3.64 0.55 3.05 5.03 115.40 1.88 122.70 3.75 15.80 0.89 1443.50 6624.10 

53PR264 0.00 2.36 0.09 2.72 0.36 64.40 5.73 147.20 0.33 24.30 0.00 336.00 337.00 

60PR299 0.05 4.59 0.16 4.08 2.23 90.30 2.01 281.80 0.00 33.20 0.00 811.40 812.80 

64LIN318 0.00 8.08 0.54 5.39 4.59 206.80 4.92 317.00 0.36 52.50 0.36 847.80 1671.90 

80RD400 0.58 14.58 0.72 10.27 1.23 403.50 3.98 1137.10 3.16 59.80 2.97 5031.50 7021.40 

84FL417 0.04 8.15 0.06 6.18 0.48 427.10 1.07 1341.00 0.13 77.20 0.00 16714.40 16719.40 

88PR439 0.00 19.06 0.83 15.09 3.52 611.00 4.02 1238.90 1.42 146.60 0.00 5418.90 5422.80 

89PCB442 0.01 23.43 1.23 11.74 5.91 567.70 0.22 838.40 4.22 78.80 0.29 5353.90 58770.50 

Averages 0.03 2.69 0.11 1.77 0.98 83.09 1.48 171.56 0.46 16.44 0.11 964.79 3356.47 

# Trials 5 5 1 1 1 1 1 

Platform Dell Dimension 8400 | Sun Sparc Station LX | HP 9000 / 720 

 

in [11], and “FST-Lagr” and “FST-Root” respectively refer to the Lagrangian and 

root-node heuristics found in [3].   

No percentage above optimal was provided for the B&C column, as that 

algorithm always produces optimal solutions.   

The mrOX GA produced, on average, better solution qualities than the other 

heuristics.  Over the datasets considered in Table 3, the mrOX GA averaged only a 

0.03% error, less than a third that of the S+D GA and FST-Root heuristic, the two 

algorithms with the nearest solution qualities.  It should be noted that FST-Root 

had slow runtimes, running within 5% of the exact algorithm’s runtime on 35 of the 

41 datasets.   

The solution qualities produced by the mrOX GA were also close to the 

published optimal solutions to certain difficult problems being investigated, like 

89PCB442, an 89-cluster, 442-node GTSP dataset found in the TSPLib [10].  The 

 
* The NN and GI3 heuristics were not tested in [11] on these datasets.   
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algorithm found an optimal solution in four of the five trials run, averaging a 0.01% 

error over the five trials.   

While previous papers presenting heuristics have, in general, limited their scope 

to problems for which optimal solutions have been published so that percentages 

above optimal can be calculated, this paper seeks to investigate larger datasets for 

which the exact algorithm’s solution has not been determined due to prohibitively 

high runtimes.  These datasets are clearly the ones for which heuristics are most 

applicable, and thus should be of the most interest to those who design approximate 

algorithms.   

Thus, five trials were completed comparing the S+D GA and the mrOX GA 

based on runtime and solution quality on TSPLib datasets of size 493 ≤ n ≤ 1084, 

with full results presented in the appendix.   

Since no optimal solutions have been published for the larger problems, the 

success of the mrOX GA was gauged by its performance in relation to the S+D GA 

on the same datasets.  Nearly all mrOX GA solutions to datasets had equal or 

superior solution qualities compared to those of the S+D GA.   

Over all datasets, the mrOX GA provided 0.31% better solutions than the S+D 

GA, though over the larger datasets (containing more than 442 nodes), the average 

advantage of the mrOX GA was 1.09%.  These are significant improvements, as 

neither the S+D GA nor the mrOX GA averaged more than 1.09% above optimal 

for any dataset with 442 or fewer nodes, and the average percentage above optimal 

for the S+D GA was just 0.11% for the smaller problems.  Over the same larger 

datasets, the mrOX GA produced a better average solution quality than the S+D 

GA on 12 of the 13 datasets.   

The S+D GA, meanwhile, demonstrated on average a 42.79% faster runtime 

than the mrOX GA.  On the larger datasets tested (containing more than 442 

nodes), the S+D GA had a 28.79% advantage in runtime, significantly less than the 

advantage over all datasets, suggesting that the runtimes will continue to remain 

comparable for larger datasets.   

Runtime comparisons with other heuristics were difficult because different 

computers with various computing powers were used to test the algorithms.   

Experimentation was then completed to consider the feasibility of decreasing 

total runtime of the mrOX GA while maintaining similar solution qualities.  

Decreasing the number of static generations before termination in the mrOX GA 

from 150 to 50 provided this effect.  Experimentation (with results available in the 

“50-Gen Value” and “50-Gen Time (ms)” columns of Table 4 in the appendix) 

demonstrated an overall decrease of 16.51% in runtime, with a decrease of 0.21% 

in solution quality.  The effects were magnified for datasets of size 493 ≤ n ≤ 1084, 

with an overall average decrease of 47.52% in runtime and an average decrease of 

0.56% in solution quality.  Thus, while solution quality, not runtime, was the focus 

of this paper, the mrOX GA can produce results of reasonable quality very quickly 

if slightly modified.   

Data were collected to quantify the effects of this paper’s novel improvements.  

The population structure involving seven isolated populations, which was used in 

the mrOX GA, produced 0.04% better solution qualities than the 1-population 

(standard GA), which was also tested.  Considering the small deviation from 
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optimal for the mrOX GA (the average error for mrOX GA solutions on datasets of 

size 48 ≤ n ≤ 442 was 0.03%), this represents a significant improvement in solution 

quality.  However, the 20-population model tested was not significantly different 

from the 7-population scheme, averaging only 0.006% better solution qualities.  

Thus, limited benefits can clearly be gained through using isolated populations.   

Naturally, maintaining more isolated populations caused a longer runtime for 

the heuristic.  For each dataset tested, the 1-population model averaged 43.05 

seconds of runtime, the 7-population model averaged 44.44 seconds of runtime, 

and the 20-population model averaged 49.04 seconds of runtime.  As dataset size 

increases, the percentage of total runtime used in early improvement significantly 

decreases, from 48.02% for the small 22PR107 to 5.09% for the large 212U1060.   

Experimentation was also carried out to determine the advantages of the mrOX 

crossover over the OX crossover.  The mrOX crossover demonstrated a significant 

advantage in solution quality over the OX crossover, averaging a 0.18% increase in 

solution quality.  The runtimes of the algorithms using the mrOX and OX 

crossovers were not significantly different, with the mrOX GA running on average 

2.59% quicker.   

 

4  Conclusions 
  

Based on the data collected, the mrOX GA detailed in this paper outperformed all 

of the other heuristic solutions considered in terms of solution quality, while 

maintaining comparable runtimes, especially on larger datasets.  A trend was 

established demonstrating an overall improvement in mrOX GA solution qualities 

in comparison to other heuristics like Snyder and Daskin’s GA described in [14].  

Additionally, the mrOX GA consistently provided optimal solutions to historically 

difficult datasets like 89PCB442.  It could also be easily modified to provide faster 

solutions of good (but slightly diminished) quality.   

The heuristic thus performed well in comparison to other published algorithms 

for run-time characteristics, and is further useful because GAs are quite simple to 

implement in comparison to other heuristics like the FST-Root method.  

Additionally, changing evaluation functions or performing basic structural 

transformations into other related problems like the Median Tour Problem 

described in [1] or Traveling Circus Problem considered in [12] are simple tasks 

with a GA.  However, the effectiveness of these transformations would have to be 

investigated experimentally.   

This paper’s research can be applied to other GA solutions of transportation 

problems through the mrOX crossover.  This new crossover significantly improved 

solution qualities while maintaining similar runtimes in comparison to the OX 

crossover, characteristics that make it useful in a variety of GAs.  Additionally, the 

initial population isolation mechanism, which was proven to provide better results 

than a standard GA, can be applied to a wide variety of GAs.  This is a far-reaching 

application of this paper’s findings, considering the many GAs used as heuristic 

solutions in computing today.   
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Table 4: Experimental data collected 
Dataset Name Value Time Merge Swaps 2-opts Cross- 50-Gen 50-Gen S+D GA S+D GA 

  (ms) Time   overs Value Time Value Time 

   (ms)     (ms)  (ms) 

10ATT48 5394.0 356.0 118.6 3171.2 1592.6 31565.4 5394.0 209.6 5394.0 178.2 

10GR48 1834.0 321.8 90.6 2238.8 1601.2 33357.8 1834.0 190.6 1834.0 75.2 

10HK48 6386.0 312.8 90.8 3837.6 1102.2 30119.2 6386.0 175.2 6386.0 81.2 

11EIL51 174.0 259.2 75.0 1553.2 695.0 23491.8 174.0 134.6 174.0 78.2 

11BERLIN52 4040.0 315.4 87.2 2694.8 1490.8 29458.0 4040.0 196.8 4040.0 106.2 

12BRAZIL58 15332.0 775.2 228.0 1798.0 1715.4 28722.6 15332.0 190.6 15332.0 97.0 

14ST70 316.0 353.0 137.4 1671.4 820.6 26347.8 316.0 225.0 316.0 65.6 

16EIL76 209.0 369.0 134.4 1249.2 890.0 26419.8 209.0 228.4 209.0 106.4 

16PR76 64925.0 447.0 172.0 3587.2 1293.4 31823.2 64925.0 290.8 64925.0 156.2 

20RAT99 497.0 500.0 169.0 2389.8 1437.2 32818.8 497.0 356.2 497.0 243.8 

20KROA100 9711.0 628.2 222.0 4876.2 2007.8 39313.8 9711.0 731.2 9711.0 249.8 

20KROB100 10328.0 603.2 224.8 4627.0 1682.2 37787.2 10328.0 462.4 10328.0 215.6 

20KROC100 9554.0 621.8 206.4 5018.4 2335.4 39378.4 9554.0 443.4 9554.0 225.0 

20KROD100 9450.0 668.8 250.0 5078.0 2464.0 39192.8 9450.0 853.0 9450.0 434.4 

20KROE100 9523.0 575.0 240.6 3663.8 1721.8 37705.8 9523.0 672.0 9523.0 147.0 

20RD100 3650.0 506.2 231.4 2891.6 1292.2 32891.0 3650.0 1003.2 3650.0 290.8 

21EIL101 249.0 478.2 218.8 2261.0 1378.2 30152.2 249.0 1434.4 249.0 184.6 

21LIN105 8213.0 603.2 256.4 3754.4 1910.0 37844.6 8213.0 1887.2 8213.0 334.4 

22PR107 27898.6 534.4 256.6 1340.8 888.8 34388.4 27898.0 1537.4 27898.6 197.0 

24GR120 2769.0 659.6 284.4 3176.6 1868.4 37310.2 2769.0 1606.0 2769.0 321.8 

25PR124 36605.0 678.0 322.0 3734.8 1626.6 38968.6 36605.0 1118.8 36605.0 259.0 

26BIER127 72418.0 784.4 334.4 5499.6 2792.4 40084.2 72418.0 906.4 72418.0 275.2 

26CH130 2828.0 790.6 328.2 4126.8 2108.8 43434.2 2828.0 750.4 2828.0 418.4 

28PR136 42570.0 793.8 356.2 4200.2 2066.0 38556.8 42570.0 568.8 42639.8 362.8 

29PR144 45886.0 1003.2 434.6 5946.6 2776.4 53049.8 45886.0 709.2 45887.4 437.6 

30CH150 2750.0 884.4 378.0 4454.6 2743.6 41030.6 2750.0 630.8 2750.0 403.2 

30KROA150 11018.0 981.2 421.8 4315.0 2471.0 46399.0 11018.0 621.8 11018.0 319.0 

30KROB150 12196.0 978.4 368.8 5270.4 2252.0 45276.6 12196.0 675.2 12196.0 712.4 

31PR152 51576.0 965.4 349.8 5753.6 3424.4 39005.6 51577.6 587.6 51576.0 381.2 

32U159 22664.0 984.4 381.2 4529.0 2789.8 42891.8 22664.0 675.0 22664.0 553.2 

35SI175 5564.0 974.8 353.2 3826.4 3886.2 36402.2 5564.2 806.4 5590.4 387.2 

39RAT195 854.0 1374.8 543.8 4307.8 2485.6 50919.2 854.0 868.8 854.0 1325.0 

40D198 10557.0 1628.2 572.0 7795.4 3864.4 51261.8 10563.8 996.6 10564.0 1468.6 

40KROA200 13406.0 1659.4 590.6 6197.6 3389.6 59078.2 13406.0 1037.2 13406.0 950.2 

40KROB200 13117.6 1631.4 618.8 5786.0 2949.6 62330.8 13115.4 1081.4 13112.2 1294.2 

45TS225 68435.2 1706.2 593.6 5156.8 3472.8 52474.6 68613.6 1078.0 68530.8 1087.4 

46PR226 64007.0 1540.6 712.4 2783.4 2501.2 60787.4 64007.0 968.6 64007.0 1094.0 

53GIL262 1017.6 3637.4 912.4 8949.2 5856.4 73077.2 1022.2 1587.6 1018.6 3046.8 

53PR264 29549.0 2359.4 1012.6 4445.4 2638.2 71733.4 29549.0 1475.0 29574.8 2718.6 

56A280 1080.8 2921.8 1018.8 5591.8 3314.8 68932.6 1088.8 1806.2 1080.6 3321.8 

60PR299 22627.0 4593.8 1415.8 8194.2 4062.8 92713.4 22647.2 3540.8 22650.2 4084.4 

64LIN318 20765.0 8084.4 1475.2 16282.6 7666.8 91508.2 21036.6 3565.6 20877.8 5387.6 

80RD400 6397.8 14578.2 2453.2 19330.2 7989.2 117979.2 6413.2 8041.0 6407.0 10265.6 

84FL417 9654.6 8152.8 2312.2 6724.2 5790.8 110035.2 9668.2 4553.4 9657.0 6175.2 

88PR439 60099.0 19059.6 3581.6 19792.0 8235.8 143845.4 60348.2 10996.6 60595.4 15087.6 

89PCB442 21658.2 23434.4 3309.4 26512.2 12235.8 137437.0 21904.0 10927.8 21923.0 11743.8 

99D493 20117.2 35718.8 3675.0 33168.8 13203.8 134546.2 20146.2 21972.0 20260.4 14887.8 

107ATT532 13510.8 31703.0 4440.4 24098.0 10421.6 145720.0 13520.0 20043.6 13529.8 31875.2 

107SI535 13513.2 26346.8 3518.8 16626.2 19904.8 118799.6 13533.2 14543.8 13557.6 11250.2 

113PA561 1053.6 21084.2 3837.6 10258.4 11026.2 127844.0 1051.2 13759.4 1065.6 26818.6 

115RAT575 2414.8 48481.0 5706.0 29366.8 12684.8 177752.8 2436.4 23506.2 2442.4 46834.4 

131P654 27508.2 32672.0 5909.4 11381.4 10344.2 173235.6 27439.0 17903.0 27448.4 46996.8 

132D657 22599.0 132243.6 8681.2 66083.8 22186.6 218083.4 22624.0 59046.8 22857.6 58449.8 

145U724 17370.6 161815.2 9921.6 62581.8 22077.2 223626.6 17681.8 58994.0 17806.2 59625.2 

157RAT783 3300.2 152147.0 12421.8 48479.2 19752.6 231742.4 3330.8 68056.2 3341.0 89362.4 

201PR1002 114582.2 464356.4 26940.6 89278.4 27910.8 339429.2 116058.4 295209.2 117421.2 332406.2 

207SI1032 22388.8 242366.0 19397.2 32418.6 52047.0 253389.2 22415.2 126962.4 22515.2 135431.0 

212U1060 108390.4 594637.4 30281.4 106204.4 30766.4 352773.6 109519.8 239453.2 110158.0 216999.8 

217VM1084 131884.6 562040.6 32193.6 78499.2 32331.6 331020.4 133563.4 290765.6 133743.4 390115.6 
 

Further research could be conducted on the effects of the novel improvements 

on the schemata theorem, the basic theoretical support for GAs.  Additional 

research could consider the use of an entirely different crossover (such as the edge 

recombination crossover) in conjunction with a rotational inversion mechanism, or 

the effectiveness of a slightly modified mrOX GA on other transportation 

problems.   
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5  Appendix 
 

In Table 4, the “Value” column contains the mrOX GA fitness value, the “Time 

(ms)” column contains the total mrOX GA runtime including time both before and 

after the population merge, the “Merge Time (ms)” column contains the mrOX 

GA’s runtime until it merges isolated populations, the “Swaps” column contains 

the mrOX GA number of swaps, the “2-opts” column contains the number of 

mrOX GA 2-opts, the “Crossovers” column contains the number of mrOX GA 

crossovers, the “50-Gen value” column contains the mrOX GA fitness value for the 

50-generation termination run, the “50-Gen Time (ms)” column contains the total 

mrOX GA runtime for the 50-generation termination run, the “S+D GA Value” 

column contains the S+D GA fitness value, and the “S+D GA Time (ms)” column 

contains the S+D GA’s runtime.  S+D values and runtimes are from this paper’s 

coding of the heuristic.  Fractional values are the effects of averaging results from 5 

trial runs.   
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