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Lecture 1 (2019-01-09)

Calculus is a mathematical framework for working with and extracting useful information
from functions. Thus, in order to understand and appreciate the meat of calculus, we first
need to make sure we know a) what functions are, b) why we care about functions/what
functions are useful for, and c) many examples of common functions and their properties.
These topics are roughly the content of ‘‘precalculus’’ courses, such as Math 105 here at
UMich. Over the next few weeks, we are going to very rapidly review this material. Even
if you feel comfortable with these concepts, don’t check out! Use this as an opportunity to
ensure facility and confidence with the basics. Try to notice new things you hadn’t noticed
before. Let the ideas marinate.

What is a function? Often in life and the world, we know, or at least have a strong intuition,
that one quantity A depends on another quantity B in some fashion. In such a situation, we
might say in a colloquial sense that A is a function of B. The formal definition of function is
intended to capture this notion of ‘‘two quantities have some dependence relation’’ abstractly:

Definition. A function is a rule that takes certain numbers as inputs and assigns to each
a definite output number.

Notation. We denote a function by the letter f (although other letters work just as well)
and we denote a specific input to the function by the letter x (although other letters work
just as well). We write f(x) to denote the output obtained when you input the quantity x
into the function f .

Examples. • The functions you have seen already (and which we will often be working
with) are those described by mathematical formulas. For example, f(x) = 3x + 2 is
the function that takes as input a number x, then outputs the result of multiplying x
by three and then adding two. Another example is g(y) = y2, which takes as input a
number y, then outputs the result of multiplying y with itself.

• Consider the function B which takes as input the number of drinks d that Homer has
with dinner, and outputs the quantity B(d) which is Homer’s blood alcohol content 30
minutes later. This function illustrates some general features. We posit that there is a
relationship between d and B(d), but we don’t necessarily know the precise nature of
this relationship; in particular, the function B is not defined by an explicit formula.
Furthermore, B only takes certain numbers as inputs (Homer can’t have -7 drinks) and
has a designated range of output values (Homer’s blood alcohol content can’t be 12,
since BAC values are always between 0 and 1).

Definition. Suppose f is a function. The domain of f is defined to be the set of allowed
input values; we often denote the domain of f by Dom(f). The range of f is defined to be
the set of possible output values; we often denote the range of f by Ran(f).

Example. Consider the function

q(t) =
3t+ 1

t− 2

You can input any number t into this function except for t = 2 (since you can’t divide by
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Figure 1: The graph of ϕ

zero). Thus, Dom(q) = {all numbers except 2}. If y is a number, then y is in the range of q
if it is possible to solve the equation

y =
3t+ 1

t− 2

for t. Indeed, if we rearrange the equation, we get

t =
2y + 1

y − 3

so it is possible to solve the equation for all y except y = 3. Thus, Ran(q) = {all numbers except 3}.

Exercise. For each of the following functions, determine (or estimate, if it’s not possible to
determine exactly) its domain and range.

(a) h(y) =
√

1− y2

(b) k(z) = (z2 + 1)/z (Hint: to find the range of this function, use the quadratic formula)

(c) `(t) = the number of people in Chipotle on State Street t hours after noon on January 1st, 2019

Definition. The graph of a function f is the set of all points in the coordinate plane with
coordinates of the form (a, f(a)).

Example. Consider the function ϕ(m) = m2. Its graph is the set of all points in the
coordinate plane with coordinates of the form (m,m2). For example, (−2, 4), (−1, 1), (0, 0),
(1, 1), and (2, 4) are all in the graph of ϕ. See the above picture.

Definition. Suppose g and h are functions such that Ran(g) is contained in Dom(h). This
means that any output value from g can be used as an input into h. Thus, we can define the
composite function h ◦ g, defined by sending each input x to the value h(g(x)).

Examples. • First, an example with mathematical formulas. If k(p) = p2 + 1 and
`(t) = t+ 7, then we can explicitly calculate the composition k ◦ `:

k(`(t)) = (t+ 7)2 + 1 = t2 + 14t+ 50

• Let c be the function that takes as input the temperature f in degrees Fahrenheit and
outputs the temperature c(f) in degrees Celsius. Let q be the function that takes as
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input the temperature t in degrees Celsius and outputs the likelihood q(t) that the
temperature will dip below t degrees today. Then, the composition q ◦ c also outputs
the likelihood that the temperature will dip below the input temperature, but accepts
the input in degrees Fahrenheit rather than degrees Celsius.

Exercise. Express the function f(t) = t2 + 2t+ 1 as a composite in at least two different
ways, i.e. find at least two different pairs of functions (g, h) such that f(t) = g(h(t)).

Definition. A function f is called invertible if there exists another function g such that

(f ◦ g)(x) = (g ◦ f)(x) = x

for all input values x. In this situation, the function g is called the inverse of f , and denoted
f−1. Intuitively, f−1 ‘‘undoes’’ the effect of f .

A function f is invertible precisely when, for every number y in Ran(f), there is exactly one
input a such that f(a) = y. This input a is the value f−1(y). We can think of f−1(y) as
‘‘the number which, when plugged into f , yields a result of y.’’

If you have available the graph of a function f , a quick way to check if f is invertible is the
horizontal line test.

Exercise. Suppose f is an invertible function. Explain why Dom(f−1) = Ran(f) and
Ran(f−1) = Dom(f).

Important Remark: Even if a function is not invertible, it might become invertible when
we restrict its domain. For example, consider the function ϕ(m) = m2. We know that
Dom(ϕ) = {all numbers} and Ran(ϕ) = {all nonnegative numbers}.

The function ϕ is not invertible when thought of as a function on its entire domain: for any
number z, there are two numbers m such that ϕ(m) = z (the positive and negative square
root of z). Thus, ϕ is not invertible.

However, suppose we think of ϕ as a function that is only allowed to eat positive numbers.
In other words, we restrict the domain of ϕ to the interval (0,∞). Now, for every z, there is
exactly one number m in the domain of ϕ such that ϕ(m) = z (the positive square root of z).
Thought of as a function with domain (0,∞), ϕ becomes invertible.

This trick is very important/useful to define inverses of functions that aren’t invertible
on their entire domains. We will use it especially when defining inverses of trigonometric
functions.

Exercise. The function q(t) = sin(t) is not invertible on its entire domain. Give three
different examples of domains on which it is invertible.

Tidbits I might mention in class: interval notation, set membership notation.

Last edited
2019-04-09

Math 115 - Calculus I Page 3
Lecture 1



Lecture 2 (2019-01-11)

We now have a general sense of what a function is. Today, we’re going to talk about the
growth of functions, and review the properties of some common functions of interest (namely,
linear and exponential functions).

Suppose f is a function. We are often interested in the problem of determining how the
output f(x) changes/grows/varies as the input x changes/grows/varies. A rough way to
categorize growth behavior is via the notions of increasing and decreasing functions:

Definition. Suppose f is a function and S is a subset of the domain Dom(f). We say f is
increasing on S if whenever x, y ∈ S satisfy y > x, then f(y) > f(x). In words, bigger
inputs from S yield bigger outputs.

Analogously, we say f is decreasing on S if whenever x, y ∈ S satisfy y > x, then
f(y) < f(x). In words, bigger inputs from S yield smaller outputs.

If f is increasing on Dom(f), we just call it increasing.

If f is decreasing on Dom(f), we just call it decreasing.

Examples. • Consider the function $(q), which is the rule that takes input a number
of quarters q and outputs the value $(q) of q quarters, in cents. We all know that a
formula for $(q) is given by $(q) = 25q. Here, $ is increasing on its entire domain, since
bigger inputs numbers of quarters always correspond to larger monetary values.

• You’re growing amoebas in a culture. At noon, you start with 1 amoeba in the culture.
Suppose it takes any amoeba an hour to split into two amoebas, and they just keep
splitting, because that’s what amoebas do. At 1PM, you’ll have 2 amoebas, at 2PM
you’ll have 4 amoebas, etc.

Let A(t) be the rule that outputs the number A(t) of amoebas in the culture t hours
after noon. We know A(0) = 1, A(1) = 2, A(2) = 4. In general, A(t) = 2t. Note that A
is also increasing on its entire domain, since later times always mean you’ll have more
amoebas in the culture.

Exercise. Think of another example of an increasing function and three examples of de-
creasing functions (either a mathematical formula, or describing some real-world relationship
between quantities).

Important Observation: Both $ and A as defined above are increasing functions. But
intuitively, one of them is increasing much faster than the other. Even though the values
of A are initially much smaller than the values of $, the function A initially ‘‘overtakes’’ $.
Let’s make careful sense of this notion of ‘‘increasing faster’’.

Definition. Suppose f is a function with the closed interval [a, b] in its domain. The average
rate of change of f on the interval [a, b] is defined by the formula

f(b)− f(a)

b− a
=

change in output

change in input
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The average rate of change of f on [a, b] roughly answers the question ‘‘how much does the
output of f change when going from a to b, relative to the length of the interval [a, b]?’’ We
say ‘‘roughly’’ because the average rate of change ignores everything that’s happening inside
the interval [a, b].

Let’s apply this concept to our functions $ and A. Suppose we restrict both functions to the
domain {1, 2, 3, 4, 5}. We can calculate the following tables:

q 1 2 3 4 5
$(q) 25 50 75 100 125
Average rate of change of $ on the interval [t, t+ 1] 25 25 25 25 25

t 1 2 3 4 5
A(t) 2 4 8 16 32
Average rate of change of A on the interval [q, q + 1] 2 4 8 16 32

The average rate of change of $ is constant over every interval. Although $ is always
increasing, the rate at which it’s increasing never changes.

The average rate of A is itself increasing as t gets bigger; in fact, it looks like you always get
back A(t) as the rate of change of A on the interval [t, t+ 1]. This is ‘‘compounded growth’’.

This is why we say A is ‘‘increasing faster’’ than $: because the rate of change of $ stays
constant, but the rate of change of A itself increases as the input gets larger.

Definition. A function f is called linear if its average rate of change is constant on every
interval. This constant average rate of change is called the slope of f .

Definition (can’t quite make sense of this precisely yet). A function f is called exponential
if its ‘‘rate of change’’ is directly proportional to f .

Theorem. (a) Every linear function is of the form g(y) = ay + b for some numbers a, b.

(b) Every exponential function is of the form h(z) = abz for some numbers a, b (here, b > 0).

Exercise. For which pairs of numbers a and b is g(y) = ay + b an increasing function? For
which pairs is g decreasing?

For which pairs of numbers a and b is h(z) = abz an increasing function (exponential growth)?
For which pairs is h decreasing (exponential decay)?

Note: Exponential growth always eventually dominates linear growth.

Exercise. The table below depicts values sampled from two functions f and g. One of the
functions is exponential and one is linear. Which one is which? Find explicit formulas for
each one.

t 0 1 3 4
f(t) 64 96 216 324
g(t) 64 129 259 324

Last edited
2019-04-09

Math 115 - Calculus I Page 5
Lecture 2



Lecture 3 (2019-01-15)

Quiz Today! -- Student Website + Grading Guidelines + Team HW. If you
haven’t already, please remember to fill out the Student Data Sheet by midnight
tonight.

Before we start new material, some review problems:

• A certain region has a population of 10 million and an annual growth rate of 2%.
Estimate the doubling time by guessing and checking. Then, calculate the doubling
time exactly.

• Figure 1.29 (on the back of this page) is the graph of three exponential functions. What
can you say about the values of the six constants a, b, c, d, p, q?

Our goal for today is to study some common transformations of functions. A transformation
is an operation that you do to a function which yields a new function.

Some common transformations are the following:

• Translation Of Input: replace the function x 7→ f(x) with the function x 7→ f(x+a)
for some number a

• Scaling Of Input: replace the function x 7→ f(x) with the function x 7→ f(cx) for
some number c

• Translation Of Output: replace the function x 7→ f(x) with the function x 7→
f(x) + a for some number a

• Scaling Of Output: replace the function x 7→ f(x) wih the function x 7→ cf(x) for
some number c

• Any Combinations Of the Above

One way to think about these transformations is pre-processing the input to the function or
post-processing the output of the function.

To get a better handle on these transformations, we study carefully how they geometrically
change the graph of a function. For example:

Example. Suppose g(t) = t2 is the function that we start with. The graph of g is a standard
parabola in the coordinate plane. What does the graph of h(t) = g(t− 2) look like?

Let’s plot some points: on the graph of g we have (0, 0), (1, 1), (2, 4), (3, 9), etc. On the
graph of h we have (2, 0), (3, 1), (4, 4), (5, 9). In general, the points on the graph of g all have
the form (t, t2), and the points on the graph of h all have the form (t+ 2, t2) = (t, t2) + (2, 0).

We get the graph of h by adding (2, 0) to the points of (t, t2). This shifts the whole graph
two units to the right.
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Exercise. Without using a graphing calculator, sketch the graphs of h(t+ 3), h(2t), 3h(t−
1) + 1, and 4h(t/2).

Explain in words what each of the transformations do geometrically.

Draw many more examples! We’re going to spend a while today doodling.

Rough Slogans: ”Inside transformations do the opposite of what you’d expect, outside
transformations do what you’d expect’’

‘‘Scaling is like changing the dimensions of your picture. Translation is like picking it up
and putting it somewhere else. These notions make the most sense when your graph goes
through (0, 0).’’ (??)

Some functions are especially symmetric: their graphs are unchanged under certain transfor-
mations.

The transformation f(x) f(−x) flips the graph of f over the y-axis. A function that is
unchanged under this transformation, i.e. f(x) = f(−x), is called an even function.

The transformation f(x) −f(−x) rotates the graph of f 180◦ about the origin. A function
that is unchanged under this transformation, i.e. f(x) = −f(−x), is called an odd function.

Exercise. Draw some pictures of graphs of even and odd functions. Give some examples of
even and odd functions with formulas.

Exercise. In the table below, f is an even function and g is an odd function. Fill in the
missing entries.

t -2 -1 0 1 2
f(t) 2 3 1
g(t) 2 3
f(g(t)) 0
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Lecture 4 (2019-01-16)

Exercise. Given the graph of some function f , how do you obtain the graph of f−1? Describe
some geometric transformation that turns the graph of f into the graph of f−1 and explain
why this works.

To describe the growth of a function, we discussed the notions of increasing and decreasing.
However, we also saw that these notions are insufficient to some extent: the linear function
f(s) = s and the exponential function g(s) = 2s are both increasing on their domains, but
the exponential function g is ‘‘eventually increasing faster.’’

More precisely, we saw that the average rate of change of f is constant on every interval
(what is this constant?) whereas the average rate of change of g is increasing as we look at
‘‘increasingly rightward’’ intervals.

There is an important definition that encapsulates the notion of ‘‘increasing rate of change’’:

Definition. Let f be a function and suppose S is a subset of Dom(f). We say f is concave
up on S if whenever a, b, c ∈ S with a < b < c, the average rate of change of f on the
interval [b, c] is bigger than the average rate of change of f on the interval [a, b]. In words,
the rate of change of f is increasing on S.

Similarly, we say f is concave down on S if whenever a, b, c ∈ S with a < b < c, the
average rate of change of f on the interval [b, c] is smaller than the average rate of change on
the interval [a, b]. In words, the rate of change of f is decreasing on S.

Important note: a function can be both concave up and decreasing, or concave down and
increasing! Concavity says something about the rate of change of the rate of change of the
function; it doesn’t directly say something about the rate of change.

Exercise. Sketch some graphs of functions that are

• concave up and increasing

• concave up and decreasing

• concave down and increasing

• concave down and decreasing

Exercise. Suppose f is a function that is concave up on the open interval (0, 6). If f(1) = 2,
f(3) = 5, and f(4) = 11. What are the possible values of f(2)?

If g is a function satisfying g(2) = 7, g(3) = 5, and g(4) = 6, could g be concave down on the
interval (0, 6)?

Let’s remind ourselves of the algebraic properties of exponential and logarithmic functions.
First of all, recall that loga(x) is what we write to denote the inverse of the function ax.
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(Note that ax always passes the horizontal line test, so it has an inverse defined on all of
(0,∞)).

We write ln(x) to denote loge(x), where e ≈ 2.718.. is that magic number that keeps showing
up. We also often denote log10(x) simply by log(x).

Recall that ax+y = ax · ay for any numbers x and y. In particular, if we set x = loga(m) and
y = loga(n), then

aloga(m)+loga(n) = m · n =⇒ loga(m) + loga(n) = m · n

for any positive numbers m and n.

We also have the ‘‘change of base formula’’:

loga(b) =
logc(b)

logc(a)

for any c. In particular, this formula implies that

loga(b
c) =

logb(b
c)

logb(a)
=

c

logb(a)
=

c

log(b)/ log(a)
=
c log(a)

log(b)
= c loga(b)

so logarithms ‘‘turn powers into multiplications.’’

Exercise. A circle has a radius of log10(a
2) and a circumference of log10(b

4). What is loga(b)?

Exercise. • Find all solutions x for the equation 7ex+3 + 5 = 13.

• Find all solutions x for the equation 4x = 2x+1 + 1. (Hint: Use the quadratic formula)

A neat thing: Consider the powers of two, i.e. 1, 2, 4, 8, 16, 32, etc. How often is the leftmost
digit equal to 1? Explain/support your answer.

Last edited
2019-04-09

Math 115 - Calculus I Page 9
Lecture 4



Lecture 5 (2019-01-18)

Today, our goal is to do a rapid review of trigonometric functions.

The convention is that angles input into trigonometric functions are always in radians. Recall
that you can convert from degrees to radians by setting up a direct proportion using the fact
that

2π rad = 360◦

Constructing Sine and Cosine From Scratch

I’m going to construct the functions ‘‘sine’’ and ‘‘cosine’’ from scratch. Our goal in doing this
is primarily to remind ourselves of some of the most important properties of these functions.

Suppose θ is an acute angle. Let 4ABC be a right triangle with ∠B = π/2 and ∠A = θ.
We define

sin(θ) =
BC

AC

cos(θ) =
AB

AC

Note that if 4A′B′C ′ is another right triangle with ∠B′ = π/2 and ∠A′ = θ, then 4ABC
and 4A′B′C ′ are similar. Thus, we have the equalities

BC

AC
=
B′C ′

A′C ′
(= sin(θ))

AB

AC
=
A′B′

A′C ′
(= cos(θ))

Thus, the numbers sin(θ) and cos(θ) are independent of the right triangle you use to calculate
them; they only depend on the angle θ.

This gives us a definition of sin and cos for acute angles θ. Note that by this definition, when
θ is an acute angle, the numbers sin(θ) and cos(θ) are both positive. How do we extend make
sense of sin(θ) and cos(θ) when θ is not an acute angle?

First, recall the unit circle is the set of points (x, y) in the coordinate plane with x2 + y2 = 1.
If P is a point on the unit circle, let ∠(P ) be the (smallest nonnegative) angle at which
P is located, measured counterclockwise from the positive x-axis. In particular, we insist
∠((1, 0)) = 0, and we have now a function

∠ : {points on the unit circle} → [0, 2π)

(A function that eats points and spits out angles!) This ∠ is an invertible function, and we
can write ∠−1(θ) to denote the unique point P on the unit circle with ∠(P ) = θ.

Now, note that by our definition of sin and cos, if 0 ≤ θ < π/2, then the coordinates
of the point ∠−1(θ) are exactly (cos(θ), sin(θ)). Turning this observation around on its
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head, we define sin(θ) and cos(θ) to be the y- and x-coordinates, respectively, of ∠−1(θ) for
π/2 < θ < 2π as well! Note that this means sin and cos now attain negative values too: for
example sin(3π/2) = −1 and cos(π) = −1.

So, we have a definition of sin and cos for angles 0 ≤ θ < 2π. Finally, we insist that sin and
cos satisfy the rules

sin(θ + 2π) = sin(θ)

cos(θ + 2π) = cos(θ)

for all angles θ. In other words, sin and cos should be ‘‘2π-periodic’’. This gives a definition
of sin and cos that works when you plug in any angle θ (it can be bigger than 2π, or even
negative).

In particular, based on how we defined sin and cos via the coordinates of points on the unit
circle, these functions satisfy the fundamental equation

sin2(θ) + cos2(θ) = 1

for all angles θ.

Finally, we define a few additional trigonometric functions in terms of sin and cos:

tan(θ) =
sin(θ)

cos(θ)

sec(θ) =
1

cos(θ)

csc(θ) =
1

sin(θ)

cot(θ) =
1

cot(θ)

Exercise. We defined the functions sin and cos each to have domain (−∞,∞). What is
the range of sin? What is the range of cos? What are the domain and the range of tan?

Exercise. Some values of sin and cos can be explicitly calculated, and it’s important to
know what they are. Use geometry to calculate the coordinates of ∠−1(π/6), ∠−1(π/4), and
∠−1(π/3).

Inverse Trig Functions

Since sin and cos are 2π-periodic, they fail the horizontal line test pretty badly. In fact, they
already failed the horizontal line test even when we only had definitions for angles θ between
0 and 2π (why?).

However, the function sin(θ) is invertible when restricted to the domain [−π/2, π/2]. Similarly,
the function cos(θ) is invertible when restricted to the domain [0, π]. We also see that the
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function tan(θ) is invertible when restricted to the domain (−π/2, π/2). Moreover, on all of
these subdomains, every value in the range of each of the functions is in fact attained.

Accordingly, we define the basic inverse trig functions as follows:

arcsin(x) = the unique angle θ in [−π/2, π/2] such that sin(θ) = x

arccos(x) = the unique angle θ in [0, π] such that cos(θ) = x

arctan(x) = the unique angle θ in (−π/2, π/2) such that cos(θ) = x

Keep in mind, however, that trigonometric equations have (many) more solutions than just the
‘‘canonical’’ solutions identified by the inverse trig functions. For example, arcsin(

√
2/2) =

π/4, but the equation sin(θ) =
√

2/2 has the (infinite!) solution set

θ =

{
· · · ,−7π

4
,−5π

4
,
π

4
,
3π

4
,
9π

4
,
11π

4
, · · ·

}

General Sinusoidal Functions

We now describe a notion of ‘‘general sinusoidal function’’. These functions are just the sin
and cos functions scaled and translated via the transformations we discussed two classes ago.
These functions are often used to (crudely) model periodic phenomena (real-world processes
that repeat/recur).

Definition. A general sinusoidal function is any function of the form

f(t) = A sin(Bt+ C) +D

for numbers A, B, C, and D.

Example. Note that cos is indeed a general periodic function, since we always have the
identity

cos(t) = sin
(π

2
− t
)

Definition. For a general sinusoidal function f of the form in the above definition, the
quantity |A| is called the amplitude of f . It is the amount by which the original sin curve
has been vertically scaled. Note that the range of f is [−|A|+D, |A|+D].

The quantity 2π/|B| is called the period of f . It is the smallest amount of time needed
for the function to execute one complete cycle. This makes sense, since B measures the
horizontal scaling of the original sin curve: large B (i.e. |B| > 1) means super squished curve
means short period; small B (i.e. |B| < 1) means super stretched curve means long period.

Remark. For a general sinusoidal function f , the quantity C/B describes the amount of
horizontal shift. More precisely, f is obtained from the function g : t 7→ A sin(Bt) +D by
shifting g by C/B units to the left. Indeed, the shifted function is then given by

g

(
t+

C

B

)
= A sin

(
B

(
t+

C

B

))
+D = A sin(Bt+ C) +D = f(t)
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Lecture 6 (2019-01-23)

Today, we’ll talk about polynomials and rational functions. These are an exceptionally
important class of functions for a few reasons:

• They are easy to calculate, since they are built entirely out of the arithmetic operations
of addition, subtraction, multiplication, and division.

• They are very rigid, in that they are (almost) entirely determined by their set of roots
and poles.

Definition. A polynomial is a function that is entirely built out of the operations of
repeated addition, subtraction, and multiplication of the input. More precisely, a polynomial
is a function of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where all the ai’s are constants. For example, f(t) = t2 + t + 1, g(s) = −s + 7, and
h(q) = −2q3 + q + 1 are all polynomials.

Definition. The degree of a polynomial p(x) is the largest power of x that appears in the
expression of p(x). For example, the degree of f(t) = t2+t+1 is 2, the degree of g(s) = −s+7
is 1, and the degree of h(q) = −2q3 + q + 1 is 3.

Remark. Here is a geometric interpretation of the degree of a polynomial. The graph of
a polynomial of degree n always has at most n − 1 bends. More precisely, if you imagine
that the polynomial function p(t) describes the location at time t of a particle moving on the
number line, then if p has degree n, the particle changes its direction of movement at most
n− 1 times.

Definition. If f is a function, a root or zero of f is any number r ∈ (−∞,∞) such that
f(r) = 0.

Example. The polynomial g(s) = −s + 7 has a root at 7, since g(7) = −7 + 7 = 0. The
polynomial f(t) = t2 + t+ 1 has no roots. This can be seen in (at least) two ways:

• Using the quadratic formula, the roots of f , if they exist, are of the form

t =
−1±

√
−3

2

But there is no square root of −3 in (−∞,∞), so there are no real solutions.

• Completing the square, we see that

f(t) =

(
t+

1

2

)2

+
3

4

which is the parabola with equation m(t) = t2 shifted 1/2 units to the left and 3/4
units upwards. In particular, the graph of f(t) does not intersect the x-axis, so f has
no real roots.
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Theorem. Suppose p(x) is a polynomial and r is a root of p(x). Then p(x) = (x− r)q(x)
for some polynomial q(x). In other words, roots can be ‘‘factored out’’ of polynomials.

Example. Suppose p(x) is a cubic polynomial with roots at 1, 2, and 3, such that p(0) = 7.
Using the above theorem, p(x) must be of the form

p(x) = c(x− 1)(x− 2)(x− 3)

Using the fact that p(0) = 7, we see that

7 = p(0) = −6c =⇒ c = −7

6

so that

p(x) =
−7

6
(x− 1)(x− 2)(x− 3)

Knowing the roots of p and one additional value allowed us to deduce the general form of
the function p(x).

Definition. A rational function is a function of the form p(x)/q(x), where p and q are
both polynomials. For example,

h(s) =
3s+ 2

s− 1

and

k(t) =
−7t2

t3 + t+ 1

are both rational functions.

Behavior of polynomials and rational functions as x → ∞, −∞: We are often
interested in the ‘‘long run’’ behavior of a function, i.e. how it behaves when x gets very
positive, or when x gets very negative. We say that a function f has a horizontal asymptote
at y = c if the graph of f approaches the line y = c as x→∞ or as x→ −∞.

Example. Consider the rational function

g(m) =
3m2 + 2

m2 + 7m

Note that we can rewrite this as

g(m) =
3 + (2/m2)

1 + (7/m)

When |m| is very large, the terms 2/m2 and 7/m are essentially zero, so g(m) is essentially 3.
In other words, g has a horizontal asymptote at y = 3, which it approaches as m→∞ and
as m→ −∞.

Definition. If f(x) = p(x)/q(x) is a rational function, we say r is a pole of f if r is a root
of q(x). Basically, a pole is a place where f is undefined. If f has a pole at r, we say that f
has a vertical asymptote at x = r. We can ask what the behavior of f is as x approaches
a pole from the left or the right.
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Domination: Given two functions f(x) and g(x), we say f dominates g as x→∞ if

f(x)

g(x)
→∞

as x→∞. This is a way to compare the growth of f and g as x gets very large.

Example. If f(x) = x and g(x) = 2x+ 7, then neither function dominates the other, since
f/g → 1/2 as x→∞. On the other hand, if q(x) = x2 and r(x) = x, then q/r = x, which
goes to ∞ as x→∞. Thus, q dominates r.

In general, polynomial growth of higher degree dominates polynomial growth of lower degree.
Moreover, exponential growth always dominates any polynomial growth.
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Lecture 7 (2019-01-24)

Today, we’re going to discuss the concept of limits. This concept is the technical heart of
calculus, and it can take some doing to wrap your head around.

Limits Of Functions As We Approach A Number

Suppose f is a function, and the following table of values is sampled from f :

t 0.9 0.99 0.999 0.9999 0.99999
f(t) 2.11 2.04 2.005 2.00001 2.0000001

Based on this information, what would you guess the value of f(1) is? The table strongly
suggests that a prediction of f(1) = 2 is reasonable.

This is a very reasonable prediction, but it’s not necessarily true. The value of a function at
a point does not have to bear any resemblance to the values nearby. For all we know, it
could be that f(1) = 9 billion. Moreover, even supposing that f(1) is 9 billion, the function
could actually reach this value in pretty different ways:

• One possibility is that, if we were to continue making the table above, with t values
even closer to 1, we see something like this:

t 0.99999 0.999999 0.9999999 0.99999999 0.9999999999
f(t) 2.0000001 2.5 10 106 8.7 ·109

Upon zooming in to a sufficiently fine time-scale, the function actually stops decreasing
to 2 and blows up towards 9 billion. The pattern of getting closer to 2, which we
noticed in the earlier table, fails to continue.

• Another possibility is that, if we were to continue making the table above, with t values
even closer to 1, we see something like this:

t 0.99999 0.999999 0.9999999 0.99999999
f(t) 2.0000001 2.000000001 2.0000000000001 2.0000000000000000001

In this case, the values of the function continue to approach 2 as the inputs continue
to approach 1. Keep in mind, this is still no guarantee that upon making inputs even
closer to 1, the outputs don’t start veering upwards towards 9 billion.

Very roughly speaking, we are suggesting two kinds of behaviors (these are not the only
two things the function could do, it could also do even more complicated things!): either
eventually as t → 1, the function’s outputs shoot up towards 9 billion, or they always get
closer to 2 (and there is a discontinuous ‘‘jump’’ to 9 billion at t = 1 exactly).

In the latter case, we say that f(t) has a left limit of 2 as t approaches 1 from below.
This is written with the notation limt→1− f(t) = 2. More precisely, we have the following
definition:
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Definition. Suppose f(t) is a function. We say f has a left limit at t = a if, as t approaches
a from below (i.e., through numbers slightly smaller than a), the values of f(t) always get
closer and closer to some number L. This number L is called the left limit of f at a, and
we denote

lim
t→a−

f(t) = L

We similarly have a notion of right limit at t = a, denoted

lim
t→a+

f(t)

if it exists.

Remark. Note that these limits don’t necessarily have anything to do with the value f(a).
In our above example with tables, we had a case where limt→1− f(t) = 2 but f(1) = 9 billion.

I’ll say it again: limits of f as the input approaches a are defined without reference
to the value f(a)!

Definition. Suppose f(t) is a function and a is some number such that

lim
t→a−

f(t)

and
lim
t→a+

f(t)

both exist and are equal, say to some number L. Then, we say that the (nondirectional)
limit of f exists as t→ a (without a plus or minus sign!) and write

L = lim
t→a

f(t)

In other words, when the left and right limits at a are the same, we just call it the limit.

Remark. One very useful way to conceptualize the concept of a limit as t → a is to ask
yourself: if I knew nothing about the value of f(a) but knew everything about the values
f(t) for t close to a, what would I predict f(a) to be?

(Again, the prediction here is not necessarily correct, but if the function permits such a
prediction, we call this prediction the limit of f as t→ a.)

Example. We have looked at examples where the values of f(t) really do approach some
number as t approaches a. This is not necessarily always going to happen! For example,
consider the function g(s) = 1/s. As s → 0+, the values of g(s) blow up to ∞ and don’t
approach any fixed number! In this case, we say the limit does not exist.

Limits can fail to exist even more extravagantly. In the case of g above, as s → 0+, the
values g(s) don’t approach any fixed number but are always strictly increasing. A wilder
example is the function

h(y) = sin

(
1

y

)
As y → 0+, note that h(y) oscillates wildly between 1 and −1, and never settles on moving
towards some fixed number. This is another case of the limit failing to exist.
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Definition. Suppose f(t) is a function defined in an open interval containing t = a and
limt→a f(t) exists and equals f(a). Then, we say f is continuous at t = a. In other words,
we say f is continuous at t = a if the prediction for f(a) obtained by studying values f(t)
for t close to (but not equal to) a is correct.

Slogan: Continuity = correct prediction from nearby values.

Limits Of Functions As We Approach +∞ Or −∞

There is an analogous notion of limits as input values approach +∞ or −∞. Since ∞ is not
actually a number, we do not have a corresponding notion of continuity at ∞!

Definition. Suppose f(t) is a function. We say f has a limit at infinity if, as the input
values t approach infinity (more precisely, get arbitrarily large), then the values of f(t) always
get closer and closer to some number L. This number L is called the limit of f at infinity
and we denote

lim
t→∞

f(t) = L

Similarly, we have a notion of limit at −∞, which is denoted

lim
t→−∞

f(t)

if it exists.

Remark. We can reconceptualize vertical and horizontal asymptotes in terms of limits.
Horizontal asymptotes correspond to limits at ∞ and −∞. Vertical asymptotes are a bit
more complicated: they correspond to input values where the left/right limits do not exist,
but only fail to exist in the ‘‘blow up to infinity or minus infinity’’ sense and not in the
‘‘oscillate wildly and never settle on any direction to go’’ sense.
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Exercise: A Classic And Important Example

Always keep in mind that limt→a f(t) does not depend on f(a). In fact, f need not even be
defined at a for a limit to exist. A classic example is the following:

Consider the function

h(θ) =
sin(θ)

θ

Note that h is not even defined at θ = 0. However, the limit limθ→0 h(θ) still exists.

Can you guess what the limit is? Make sure to justify your guess somehow.

Can you explain/prove why this is the limit? (The proof is tricky, and counts for extra
credit.)

Exercise: Limit Of A Composition

Consider the function

j(p) =


−p− 3 p < 0

0 p = 0

3− p p > 0

What is limp→0− j(p) What is limp→0+ j(p)? Does limp→0 j(p) exist?

Now, consider the composition j(j(p)). Does limp→0 j(j(p)) exist? Is j(j(p)) continuous at
p = 0?
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Lecture 8 (2019-01-29)

Imagine there is a magician, who performs the following two (incredibly breathtaking) tricks:

• She takes a grapefruit and tosses it into the air. The position of the grapefruit is given
by a function g(t), where t is measured in seconds since the grapefruit has been tossed,
and g(t) is measured in meters above the ground.

• She takes a dove in her hands and simply lets go of the dove. The dove falls momentarily,
then catches itself and begins to fly upwards. The position of the dove is given by a
function d(t) where t is measured in seconds since the dove has been let go of, and d(t)
is measured in meters above the ground.

Suppose that g(0) = h(0) = .5 and g(1) = h(1) = 2. If this is the case, then both g and h will
have the same average rate of change on the interval [0, 1], namely (2− .5)/(1− 0) = 1.5.

However, the functions g and d are surely doing something different near or at t = 0: the
function g is initially increasing, but the function d is initially decreasing. Moreover, this is
actually reflected by calculating average rates of change on short enough time intervals near
0, perhaps like [0, .2] or [0, .02], etc.

This is an extremely important observation! If we calculate average rates of change
on shorter time intervals [0, ε], we get numbers that are more reflective the behavior of the
function at or near time t = 0.
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Lecture 9 (2019-02-01)

Last time, we introduced the concept of instantaneous rate of change. There are three
important perspectives to keep in mind on this concept:

The ‘‘kinematic’’ perspective: We have a function f(x) and are interested in studying
its behavior near some point x = a. The average rate of change of f on the interval [a, a+ h]
is given by the formula

AvgRate(a, h) :=
f(a+ h)− f(a)

h
As h gets very small (equivalently, as the interval [a, a+ h] becomes very small in length),
the average rates of change AvgRate(a, h) become more and more reflective of the behavior
of f near or at a. Accordingly, we define the instantaneous rate of change of f at a to
be

f ′(a) := lim
h→0

AvgRate(a, h) = lim
h→0

f(a+ h)− f(a)

h
(if this limit exists!).

The ‘‘geometric’’ perspective: The point (a, f(a)) is on the graph of f(x). If we choose
h to be a small number, the slope of the line joining (a, f(a)) and (a+ h, f(a+ h)) is given
by the formula

f(a+ h)− f(a)

h
As h gets very small, the line joining (a, f(a)) and (a+ h, f(a+ h)) approaches the tangent
line to the graph of f at a. Accordingly, if the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

exists, it describes the slope of the tangent line to f at a.

The ‘‘approximation’’ perspective: We might be interested in calculating the value of
f(x) for some input x that is close to a. But f might be a complicated function for which
it is not so clear how to calculate its values (for example, how would you calculate cos(1)
without just plugging into a calculator? How is your calculator doing the computation?). A
crucial observation is that for ‘‘nice’’ functions, when you zoom far enough into the picture
of the function’s graph, the picture looks very much like a line. In other words, we might be
able to approximate f near a by a linear function. Here are the details:

First, translate f so that the point (a, f(a)) becomes the point (0, 0). More precisely, replace
f with g(x) = f(x + a) − f(a). Now, using our knowledge of functional transformations,
recall that ‘‘zooming in’’ to the graph of g near (0, 0) with a ‘‘magnification factor’’ of c
amounts to replacing g with

cg
(x
c

)
The ‘‘infinitely zoomed in’’ function is h(x) = limc→∞ cg

(
x
c

)
. If h(x) is linear, then we can

recover its slope by looking at h(x)/x. Indeed, we have

h(x)

x
= lim

c→∞

c

x
g
(x
c

)
= lim

c→∞

c

x

(
f
(x
c

+ a
)
− f(a)

)
= lim

ε→0

f(ε+ a)− f(a)

ε
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which is exactly the definition from above. To summarize, at each input value a where the
limit defining f ′(a) exists, we have a linear approximation at a, i.e. a linear function
(whose equation coincides with the equation of the tangent line) that is a decent approximation
for the values of f(x) when the input x is near a. Another way of stating this is that for x
close to a, we have

f(x) ≈ f(a) + f ′(a)(x− a)

The Derivative As a Function

We introduce some terminology/definitions. Suppose f is a function and the limit defining
f ′(a) exists; then, we say f is differentiable at a. (Conversely, if the limit does not exist,
we say f is not differentiable at a.)

Suppose f is a function that is differentiable everywhere. For each a ∈ Dom(f), we have an
assignment a 7→ f ′(a). The rule that takes in an input a and outputs the instantaneous rate
of change of f at a is itself a function. We call this function the derivative of f and often
denote it by f ′(x).

Example. Consider s(t) = t2. Rather than calculating the instantaneous rate of change at
some fixed number a (like a = 2 as we did last time), we can carry out the same algebra for
arbitrary a:

s′(a) = lim
h→0

s(a+ h)− s(a)

h
= lim

h→0

(a+ h)2 − a2

h
= lim

h→0

2ah+ h2

h
= lim

h→0
(2a+ h) = 2a

Thus, as a function, the derivative of s(t) = t2 is given by the function s′(t) = 2t.

Exercise. Some important special cases of the derivative as a function: if f is a constant
function, what is f ′ (as a function)? If f is a linear function, what is f ′ (as a function)?

Exercise. Here’s an example of a function that is not differentiable everywhere. Let q(r) = |r|.
Graph the function q(r) and explain why it is not differentiable at r = 0.

Exercise. See the image below.
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Lecture 10 (2019-02-05)

Some Important General Comments:

• In general, both on exams and often in life, getting the right answer counts for much
less than being able to clearly communicate your ideas/efforts to other people. This is
why it is so important to organize your work, make clear and precise statements, and
to understand the types of various mathematical objects. (Examples: work through
trig problem again from last quiz; ‘‘the function is symmetric’’; ‘‘some men are doctors’’
and ‘‘some doctors are tall’’ does not imply ‘‘some men are tall’’; if f(t) = t2, the
statement ‘‘at t = 3, the function is 9’’)

• Always ask yourself at the end: does this make sense? Be sure to check that your
answer/solution is consistent with the information given in the problem. This is a great
way to determine if you’ve worked out the problem correctly. If you discover that your
answer is inconsistent with the information, go back to your work and see if you can
figure out what went wrong. Make sure your work is clearly organized so that it’s easy
to review it if necessary.

• When you’re stuck, you have to try to actively problem solve. Some potential strategies:
draw a picture, make a table, remind yourself what the concepts mean, solve an easier
problem, think wishfully and imaginatively, take a break and return. When faced with a
novel mathematical problem/situation, we often find ourselves thinking ‘‘I Don’t Know
What To Do Here /’’ and giving up. But if we push through this and experiment, we
will find that we often are able to prevail.

A Digression: Sums Of Powers

(a) Find a nice, simple formula for
1 + 2 + · · ·+ n

where n is any positive whole number. Prove your answer.

(b) Can you find and prove a nice, simple formula for

13 + 23 + · · ·+ n3

where n is any positive whole number?
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Lecture 11 (2019-02-06)

Interpreting The Derivative:

Exercise. Let p(t) denote the price of gas in Ann Arbor, in cents per gallon, t days after
January 1st, 2019. Suppose you are an applied mathematician who has come up with an
accurate model for the fluctuating gas prices and has determined in your model that p′(7) = 25.
How would you offer a practical interpretation of this fact to someone who does not know
calculus?

If f is a differentiable function, the statement f ′(a) = b indicates that for inputs x near
x = a, the function f is well approximated by the linear function with slope b passing through
the point (a, f(a)).

Another way of restating this interpretation is to say: f ′(a) = b means that for all sufficiently
small h, the difference f(a+ h)− f(a) is approximately directly proportional to h, with a
proportionality factor of b.

Slogan: Differentiable functions are locally well-approximable by linear functions.
You can use the values of these linear approximations to practically interpret
derivatives.

An important point to keep in mind here is how near is near enough? In other words,
if f ′(a) = b, how close must x be to a in order for the linear approximation at a to be
reasonable? This depends very much on the function itself, and in particular, on the rate of
change of the rate of change (i.e., the derivative of f ′, as a function).

Example. Consider the function f(x) = x+ x2 and the function

g(x) =

{
1, x ∈ [−2π, 2π]

cos(x), x ∈ (−∞,−2π) ∪ (2π,∞)

Note that f ′(0) = 1 (why? Make sure you can carry out this calculation). In fact, looking
at a graph of f(x), the linear function x seems to be a decent approximation for f(x) on a
fairly big interval around 0, e.g. for all x ∈ (−0.5, 0.5). This is because as |x| → 0, the value
of x2 gets close to 0 much faster than the value of x does.

However, consider the functions hk(x) = f(x)g(kx) for large k (I will show a picture in class).
When k is very big, the interval around 0 for which x is a decent approximation to hk(x)
can be made as small as desired.

The point here is that the answer to the question how near is near enough depends strongly
on the function we’re studying. In particular, when the function comes from a real life
context, it’s important to take this context into account.

Example (Example/Exercise). Let g(v) denote the fuel efficiency, in miles per gallon, of a
car going at speed v miles per hour. The units of g′(v) are (miles per gallon) per (miles per
hour), which can also be thought of as hours per gallon.
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What is the practical meaning of g′(55) = −0.54? This example is from a multiple choice
textbook problem, which indicates that more than one of the choices may be reasonable.
Before we even look at the choices, let’s think about what the equation means. It tells us
that when the car is going 55 mph, the instantaneous rate of change of the fuel efficiency is
-0.54 mpg/mph. This can be interpreted as suggesting that, if we were to wiggle the input 55
into 55 + ε for some sufficently small number ε, then

g(55 + ε)− g(5)) ≈ −0.54ε

So, for instance, assuming ε = .5 is small enough for this approximation to be valid, then we
may say

g(55.5)− g(55) ≈ −0.27

In words, increasing speed from 55 mph to 55.5 mph reduces fuel efficiency by approximately
0.27 mpg. Similarly, if ε = 1 is small enough for the approximation to be valid, then we may
asay

g(56)− g(55) ≈ −0.54

In words, increasing speed from 55 mph to 56 mph reduces fuel efficiency by approximately
0.54 mph.

Now, let’s go through all the choices carefully:

(a) When the car is going 55 mph, the rate of change of the fuel efficiency decreases to
approximately 0.54 miles/gal.

(b) When the car is going 55 mph, the rate of change of the fuel efficiency decreases by
approximately 0.54 miles/gal.

(c) If the car speeds up from 55 to 56 mph, then the fuel efficiency is approximately −0.54
miles/gal.

(d) If the car speeds up from 55 to 56 mph, then the car becomes less fuel efficient by
approximately 0.54 miles/gal.

Here, (d) is exactly the fact that we discovered above, so statement (d) is a reason-
able/correct interpretation of the knowledge that g′(55) = −.54. How about statements
(a), (b), and (c)? In fact, they are all incorrect. Why?

What Does f ′ > 0 Mean? f ′ < 0?

Theorem. Suppose f is a differentiable function and f ′(x) > 0 for all x ∈ (a, b) (where (a, b)
is some open interval). Then f is increasing on the interval (a, b). Similarly, if f ′(x) < 0 for
all x ∈ (a, b), then f is decreasing on (a, b).
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Lecture 12 (2019-02-13)

The Second Derivative

Given a function f , the function f ′ gives information about the rate of change of f . Oftentimes
(if f ′ is again differentiable), we can carry out this process once more and study the derivative
of f ′, denoted f ′′. This f ′′ called the second derivative of f . It gives information about
the rate of change of f ′, or equivalently, the rate of change of the rate of change of f .

This is a concept we have already thought a bit about. Recall that a function f is concave
up on an interval (a, b) if its rate of change is increasing on (a, b). In other words, the
function f ′ should be increasing on (a, b), and this is the same as asking for f ′′ > 0 on (a, b).
This is very useful: we have a criterion for checking the geometric property of concavity by
studying derivatives.

Proposition. Suppose f is defined on (a, b) and twice-differentiable (i.e., both f and f ′ are
differentiable). Then if f ′′ > 0 on (a, b), the graph of f is concave up on (a, b). If f ′′ < 0 on
(a, b), the graph of f is concave down on (a, b).

Conversely, if f is concave up on (a, b), then f ′′ ≥ 0 on (a, b). If f is concave down on (a, b),
then f ′′ ≤ 0 on (a, b).

Remark. Note that f ′′ > 0 implies concave up, but concave up only implies f ′′ ≥ 0. An
example of a concave up function for which f ′′ ≥ 0 is f(x) = x4. The key point is that f ′′

does not change sign at x = 0, so the concavity of f does not change from up to down as we
move past 0.

Example. Suppose s(t) is a function that describes the position of a moving particle at time
t. Then s′(t) outputs the velocity of the particle at time t, and s′′(t) outputs the acceleration
of the particle at time t.

Exercise. A headline in the New York Times on December 14, 2014 read

‘‘A Steep Slide In Law School Enrollment Accelerates’’

What function is the author talking about? Draw a possible graph for the function. In terms
of derivatives, what is the headline saying?

Exercise. Give an example of a function f for which f ′(0) = 0 but f ′′(0) 6= 0.

Application of Calculus: Newton’s Method

The quadratic formula lets us calculate the solution to a quadratic equation explicitly. There
is a similar cubic formula (which is very complicated) and quartic formula (which I think is
less complicated than the cubic formula?). But a famous theorem of Abel proves that there
does not exist a quintic formula, or a sextic formula, or a n-tic formula for any n ≥ 5.

If that’s the case, how do we solve a degree 5 polynomial equation? For concreteness, consider
the polynomial function f(x) = x5 − x+ 1. The polynomial f(x) has a root in the interval
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(−2,−1). (Why? Hint: the intermediate value theorem.) In fact, this is the only root of f
(Why? this is a little trickier and requires calculating a derivative). Call this unique root r.

How can we figure out what r is? (If your instinct is to say ‘‘use the equation solver on my
calculator,’’ ask yourself: how does a calculator figure out what r is? After all, there isn’t a
quintic formula to plug f into)

Newton’s amazing idea for solving equations like this was via iterated linear approximation.
Here’s the idea: start with a guess for r. We know it’s between −2 and −1, so let’s just
guess r0 = −1.5. There is a linear approximation to f at r0, call it `0. This `0 has a root,
which we call r1. Then, we find the linear approximation at r1 and call it `1. Then, we find
the root of `1 and call it r2, and so on. We get a sequence r0, r1, r2, r3 · · · which converges to
r! (In class, I will demonstrate this procedure with numbers and pictures.)
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Lecture 13 (2019-02-15)

At this point, we are hopefully convinced that derivatives of functions are interesting/useful
things to study. However, beyond very basic examples, we have not actually calculated many
derivatives. Currently, the only method we really have for computing the derivative of a
function is to plug the function into the limit definition and try to figure out the limit. This
can get unwieldy very fast, as the functions we’re interested in computing with increase in
complexity. This lack of computational toolkit is a pretty glaring problem; after all, in order
to obtain any useful information from the derivative of a function, you need to know what
the derivative of the function is!

Our goal for the next few weeks (i.e., chapter 3) is to construct a basic toolkit that we can
use to explicitly calculate derivatives of lots of functions. The toolkit has two main parts:

1. We will calculate the derivatives of some basic functions using the limit definition. By
basic functions, I mean things like power functions, sin, cos, ex, etc, which are used to
build more complicated functions like rational functions, general sinusoidal functions,
etc.

2. We will have theorems that allow us to combine derivatives of basic functions to obtain
the derivative of a combination of basic functions. By combination of basic functions, I
mean operations like compositions of functions, product/quotients of functions, etc.

To be especially clear and pedantic, I’ll indicate when we’re working on part 1 or part 2 of
our project by writing the number and circling/bolding it. That said, let’s get started.

Some Rules For Derivatives Of Combinations (2)

Notation. I want to introduce something called Leibniz notation, which is a very useful
notation when working with derivatives of functions. Assume that, as is often the case,
we are referring to the input variable of a function as x. We introduce an operator called
‘‘d/dx’’, which should be thought of as a machine that eats functions and spits out new
functions (a function-valued function!). In particular, d/dx eats a function f(x) and spits
out its derivative f ′(x). This is written

d

dx
[f(x)] = f ′(x)

This is often further consolidated: the output of the operator d/dx after inputting any
function f is written df/dx, so we have

df

dx
= f ′

In particular, df/dx is just another notation for the function f ′.

Important remark: The Leibniz notation conceptually emphasizes the fact that the derivative
measures the change in output ‘‘df ’’ relative to an infinitesimal change in input ‘‘dx’’ near
some particular input into the original function.
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Proposition. Throughout, assume f and g are differentiable functions.

• (Sum Rule)
d(f + g)

dx
=
df

dx
+
dg

dx
In words, the derivative of the sum of two functions equals the sum of the derivatives.

• (Scaling Rule) Suppose c is any constant. Then

d(cf)

dx
= c

df

dx

In words, the derivative of a scaled function is just the derivative of the original function,
scaled.

• (Product Rule)
d(fg)

dx
=
df

dx
· g + f · dg

dx
Another way to write this, using the usual notation f ′ for the derivative of f , is

d(fg)

dx
(a) = f ′(a)g(a) + f(a)g′(a)

for any input a.

Next time, I’ll try to explain a bit why the product rule is true. For now, let’s just apply it
to (1) of our grand project.

The Power Rule For Positive Integer Powers (1)

Let’s use the product rule to calculate the derivative of the function f(x) = x2. We can
certainly write f as a product of functions, namely, if we set g(x) = x, then f(x) = g(x)2.
Thus, the product rule tells us that

f ′(x) = g′(x)g(x) + g(x)g′(x) = 1 · x+ x · 1 = 2x

This is exactly the answer we obtained for f ′(x) using the limit definition of the derivative!

Now, let’s go further: suppose we want to calculate the derivative of h(x) = x3. We can
write this as a product, i.e. h(x) = f(x)g(x). Thus, the product rule says

h′(x) = f ′(x)g(x) + f(x)g′(x) = 2x · x+ x2 · 1 = 3x2

Again! Let’s calculate the derivative of k(x) = x4. Again, this is a product, namely
k(x) = h(x)g(x), and then the product rule says

k′(x) = h′(x)g(x) + h(x)g′(x) = 3x2 · x+ x3 · 1 = 4x3

We seem to be obtaining a pattern:

d

dx
[xn] = nxn−1

In fact, this is true, and it is called the power rule
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Proposition (Power Rule). Let n > 0 be an integer. Then

d

dx
[xn] = nxn−1

Proof. We can actually prove this by extending the same calculation we did above; we used
the derivative of x to calculate the derivative of x2, we used the derivative of x2 to calculate
the derivative of x3, we used the derivative of x3 to calculate the derivative of x4. In fact,
you can keep going. Here are the details:

Suppose we already know that the derivative of xn is nxn−1. Then xn+1 = xn · x, so using
the product rule, we have

d(xn+1)

dx
=
d(xn)

dx
· x+ xn · dx

dx
= nxn−1 · x+ xn · 1 = (n+ 1)xn

Thus, if the derivative of xn is what the power rule predicts, then so is the derivative of xn+1.
Since we know the power rule is correct for the derivative of x1, this argument shows that
it’s correct for x2, x3, x4, x5, and so on forever!

(This ‘‘knocking over all the dominoes argument’’ is an extremely important technique called
mathematical induction.)

Example. We now have enough technology to calculate the derivative of any polynomial
function. This is because polynomials are just sums of scaled copies of the power functions xn

for n ≥ 0, so we can use the Sum Rule, Scaling Rule, and Power Rule in tandem to calculate
the derivative. For example,

d

dx
[2x3 − 7x+ 2] = 2

d

dx
[x3]− 7

d

dx
[x] +

d

dx
[2] = 2 · 3x2 − 7 · 1 + 0 = 6x2 − 7

For the rest of class, let’s use this technology to study the graphs of polynomial functions.

Exercise. Consider the polynomial function p(x) = x3 − 3x+ 1.

(a) At what points on the graph of p is the slope of the tangent line equal to 45?

(b) On what intervals is p increasing? On what intervals is it decreasing?

(c) On what intervals is p concave up? On what intervals is it concave down?

Exercise. Consider the polynomial function q(x) = x2 − 2x+ 4. Find the equations of the
lines through the origin that are tangent to the graph of q.

Exercise. Consider the polynomial function r(x) = (x− 1)(x+ 0.5)(x+ 1.5)(. There is a
unique line that is tangent to the graph of r at two distinct points. Find the equation of this
line.

(You may have to use a calculator/computer!)
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Lecture 14 (2019-02-19)

Today, we start off by working on (2) of our differentiation toolkit project.

Why Is The Product Rule True?

Recall that if f and g are differentiable functions, then the product rule says that

d(fg)

dx
=
df

dx
· g + f · dg

dx

Why is this true? Recall that for any number a, we have linear approximations to f and g
near a. These linear approximations say that for sufficiently small h, we have

f(a+ h) ≈ f(a) + f ′(a)h

g(a+ h) ≈ g(a) + g′(a)h

Let k(x) = f(x)g(x). Multiplying these, we get an approximation for k near x = a, namely

f(a+ h)g(a+ h) ≈ f(a)g(a) + (f(a)g′(a) + f ′(a)g(a))h+ f ′(a)g′(a)h2

=⇒ k(a+ h) ≈ k(a) + (f(a)g′(a) + f ′(a)g(a))h+ f ′(a)g′(a)h2

for small h. (Look at that coefficient of h!) We can use this approximation to calculate k′(a)
using the limit definition of the derivative:

k′(a) = lim
h→0

k(a+ h)− k(a)

h
≈ lim

h→0

(f(a)g′(a) + f ′(a)g(a))h+ f ′(a)g′(a)h2

h
= f(a)g′(a)+f ′(a)g(a)

The Quotient Rule

The product rule tells us how to calculate the derivative of a product of functions (in terms
of the original functions and their derivatives). There is a similar rule that tells us how to
differentiate quotients of functions, which is aptly named the quotient rule:

Proposition (Quotient Rule). Suppose f and g are differentiable. Away from points where
f/g is undefined, we have

d(f/g)

dx
=

df

dx
· g − f · dg

dx
g2

Proof. We can deduce the quotient rule from the product rule. Let h(x) = f(x)/g(x). We
want to calculate h′(x) in terms of f , g, f ′, and g′. Writing f(x) = h(x)g(x), we can now
apply the product rule to obtain

f ′(x) = h′(x)g(x) + h(x)g′(x)

=⇒ h′(x) =
f ′(x)− h(x)g′(x)

g(x)
=
f ′(x)− f(x)

g(x)
g′(x)

g(x)
=
f ′(x)g(x)− g′(x)f(x)

g(x)2

as desired.
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Example (Power Rule Holds For All Integer Exponents). Last class, we showed that

d

dx
[xn] = nxn−1

when n is a positive integer. In fact, this is true even when n is a negative integer. This is an
immediate consequence of the quotient rule. We are interested in calculating the derivative
of x−n when n > 0. Rewriting x−n = 1/xn, note that we can represent x−n as the quotient
of two functions whose derivatives we already know, namely 1 and xn. It follows that

d

dx
[x−n] =

d(1)

dx
· xn − 1 · d(xn)

dx
x2n

=
−nxn−1

x2n
= −nx−n−1

which is exactly what the power rule would predict!

Example. Now that we know the quotient rule, it is possible to calculate the derivative of
any rational function, since rational functions are just quotients of polynomials. Here’s a
quick example:

d

dx

[
x+ 1

2x− 1

]
=

1 · (2x− 1)− 2(x+ 1)

(2x− 1)2
=

1

(2x− 1)2

The Chain Rule

The chain rule tells you how to calculate the derivative of the composite of two functions
in terms of the original functions and their derivatives. Let’s try to figure out what this
rule should be, using linear approximation. Suppose f and g are differentiable functions,
and we are interested in differentiating k(x) = f(g(x)) at x = a. Near a, we have the linear
approximation

g(a+ h) ≈ g(a) + g′(a)h

Similarly, near g(a), we have the linear approximation

f(g(a) + h) ≈ f(g(a)) + f ′(g(a))h

for sufficiently small h. It follows that

k′(a) = lim
h→0

k(a+ h)− k(a)

h
= lim

h→0

f(g(a+ h))− f(g(a))

h

≈ lim
h→0

f(g(a) + g′(a)h)− f(g(a))

h
≈ lim

h→0

f(g(a)) + f ′(g(a))g′(a)h− f(g(a))

h
= f ′(g(a))g′(a)

We have therefore ‘‘proven’’ the:

Proposition (Chain Rule). If f and g are differentiable functions, then

d(f ◦ g)

dx
(a) =

df

dx
(g(a)) · dg

dx
(a)

Another (less unwieldy) way of expressing this rule is to say that the derivative of (f ◦ g)(x)
is f ′(g(x))g′(x).
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Example (Power Rule Holds For All Rational Exponents). At this point, we know the
power rule

d

dx
[xn] = nxn−1

is true whenever n is an integer. In fact, this is true when n is any rational number, and
we can deduce this quickly using the chain rule. Given a rational number n, write n = p/q
where p and q are integers. We want to differentiate f(x) = xn = xp/q. Taking the qth
powers of both sides, we see that f(x)q = xp. Now, the left hand side can be expressed as
h(f(x)) where h(x) = xq, so the chain rule implies that its derivative is

d

dx
[left hand side] = h′(f(x))f ′(x) = q(f(x))q−1f ′(x)

Furthermore,
d

dx
[right hand side] = pxp−1

It follows that

f ′(x) =
pxp−1

q(f(x))q−1
=

pxp−1

qxp(q−1)/q
=
p

q
xp−1−p+(p/q) =

p

q
x(p/q)−1 = nxn−1

Example. We now know the power rule holds for any rational exponents. Using this fact in
tandem with the chain rule, we can differentiate any function that involves only radicals and
power functions. For example, consider the function f(x) = 3

√
x2 + 1. We can write this as a

composition f(x) = k(`(x)) where k(x) = 3
√
x and `(x) = x2+1. We know k′(x) = (1/3)x−2/3

using the power rule for rational exponents. Thus, the chain rule implies

f ′(x) = k′(`(x))`′(x) =
1

3
(x2 + 1)−2/3 · 2x

Let’s finish off today with a bit of work on (1).

Derivatives of Exponential Functions

We want to differentiate the exponential function ax. Recall that we can change bases and
write ax = eln(a)x. Write f(x) = ex, so that ax = f(ln(a)x). Now, by the chain rule, it follows
that

d

dx
[ax] = f ′(ln(a)x) · ln(a)

so to calculate the derivative of ax for any exponential base a, it will suffice to know the
derivative of ex.

Let’s try to calculate this derivative using the limit definition:

f ′(x) = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
=: Lex

Exercise: Estimate L and make a conjecture as to its exact value.
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Lecture 15 (2019-02-20)

Expectations for Individual Meetings

I would like the individual meetings to be a way to discuss your performance on the first
exam and your comfort with the material thus far, making a plan for moving forward if
necessary. To prepare for the meeting, please review your first exam and be ready to explain
what mistakes you made. Grading for these meetings will be solely participation-based (as
in, show up and be ready to discuss the midterm).

I’ll start by writing down some of the material we covered last class but that wasn’t in the
notes.

Derivatives of Logarithmic Functions

The key fact from which you can calculate the derivative of any exponential function is that

d

dx
[ex] = ex

i.e. the function ex is its own derivative. Similarly, recall that for any a, we have the change
of base formula loga(x) = ln(x)/ ln(a). This implies that

d

dx
[loga(x)] =

1

ln(a)

d

dx
[ln(x)]

so to calculate the derivative of any logarithmic function, it will suffice to figure out what the
derivative of ln(x) is. To do this, recall that ln(x) is defined as the inverse of the exponential
function ex, so in particular satisfies the equation

eln(x) = x

Differentiating both sides of this equation (and applying chain rule to do so) yields the
equation

x · d
dx

[ln(x)] = eln(x) · d
dx

[ln(x)] =
d

dx
[eln(x)] =

d

dx
[x] = 1

It follows that
d

dx
[ln(x)] =

1

x

(Note that the derivative of ln(x), which is related to exponential/logarithmic functions, is a
power function! This is a surprising and extremely important fact in math, and people have
built careers off of exploiting this relationship.) Therefore, we have

d

dx
[loga(x)] =

1

x ln(a)
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Derivatives of Inverse Functions

To calculate the derivative of ln(x), we used the equation that defines it as the inverse of
ex, namely eln(x) = x. More generally, if f is any invertible function, we have the defining
equation f(f−1(x)) = x. Just as above, we can differentiate this equation and obtain a
general formula for the derivative of the inverse of a function:

f ′(f−1(x))(f−1)′(x) =
d

dx
[f(f−1(x))] =

d

dx
[x] = 1

=⇒ (f−1)′(x) =
1

f ′(f−1(x))

I would highly recommend that you do not memorize this formula, as it is easy to mix up
the ′ and −1. Instead, understand that it comes from differentiating the defining relation of
an inverse function.

Derivatives of Trigonometric Functions

Today, we will continue (1) by figuring out the derivatives of trigonometric functions. Since
these are all built out of sin and cos, we need to calculate the derivatives of sin and cos and
then use our rules to compute the derivatives of functions ‘‘built out of’’ sin and cos (e.g.
tan, arcsin, etc). In fact, since cos is just a transformed copy of sin, it will suffice to calculate
the derivative of sin by hand.

To do this, we use the geometry of the unit circle. Suppose θ is an angle and θ + h is a small
perturbation of this angle. Let A be the point on the unit circle at an angle of θ (measured,
as usual, counterclockwise from the positive x-axis) and let B be the point at an angle of
θ + h. Recall that sin(θ) is the y-coordinate of A and sin(θ + h) is the y-coordinate of B.
Thus, sin(θ + h)− sin(θ) is the length FB in the image below. Note that the length of the
circular arc BA is exactly h, and as h gets smaller, this arc more and more closely resembles
a straight line segment. Thus, when h is very small, we have

sin(θ + h)− sin(θ)

h
≈ sin(∠BAF )

Moreover, when h is very small, the angle ∠BAC gets very close to 90◦, so

∠BAF = ∠BAC − ∠FAC = ∠BAC − ∠ACD = ∠FAC − θ

gets very close to π
2
− θ (when measured in radians). Thus, we see that

lim
h→0

sin(θ + h)− sin(θ)

h
= sin

(π
2
− θ
)

= cos(θ)

We conclude that
d

dx
[sin(x)] = cos(x)
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Exercise (Important!). Now that you know the derivative of sin(x), use the derivative rules
to calculate the derivatives of the remaining trigonometric functions and their inverses:

• cos(x)

• tan(x)

• arcsin(x)

• arccos(x)

• arctan(x)

Grab Bag Of Exercises

Exercise. How many solutions does the equation sin(x) = x/1000 have on the interval
[0, 1000π]?

Exercise. The function g(x) = xx is defined and differentiable on the interval (0,∞).
Calculate g′(x).

Exercise. Is the function f(x) = x sin
(
1
x

)
differentiable at x = 0? How about the function

g(x) = x2 sin
(
1
x

)
?
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Lecture 16 (2019-02-22)

A plane curve is the set of points in the coordinate plane determined by an equation of the
form f(x, y) = 0. For example, if f(x, y) = x2 + y2 − 1, then the corresponding plane curve
is the set of points whose coordinates satisfy x2 + y2 = 1, i.e. the unit circle.

We are interested in studying plane curves for two reasons:

• They are a vast class of examples with lots of interesting geometry.

• Oftentimes in real life, quantities of interest are constrained to satisfy particular
equations. To visualize these quantities, one would then study the corresponding plane
curves. For example, if a bug was moving on the unit circle, its coordinates (x, y) at
any point in time would have to satisfy x2 + y2 = 1.

The key point is that by suitably restricting their domains (I won’t get into this, but ask
me if you’re curious), the quantities x and y that are constrained to lie on the plane curve
f(x, y) = 0 may be thought of as functions of one another, i.e. y = y(x) or x = x(y). More
precisely, when the domain of x is suitably restricted, for each x in the restricted domain there
is a unique y = y(x) such that f(x, y(x)) = 0; we can then study this function x 7→ y(x).

Example. Suppose we are studying the plane curve x2 + y2 = 4. This curve includes the
point (

√
2,
√

2). What is the tangent line to the curve at this point?

Thinking of y as a function of x (in some small neighborhood of x =
√

2), we have the
equation

x2 + y(x)2 = 4

Differentiating both sides of this equation with respect to x, we obtain

2x+ 2y(x)y′(x) = 0 =⇒ y′(x) = − x

y(x)

Thus, y′(
√

2) = −
√

2/y(
√

2) = −
√

2/
√

2 = −1, so the slope of the tangent line is −1. Thus,
its equation is

y −
√

2 = −(x−
√

2) =⇒ y = −x+ 2
√

2

This technique for differentiating a function that is implicitly defined by a constraint equation
is called implicit differentiation.

Exercise. The curve defined by the equation y2 − x3 + x = 0 is called an elliptic curve
and is extremely important in mathematics.

(a) There are two points on this curve with x-coordinate 2. What are they?

(b) Find the slope of the tangent line to the curve at the point (2, a) where (2, a) is the
unique point on the curve with x-coordinate 2 and a > 0.

(c) At what points is the tangent line to the elliptic curve vertical? Horizontal?

(d) Sketch a graph of the elliptic curve.
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Exercise. The curve defined by the equation x2/3 + y2/3 = 2 is called an astroid.

There is a unique point P on the astroid which is in the second quadrant and has an
x-coordinate of −1/8. What is the slope of the tangent line to the astroid at P?

Exercise. Investigate the plane curve given by equation x3 + y3 = 3xy − 1. Calculate the
slopes of the tangent lines at various points on this curve (use a calculator if necessary). Do
you notice anything interesting? Can you explain your observations?
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Lecture 17 (2019-02-26)

Activity/Exercise/Review: Identify the Plane Curves

The pictures shown above depict the curves defined by the equations below, in some order.

Curve A: x2 = x4 + y4

Curve B: xy = x6 + y6

Curve C: x3 = y2 + x4 + y4

Curve D: x2y + xy2 = x4 + y4

(a) The point P = (1, 1) is on exactly one of the four curves. Identify which curve passes
through P and use implicit differentiation to calculate the tangent line to the curve at P .

(b) Match the four curves depicted to their equations.

Quadratic Approximation

This is a topic that is not covered in the textbook, but will be tested on exams. There are
(or will be) official notes on this topic posted on the course website; make sure to read them!

Suppose f is a differentiable function. Recall that for every a, there is a linear function `a(x)
that provides a good approximation to f for inputs close to a. We know by now that `a is
the linear function whose graph is the tangent line to f at a.

A very important/useful way to think about `a is that it is the linear function f would have
to be if all you knew was f(a) and f ′(a). In other words, we know f is not (necessarily)
linear, but let’s pretend that it is. Then we would have

f(x) = Cx+D

If we knew the values of f(a) and f ′(a), then it would have to be the case that C = f ′(a)
and f(a) = Ca+D. Thus, pretending that f is linear, we would require that

f(x) = f ′(a)x+ f(a)− af ′(a) = f ′(a)(x− a) + f(a)
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which is exactly the linear approximation `a to f at a!

Recap: if we pretend f is linear, then the ‘‘local’’ information f(a) and f ′(a) would imply
that f = `a.

We can carry out an entirely analogous procedure where we pretend that f is quadratic and
ask, based on information coming from x = a, what quadratic does f have to be?

Let’s carry out this procedure in the case where a = 0. Pretend f is a quadratic function, i.e.

f(x) = Cx2 +Dx+ E

and suppose we know the values f(0), f ′(0), and f ′′(0). It follows that E = f(0), D = f ′(0),
and C = f ′′(0)/2.

Thus, if f was a quadratic function compatible with the given values of f(0), f ′(0), and f ′′(0),
it would have to equal (f ′′(0)/2)x2 + f ′(0)x+ f(0). This is the ‘‘best quadratic function’’ that
fits the ‘‘second order information’’ coming from f .

More generally, let a be any number. Near 0, the function g(x) = f(x+ a) looks exactly like
f does near a; in particular, g(0) = f(a), g′(0) = f ′(a), and g′′(0) = f ′′(a). As we saw above,
the quadratic best approximating g near 0 is given by

(g′′(0)/2)x2 + g′(0)x+ g(0) = (f ′′(a)/2)x2 + f ′(a)x+ f(a)

Thus, the quadratic best approximating f near a should be the above function, but translated
a units to the right.

Putting all this together, we have:

Fact. The quadratic approximation to f(x) near x = a is given by the formula

qa(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

In particular, note that

qa(x) = `a(x) +
f ′′(a)

2
(x− a)2

i.e. it is the linear approximation to f at a, plus a ‘‘quadratic correction’’ term.

Exercise. Consider the function f(x) = ln(x).

(a) Is the linear approximation to f(x) near (1, 0) an overestimate or an underestimate (or
neither) for the actual values of f(x)?

(b) Use the linear approximation for f(x) near (1, 0) to estimate ln(1.1). Then, use the
quadratic approximation for f(x) near (1, 0) to estimate ln(1.1). Is the quadratic estimate
better than the linear estimate?
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Lecture 18 (2019-02-27)

Some Review on Linear and Quadratic Approximation

Exercise. 1. Let g(s) = cos(s). Calculate the linear and quadratic approximations to g
at s = π/2. Use these approximations to estimate cos(1.6).

2. Suppose z is a twice-differentiable function with z(1) = 5, z′(1) = −2, and z′′(1) = 3.
Estimate z(0.9) using the linear approximation to z at 1. Do you expect this value will
be an over-estimate or under-estimate? Explain your reasoning.

3. Suppose f is a differentiable function, and let q be the quadratic approximation to f at
x = 1. Given that q(1) = 1, q(2) = −2, and q(3) = 4, find f(1), f ′(1), and f ′′(1).

The Mean Value Theorem

The mean value theorem is intuitively ‘‘obvious’’, but important on account of encapsulating
the obvious intuition in a piece of rigorous mathematics.

Theorem (Mean value Theorem). Suppose f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b). Then, the average rate of change of f on [a, b]
is attained by the derivative f ′ at some point in (a, b). More precisely, there exists some
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
Example. Consider the function f(x) = x2 − 2x+ 3. On the interval [0, 3], the average rate
of change of f is

f(3)− f(0)

3− 0
=

6− 3

3− 0
= 1

so the mean value theorem predicts that there must exist some c ∈ [0, 3] such that f ′(c) = 1.
Indeed, we can calculate f ′(x) = 2x − 2; this equals 1 precisely when x = 1.5, which is
certainly in the interval [0, 3]. Thus, the average rate of change of f on [0, 3] is attained as
an instantaneous rate of change at a ‘‘moment’’ in [0, 3].

Example (A Fable). The following story is definitely not true, but calculus teachers often
like to claim that it is, because it makes them feel powerful.

A couple of years ago, I drove up to the Bay Area, which is 400 miles, and I drove fast, so it
took me five hours. At the end of the trip, I slowed down, because I didn’t want to get a
ticket, and when I got off the freeway, I was traveling at the speed limit. Then a police
officer pulled me over, and he said, ”You were going a little fast there.” I said I was going
the speed limit, but he responded, ”Maybe you were a little while ago, but earlier, you were
speeding.” I asked how he knew that, and he said, ”Son, by the mean value theo rem of
calculus, at some moment in the last five hours, you were going at exactly 80 m.p.h.”

I took the ticket to court, and when push came to shove, the officer was unable to prove the
mean value theorem beyond a reasonable doubt.
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Exercise (based on the fable above). (a) Assuming the officer could prove the mean value
theorem beyond a reasonable doubt, would his statement have been correct? Explain
your reasoning.

(b) Suppose we change the ending of the story so that the officer said, ”I can’t prove the mean
value theorem, your Honor, but I can prove the intermediate value theorem, and using
this I can show that there was a time interval of exactly one minute during which the
defendant drove at an average speed of 80 miles per hours.” Explain the cop’s reasoning.

Exercise. (a) Let k(i) = i2 + 7i + 5. Find all values c ∈ (−1, 2) at which h satisfies the
conclusion of the mean value theorem for the interval [−1, 2].

(b) Let h(y) = sin(y). Find all values c ∈ (0, 5π/2) at which h satisfies the conclusion of the
mean value theorem for the interval [0, 5π/2].

Grab Bag Of Chapter 3 Review Exercises

Exercise. The function g : R → R is differentiable and has a differentiable inverse. If
(g−1)′(3) = 2 and g(2) = 3, what is g′(2)?

Exercise. The nth Chebyshev polynomial is the unique polynomial Tn such that Tn(cos(θ)) =
cos(nθ) for all θ ∈ [0, 2π]. What is T10

′(1/2)?

Exercise. Suppose a is the unique solution in (−∞,∞) to the equation x = cos(x). Without
using a calculator, estimate the value of a.

Exercise. The picture below depicts three surfaces in three-dimensional space, and the
equations that cut them out. Match the equations to the pictures.

Exercise (Extra Credit -- tricky, but doable). Calculate f ′′′(0), where f is given by

f(x) = sin(sin(· · · sin(x) · · · ))︸ ︷︷ ︸
2019 iterations of sine
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Lecture 19 (2019-03-11)

Using Calculus For Optimization

In Chapter 4, our focus will be on optimization problems. From the perspective of
many applications, optimization is essentially the raison d’être of calculus. The problem of
optimization is, in a nutshell, to find the maximum/minimum values attained by a function
of interest. For instance, a company interested in maximizing profits might develop a
mathematical model for its activities then use the tools of calculus to find the parameters at
which the company makes the most money (e.g., the optimal amount of labor to enlist, the
optimal amount of initial capital to invest, etc.).

Definition. Let f be any function.

• We say f has a local minimum at p ∈ Dom(f) if f(p) ≤ f(p+ h) for all sufficiently
small h. In other words, the value of f at p is lower than all the nearby values.

• We say f has a local maximum at p ∈ Dom(f) if f(p) ≥ f(p+ h) for all sufficiently
small h. In other words, the value of f at p is higher than all the nearby values.

• We say f has a local extremum at p ∈ Dom(f) if f has either a local maximum or
local minimum at p.

Definition. Let f be any function.

• We say f has a global minimum at p ∈ Dom(f) if f(p) ≤ f(x) for all x ∈ Dom(f).
In other words, the value of f at p is lowest possible value attained by f .

• We say f has a global maximum at p ∈ Dom(f) if f(p) ≥ f(x) for all x ∈ Dom(f).
In other words, the value of f at p is highest possible value attained by f .

• We say f has a global extremum at p ∈ Dom(f) if f has either a global maximum
or global minimum at p.

Remark. Note that if f has a global minimum/maximum at p, then it certainly has a local
minimum/maximum at p as well. However, a local minimum/maximum is not necessarily a
global minimum/maximum.

Examples. (a) The function s(t) = t3 − t has a local maximum at t = −1/
√

3 but s does
not have a global maximum, since as t→∞, we have s(t)→∞. Similarly, s has a local
minimum at t = 1/

√
3 but has no global minimum. Note that the inputs ±1/

√
3 are

precisely the zeroes of the derivative function s′(t); studying the zeroes of the derivative
is an important way to detect mins/maxes, as we’ll see presently.

(b) The function q(s) = 3− |s− 1| has a global maximum at s = 1. Note that this global
maximum is attained at a point where q is not differentiable.

(c) Consider the function `(q) = bqc, where bqc denotes the greatest integer less than or
equal to q; in other words, ` is the ‘‘round down’’ function, with `(3.4) = 3, `(5) = 5,
and `(−2.3) = −3. (We saw this function on a quiz a while ago!) Note that ` has no
global extrema. However, by our definition of local min/max, the function ` has a local
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maximum at every input q ∈ (−∞,∞)! The local minima are precisely at the inputs
that are not whole numbers.

Today, we will focus on how to use calculus to detect local maxima and minima. Here is the
main theorem:

Theorem (Key Theorem On Local Extrema/First Derivative Test). Suppose f is differen-
tiable on some open interval I, and p ∈ Dom(f).

• The function f has a local minimum at p if there is some h > 0 such that f ′ < 0 on
the interval (p− h, p) and f ′ > 0 on the interval (p, p+ h). In words, the sign of the
derivative changes from negative to positive at p.

• The function f has a local maximum at p if there is some h > 0 such that f ′ > 0 on
the interval (p− h, p) and f ′ < 0 on the interval (p, p+ h). In words, the sign of the
derivative changes from positive to negative at p.

In particular, if f has a local extremum at p, then f ′(p) = 0.

Remark (Warning). Even if f ′(p) = 0, this does not imply that f must have a local
extremum at p. For example, the function g(s) = s3 has g′(0) = 0, but has neither a local
maximum nor local minimum at 0. Indeed, the derivative does not change sign at 0.

Slogan: Local extrema occur where the derivative of a function changes sign.

Note that the key theorem tells us about the case where the function f is differentiable on
the interval of interest. In this case, local extrema can only occur at points p with f ′(p) = 0
(but again, every such point need not be a local extremum). On the other hand, we may be
working with a function that is not differentiable at certain points; it is important to check
these points as well to determine if they are local extrema.

Definition. Suppose f is a continuous function. A point p ∈ Dom(f) is called a critical
point if either:

• f is not differentiable at p

• f is differentiable at p and f ′(p) = 0

Corollary (Corollary of Key Theorem). If a function f has a local extremum at p, then p is
a critical point of f .

Exercise. Find all critical points of the following functions. Use this information to determine
and classify their local extrema. Can you say anything about global extrema?

(a) z(q) = q3(q − 1)2

(b) Θ(β) = ln(β/ ln(β))

(c) t(x) =
√
x+ 1√

x

(d) x(h) = |h− 1| − |h− 2|+ |h− 3|
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Lecture 20 (2019-03-12)

Second Derivative Things

Yesterday, we talked about how to detect local extrema of functions using the first derivative
test. If a function is in fact twice-differentiable, we can alternatively use the ”second derivative
test” to detect when a local extremum occurs and whether or not it is a local maximum or
local minimum.

Theorem (Second Derivative Test). Suppose f is twice-differentiable on some interval I,
and p ∈ I.

• If f ′(p) = 0 and f ′′(p) > 0, then f has a local minimum at p.

• If f ′(p) = 0 and f ′′(p) < 0, then f has a local maximum at p.

• If f ′(p) = 0 and f ′′(p) = 0, then the test is inconclusive.

Remark (Warning). The second derivative test can be inconclusive, as in the example
f(x) = x4 at x = 0. Indeed, we then have f ′(0) = f ′′(0) = 0. When the second derivative
test is inconclusive, you should fall back on the first derivative test. In this case, f ′(x) = 4x3

so f ′ has a sign change at 0 from negative to positive. So the critical point at x = 0 is a local
minimum.

Our interest in points where f ′ changes sign led us to study critical points. There is a similar
notion of where f ′′ changes sign, called inflection points. Geometrically, this is a place
where the graph of the function changes concavity (i.e. goes from concave up to concave
down or concave down to concave up).

Definition. Let f be any function. A point p is an inflection point of f if the concavity
of f changes at p.

If f is actually twice-differentiable, we can interpret this in terms of the second derivative:

• p is an inflection point if f ′′ changes sign at p.

In this situation, another useful rephrasing is to say that:

• p is an inflection point if f ′ has a local extremum at p.

Fact. If p is an inflection point of f , then f ′′(p) = 0. The converse is not necessarily true,
e.g. f(x) = x4 at x = 0.

Exercise. Study the function f(x) = xe−x. Find its critical points and inflection points,
determine where it is increasing/decreasing/concave up/concave down, and use all of this
information to sketch an accurate graph of the function. (Don’t use a graphing calculator!)
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Global Optimization

The techniques we’ve discussed so far allow us to find the local extrema of a function. To
find global extrema, we only need to work a little bit harder. The key point is that every
global extremum of a function is a local extremum. Thus, to find the global extrema, we
have the following heuristic procedure:

Heuristic Algorithm For Finding Global Extrema:

1. Find the critical points of your function. Use the first derivative/second derivative test
to classify these critical points and determine the local extrema.

2. Compute the value of the function at the local extrema and pick out candidates for
global maximum and global minimum (which, if they exist, must be among these local
extrema).

3. Determine if the candidates for global max/min are actually global max/min by studying
the end behavior of the function (i.e., the behavior as input values approach ±∞ or an
endpoint of the domain).

Examples. (a) The global extrema of a function depend heavily on the domain of consider-
ation. For example, consider the function f(x) = x2. On the domain [1,∞) it attains a
global minimum at x = 1 and has no global maximum. On the domain [−0.5, 1] it attains
a global maximum at x = 1 and global minimum at x = 0. On the domain (−∞,∞) it
attains a global minimum at x = 0 and has no global maximum.

(b) Let’s work out an example in its entirety. We want to find the global extrema of the
function

g(t) =
e−t/2

1 + t2

Every global extremum has to be a local extremum, so let’s start by finding the local
extrema. We calculate

g′(t) = −e
−t/2(t2 + 4t+ 1)

(1 + t2)2

The zeroes of this function are at

t = −2±
√

3

and these are the only critical points, since the function is everywhere differentiable. Call
these zeroes α = −2−

√
3 and β = −2 +

√
3. Then we have

g′(t) = h(t)(t− α)(t− β)

where h(t) is some function that’s always negative. Thus, we have that g′ is

− · − · − = −

on (−∞, β), it’s
− · − ·+ = +
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on (β, α), and it’s
− ·+ ·+ = −

on (α,∞). So the critical point at β is a local minimum and the critical point at α is a
local maximum (note that this is definitely a situation where we want to sue the first
derivative test and not the second derivative test; calculating the derivative of g′ looks
like pain).

We now have to determine if the local extrema at α and β are global extrema. Since g
was increasing on (β, α), we at least know g(β) < g(α). What’s left is to figure out if the
function ever takes on values lower than g(β) or higher than g(α). Indeed, as t→∞,
we have g(t)→ 0 (from above), so in particular it must eventually attain values lower
than g(β) (which is positive). Similarly, as t→ −∞, we have g(t)→∞, so in particular
it must attain values greater than g(α). So neither α nor β is a global extremum!

(c) Let’s do another example. We want to find the global extrema of the function

h(x) =


−xex x ≤ 0

−x 0 ≤ x ≤ 4

−
√
x− 1− 4 +

√
3 4 ≤ x ≤ 7

Assume the domain of h is precisely (−∞, 7]. First, we determine the critical points.
On the intervals (−∞, 0), (0, 4), and (4, 7), the function is differentiable, so on those
intervals we should just find where the derivative equals 0. On (−∞, 0) we find a critical
point at x = −1, and this is a local max. On (0, 4) and (4, 7), the calculation reveals no
critical points.

Now we should examine the points x = 0 and x = 4. At x = 0, the function is continuous
and differentiable, so there is no critical point. At x = 4, the function is not differentiable,
so there is a critical point, but a sign chart reveals that it is neither a local max or
min; in fact, h is decreasing to the left and right of x = 4. Accordingly, on [−1, 7] the
function is decreasing, and on (−∞,−1) it is positive, so the global minimum occurs at
the endpoint x = 7. The global maximum occurs at the critical point x = −1.
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Lecture 21 (2019-03-12)

A Review Problem

Exercise. For this exercise, consider the function

g(x) =


ex x ≤ 0

−ex ln(x) 0 < x ≤ 1

C(cos(πx) + 1) x > 1

where C > 0 is some positive constant.

(a) Where is g continuous? Where is g differentiable?

(b) Find the critical points of g, and use this information to find and classify the local
extrema of g.

(c) Find the global maximum and minimum of g, if they exist. Your answer will depend on
the value of C.

Optimization Problems Galore

Now that we have developed the techniques necessary to determine extrema of functions,
the next step is to apply this technology to actual optimization problems. In this class,
optimization problems are typically of the following form:

• You are given a function you wish to optimize. This function often depends on more
than one variable/quantity.

• The input variables of the function of interest are required to satisfy certain constraint
equations. This allows you to eliminate all but one of the variables in the function and
treat the problem as a single-variable optimization problem.

• Once you have a single-variable function and a domain on which you are required to
optimize it, you can go ahead and use single-variable calculus (i.e., the calculus we’ve
been studying) to solve the problem.

In practice, this process can be very challenging! In particular, the tricky part is
often figuring out to use your constraints to reduce to a single-variable optimization problem.
Keep your wits about you.

Example. Alastair is trying to build a rectangular fence in his backyard in order to keep
the neighbors’ dogs from relieving themselves on his property. He has 500 meters of fencing
material to use. What is the maximum area he can enclose with his fence?

Suppose x is the length of the fence and y is the width. We wish to maximize the quantity

Area(x, y) = x · y
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Since Alastair has 500 total meters of fencing material, assuming he uses all of the material,
we have the constraint equation 2x+ 2y = 500 =⇒ x+ y = 250. Thus, the area function
can actually be thought of as a single-variable function

Area(x) = x · (250− x)

where x is allowed to vary in the domain 0 ≤ x ≤ 250. We wish to maximize the function on
this domain.

Note that the derivative of Area(x) is Area′(x) = 250 − 2x, so there is a critical point at
x = 125 (and the derivative is defined everywhere in (0, 250), so there are no other critical
points in the interior). Furthermore, Area′ is negative for all x > 125 and positive for all
x < 125, so the local maximum at x = 125 is actually a global maximum. We conclude that
Area(125) = 1252 meters2 is the maximum area enclosed by a fence.

Example. Let’s do a harder one. Suppose that the unit circle encloses a lake, in which
Andy’s friend is drowning. Andy’s friend is located at the point (−0.5, 0.5), and Andy is
initially located at the point (1, 0). Suppose that Andy swims half as fast as he is able to run
on land. Where should he jump into the lake?

We assume that Andy runs along the circumference of the lake for some time, then jumps
into the lake and swims in a straight line towards his friend. The question is, where should
Andy jump in to the lake?

Let v be Andy’s speed on land, so that v/2 is his swimming speed. Suppose he decides to
jump into the lake at the point on the unit circle located at an angle θ counterclockwise
from (1, 0) (i.e., Andy’s initial position). The coordinates of this point are (cos(θ), sin(θ)).
The amount of time it takes Andy to run from (1, 0) to (cos(θ), sin(θ)) is θ/v, and then the
amount of time it takes Andy to swim to his friend is√

(cos(θ) + .5)2 + (sin(θ)− .5)2/(v/2)

so the function we want to minimize is

t(θ) = θ/v +
√

(cos(θ) + .5)2 + (sin(θ)− .5)2/(v/2)

We wish to minimize this function on the domain 0 ≤ θ ≤ 2π, on which the function is
continuous and differentiable on the interior.

We calculate

t′(θ) =
1

v

(
− sin(θ)− cos(θ)√

(sin(θ)− .5)2 + (cos(θ) + .5)2
+ 1

)
The critical points of t therefore occur at solutions to

−
√

(sin(θ)− .5)2 + (cos(θ) + .5)2 = − sin(θ)− cos(θ)

Squaring this equation yields

((sin(θ)− .5)2 + (cos(θ) + .5)2) = (sin(θ) + cos(θ))2
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Expanding gives
(1.5− sin(θ) + cos(θ)) = 1 + 2 sin(θ) cos(θ)

At this point, we have the equation in a simple enough form that we may want to just
put it in a calculator. The calculator will actually find that there are solutions in [0, 2π] at
θ = π/6, 2π/3, 5π/6, 4π/3. Substituting these solutions back into the formula for t′(θ), we
find that critical points only occur at π/6 and 2π/3 (since we squared a lot to get the trig
equation we ultimately solved, some vestigial solutions were introduced).

Finally, making a sign chart and classifying the critical points, we find a local max at π/6
and a local min at 2π/3. Comparing the values t(0) = t(2π) and t(2π/3), we find that the
local min is actually a global min on [0, 2π]. Thus, Andy’s optimal strategy is to run around
the lake for 2π/3 radians, a.k.a. 120◦, and then begin swimming towards his friend!

Exercise. Suppose Andy is a faster swimmer than in the above scenario. For example,
suppose he is only 1.75 times slower at swimming than running. Should he still run around
the lake for a while or should he start swimming from the get-go? What if he’s 1.5 times
slower at swimming? For what threshold value of vland/vwater does his optimal rescue plan
change from ”run for a bit, then start swimming” to ”start swimming immediately”?

Here is a collection of more optimization problems, of varying difficulty. For the exam, you
should understand how to set up and solve problems like this. In particular, you’ll need to
refresh some geometry formulas/write them on your notecard; a list of fair game formulas is
on the course website.

In general, these problems are hard because they involve a three-step process of thinking about
a situation, converting it into math, and then doing calculus. For these word problems, and
for optimization in general, do not blindly apply formulas/algorithms. For basically
every formula/algorithm, there is some situation where it doesn’t apply, so make
sure to understand what’s going on and what the words mean!

Exercise. You are building a cylindrical silo that holds 20 cubic meters of grain. The
material with which the top and bottom are built costs $10 per square meter, and the
material with which the side is built costs $8 per square meter. Find the radius and height
of the most economical silo.

Exercise. A Norman window is a window constructed by adjoining a semicircle to the top
of an ordinary rectangular window. What are the dimensions of the Norman window with
perimeter 18 meters and maximum possible area?

Exercise. Let P = (5, 2). What is the point on the parabola y = x2 that is closest to P?

Exercise. Suppose three points are chosen on the unit circle. What is the maximum possible
area of the triangle whose vertices are at these three points?
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Lecture 22 (2019-03-29)

Families of Functions

In applications and in pure math, one is often interested in analyzing the behavior of families
of functions as certain parameters that these families depend upon vary. For example, in
statistics, one might be interested in how the shape of a statistical distribution changes as
one varies parameters such as mean and standard deviation. Many questions of this type can
be analyzed using tools from calculus, and we’ll spend today working through some examples.
A key tool to aid in visualizing/understanding here is Desmos, which has nice little sliders
you can use to vary parameters of interest.

Example. Consider the family of functions of the form

fa,b(x) = eax+bx
2

In other words, for every pair of numbers (a, b), we can plug them into the expression above
to obtain a specific function. We are now interested in answering specific questions about
this family of functions. For instance:

1. For which pairs (a, b) does fa,b have a global maximum? For which pairs does it have
a global minimum? Neither?

2. For which pairs (a, b) does fa,b have no inflection point? For which pairs does it have
two inflection points? Can fa,b have other numbers of inflection points?

Let’s work through these questions. You’ll see that the ideas/methods we’re using are exactly
the same as those we’ve been using to study extrema of functions for this whole chapter; the
added difficulty comes from working with the ‘‘varying constants’’ a and b.

The First Part: We first calculate f ′a,b(x) and find

f ′a,b(x) = eax+bx
2

(a+ 2bx)

Thus, the function always has exactly one critical point, at x = −a/2b. Let’s now split into
three cases: when b > 0, b = 0, and b < 0.

Case 1, b > 0: By making a sign chart, we see that f ′a,b is negative for x < −a/2b and positive
for x > −a/2b. Since this is the only critical point of the function, it is a global minimum.

Case 2, b = 0: In this case, the function is just fa,b(x) = eax, which is a normal exponential
function; it has no global min/max.

Case 3, b < 0: By making a sign chart, we see that f ′a,b is negative for x > −a/2b and positive
for x < −a/2b. Since this is the only critical point of the function, it is a global maximum.

The Second Part: We now calculate

f ′′a,b(x) = eax+bx
2

(a+ 2bx)2 + eax+bx
2 · 2b = eax+bx

2

((a+ 2bx)2 + 2b)

The function fa,b will have no inflection points if f ′′a,b has no roots, which happens precisely
when b > 0. Let’s now look at the remaining two cases.
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Case 2, b = 0: In this case, the function is a standard exponential, which has no inflection
points.

Case 3, b < 0: In this case, we know from above that fa,b has a unique global maximum. We
calculate that the critical points of f ′a,b occur at x = (±

√
−2b− a)/(2b); denote these values

by r and s, where r < s. Then we can write

f ′′a,b(x) = eax+bx
2 1

4b2
(x− r)(x− s)

and now you can check that f ′′a,b does change sign at r and s, so they are both inflection
points.

Exercise. Consider the family of functions fa(x) = ln(x2 + a), where a ranges over all
positive numbers. For what value of a does the function fa(x) have inflection points at
x = ±2019?

Exercise. Consider the family of functions

fa,b(x) = eax + ebx

where a, b range over all nonzero numbers. Explain why every function in this family is
concave up. For which pairs (a, b) does fa,b have a global minimum?

Exercise. Consider the family of functions fm,n(x) = xm(1 − x)n where m, n range over
positive integers. For which pairs (m,n) does the function fm,n have a global maximum?
Where does it occur and what is its value?

Exercise. Consider the family of plane curves

Pa = {(x, y) : y2 = x3 + ax+ 1}

There is a number c such that for all a > c, the graph of Pa consists of one connected piece,
and for all a < c, the graph of Pa consists of two distinct connected pieces. What is c?

Exercise (Extra Credit). Consider the family of functions

fn(x) = 2x + 3x − nx

For all n > 3, the function fn(x) has a global maximum; call this global maximum Mn. What
is limn→∞Mn? Justify your answer.
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Lecture 23 (2019-04-02)

Review Problem: Families of Functions

Consider the family of functions

fb(x) =
x3

b+ ex

where b ranges over all real numbers.

For which values of b does fb have a global maximum? Global minimum? Local maximum?
Local minimum? Justify your answers clearly using calculus.

(This problem, like many families of functions problems, is not so easy. Don’t forget to keep
sight of what you’re trying to figure out, and make sure to draw/graph lots of pictures.)

Applications to Marginality a.k.a. the Econ Section

In this section, we will be doing exactly the same kinds of problems we’ve been doing so
far, but in the context of some new economics vocabulary. Businesses (typically) want to
maximize profit, which can be modeled as a function of the quantity q of goods produced. In
other words, we have a profit function π(q) which eats ‘‘quantity q of goods produced’’ and
outputs ‘‘profit π(q) made by the business at a production level of q.’’

We know that
profit = revenue− cost

so, after inventing the revenue function R(q) (which eats quantity q of goods produced and
outputs the revenue obtained at this production level) and the cost function C(q) (which
eats quantity of goods produced and outputs the cost to produce this many goods), we have
the equation

π(q) = R(q)− C(q)

Here’s a bit of vocabulary: the fixed cost of an enterprise is the amount of money it costs to
produce no quantity of goods, i.e. C(0). This is typically a positive number, and it represents
the ‘‘startup’’ cost of the business, e.g., labor, rent, etc.

Here’s some more vocabulary: marginal cost is a fancy way to say ‘‘derivative of the cost
function.’’ Marginal revenue is, similarly, a fancy way to say ‘‘derivative of the revenue
function’’.

We know that the maxima of a function occur at its critical points, so the maxima of the profit
function should occur at values of q such that 0 = π′(q) = R′(q)− C ′(q) =⇒ R′(q) = C ′(q).
In words, the maxima of the profit function can occur at values of q where marginal cost
equals marginal revenue. First off, keep in mind that this does not mean a maximum must
occur when marginal cost equals marginal revenue (more generally, keep in mind that not
every critical point has to be an extremum). Second, do NOT memorize this piece of
vocabulary; instead, treat any of these ‘‘profit’’ problems exactly the way you would treat a
standard optimization problem.
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Exercise: Danny runs a company that used to make salt and vinegar chips. After realizing
salt and vinegar chips are terrible, he changed the direction of the company, and it now
produces microchips. Suppose that the revenue function is given by

R(q) = 5q − 0.003q2

where q is the number of microchips produced and R(q) is the corresponding revenue, in
dollars. Similarly, suppose the cost function is given by

C(q) = 300 + 1.1q

where q is the number of microchips produced and C(q) is the cost of production, in dollars.
If the company cannot afford to produce more than 800 microchips in total, what number of
microchips should it produce to maximize profit?

Last edited
2019-04-09

Math 115 - Calculus I Page 54
Lecture 23



Lecture 24 (2019-04-03)

Related Rates

Today, we’re going to discuss a new problem type called related rates. These problems are
similar to optimization word problems, in the sense that the set-up is often the hardest part.
Just as for optimization word problems, we reduced to a calculus ‘‘find the global optima’’
problem, here we will reduce related rates word problems to implicit differentiation problems.
The premise of related rates problems is essentially the following:

• There are several quantities we are interested in, which are varying with respect to
some variable, typically time. These quantities will satisfy constraint equations, which
you must find.

• Once you find the constraint equations, implicitly differentiate the equations with
respect to the (time) variable and use the resulting relations to calculate the desired
values.

Let’s see this premise in practice:

Example. Suppose 4ABC is a right triangle, with ∠ABC = 90◦. The legs AB and BC of
4ABC are getting longer, at a rate of 3 m/s and 4 m/s, respectively. At what rate is the
hypotenuse of 4ABC growing when the legs are of length AB = 5 and BC = 12?

For simplicity, let’s write AB = a, BC = b, and AC = c. These quantities depend on time,
so we actually have functions a(t), b(t), and c(t). We are given that a and b are linear
functions, with a′(t) = 3 and b′(t) = 4. We are asked to compute c′(s), where s is the time
such that a(s) = 5 and b(s) = 12. Note that the Pythagorean theorem implies c(s) = 13.

We know that the functions a, b, and c satisfy the Pythagorean theorem:

a(t)2 + b(t)2 = c(t)2

By differentiating both sides of this equation with respect to t, we find

a′(t)a(t) + b′(t)b(t) = c′(t)c(t)

We want to calculate c′(s), so setting t = s in the equation, we have

c′(s) =
a′(s)a(s) + b′(s)b(s)

c(s)
=

3 · 5 + 4 · 12

13
=

63

13

(The units of c′(s) are meters per second.)

Example. A spherical snowball is melting. Its radius is decreasing at a rate of 0.2 centimeters
per hour, at the moment when its radius equals 15 centimeters. How fast is the volume
decreasing at this moment?

We have two quantities of interest, the radius r of the snowball and its volume V . These are
both functions r(t) and V (t) of time, which are related via the formula

V (t) =
4π

3
r(t)3

Last edited
2019-04-09

Math 115 - Calculus I Page 55
Lecture 24



We wish to find V ′(s), where s is the moment in time when r(s) = 15; we are given that
r′(s) = −0.2. Differentiating the equation with respect to t, we find

V ′(t) = 4πr(t)2r′(t) =⇒ V ′(s) = 4πr(s)2r′(s) = 900π(−0.2) = −180π

(The units of V ′(s) are cubic centimeters per hour.)

Exercise. A ladder that is leaning against a wall starts slipping down. If the point where
the ladder touches the ground is moving away from the wall at a constant rate, is the point
where the ladder touches the wall falling at a constant rate? Explain your answer clearly.

Exercise. Suppose a street lamp is located 10 meters above the ground. You are walking
away from the street lamp at a rate of 1 meter per second. When you are 5 meters away
from the street lamp, what is the rate of change of the area of your shadow? For simplicity’s
sake, model yourself as a rectangle for this problem, say of height 1.5 meters and width 0.5
meters.

Exercise. When the growth of a spherical cell depends on the flow of nutrients through
its surface, it is reasonable to assume that the volume growth rate dV/dt is proportional to
the surface area S. Assume that for a particular cell, the volume growth rate satisfies the
equation dV/dt = S/3 (as functions, not at a particular moment in time). At what rate is
the radius of the cell increasing?

Exercise. Suppose the minutes hand of a clock is 15 millimeters long and the hours hand is
12 millimeters long. How fast is the distance between the hours and minutes hand changing
at 2 P.M.?

(Hint: Use the Law of Cosines)

Exercise. Doppler radar measures the rate of change of the distance from an object to the
observer. Suppose a police officer a meters from a straight road points a Doppler radar gun
at a car travelling along the road, c meters away (this is the distance from the officer directly
to the car), and measures a speed of v. What is the car’s actual speed?
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Lecture 25 (2019-04-03)

Two Questions

Consider the following two questions:

(a) Given the derivative f ′(x) of some function f(x), how do we recover the original function
f(x)?

(b) Given a function f(x), how do we find the area of the region bounded by the graph of f
and the x-axis?

Amazingly, it turns out that these questions are roughly ‘‘the same,’’ in the sense that both
are answered by the operation of integration. We will very soon make this more precise.

Areas Under Curves

We will begin by answering question (b): how to find the area under a curve. Suppose f(x) is
a function and we wish to find the area of the region bounded by the graph of f , the x-axis,
and the two vertical delimiters x = a and x = b; suppose a < b. The idea is to approximate
the region by rectangles (whose areas are easy to calculate) and then take a limit as the
number of rectangles goes to infinity.

Slogan: An infinitely accurate approximation ceases to be an approximation!

Definition. Imagine dividing the interval [a, b] into n equal subintervals, each of which
has length (b− a)/n: setting x0 = a and xn = b, we suppose these subintervals are [x0, x1],
[x1, x2], · · · , [xn−1, xn]. Now, on top of each interval [xi, xi+1], we place a rectangle whose
height is either f(xi) or f(xi+1). In the former case, we are taking a left-hand Riemann
sum and in the latter case, we are taking a right-hand Riemann sum.

We define the left-hand Riemann sum to be the sum of the areas of all the left-endpoint-
heighted rectangles:

L(f, [a, b], n) :=
b− a
n

n−1∑
k=0

f(xk)

and similarly we define the right-hand Riemann sum to be the sum of the areas of all
the right-endpoint-heighted rectangles:

R(f, [a, b], n) =
b− a
n

n∑
k=1

f(xk)

(Note the different indexing on the two sums!)

Theorem. If f is a piecewise continuous function, then

lim
n→∞

L(f, [a, b], n)

and
lim
n→∞

R(f, [a, b], n)
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both exist and are finite. Moreover, in this situation we have

lim
n→∞

L(f, [a, b], n) = lim
n→∞

R(f, [a, b], n)

and the common value is called the definite integral of f on [a, b]. This number is
denoted via the symbol ∫ b

a

f(x) dx

The definite integral of f on [a, b] represents the area under the graph of f and over the
interval [a, b] on the x-axis. We have to be a little bit careful when we say ‘‘area’’; for

example, what if f is negative on the interval [a, b]? In fact,
∫ b
a
f(x) dx gives the signed

area under the curve: area sitting above the x-axis is counted positively and area sitting
below the x-axis is counted negatively.

Example. Let

f(x) =

{
1 x ≥ 0

−1 x < 0

Then
∫ 5

−7 f(x) dx = −2, because over the interval [−7, 5], we get a positively-counted rectangle
sitting over [0, 5] with height 1, and a negatively-counted rectangle sitting over [−7, 0] with
height 1, so the signed area is 5− 7 = −2.

Proposition. So far, we have defined the definite integral
∫ b
a
f(x) dx for when a < b; we

can also make sense of this notation when b < a by defining∫ a

b

f(x) dx := −
∫ b

a

f(x) dx

With this definition, we have transitive bounds property of the definite integral
which says that for any numbers a, b, c, the equation∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

holds. At least in the setting where a < b < c and f is positive, this should be somewhat
geometrically intuitive: it just says that areas add.

Another important property is linearity of integration; just like differentiation, we have
that if f and g are functions, then∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

and if c is a constant, then ∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx
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Exercise. Suppose f is increasing, f(2) = 7 and f(6) = 11. Find a value of n such that the

error between R(f, [2, 6], n) and
∫ 6

2
f(x) dx is less than 10−9.

Exercise. If a function f is increasing or decreasing, then the definite integral
∫ b
a
f(x) dx is

sandwiched between R(f, [a, b], n) and L(f, [a, b], n) for all n. This need not be the case if f is
not monotonic: give an example of a function f and an interval [a, b] such that R(f, [a, b], 2)

and L(f, [a, b], 2) are both bigger than
∫ b
a
f(x) dx.

Recovering a Function From Its Derivative

Now, we turn to question (a): how do we recover a function f(x) from its derivative f ′(x)?
The idea here is to use ‘‘iterated linear approximation.’’ Suppose we know the value of f(a),
and we wish to find the value of f(b), where a < b.

Divide the interval [a, b] into n equal subintervals (just as before); again, each of these has
length (b − a)/n and setting x0 = a and xn = b, we may suppose these subintervals are
[x0, x1], [x1, x2], · · · , [xn−1, xn]. On each of these intervals, we will use linear approximation
to approximate the value of f(xi+1) from the value of f(xi).

Start with the value f(a) = f(x0). Using the linear approximation at a, we have

f(x1) ≈ f(x0) + f ′(x0) ·
b− a
n

and similarly, using the linear approximation at xi, we have

f(xi+1) =≈ f(xi) + f ′(xi) ·
b− a
n

⇐⇒ f(xi+1)− f(xi) ≈ f ′(xi) · b− an

Adding these all up and ‘‘telescoping,’’ we get

f(b)− f(a) ≈ b− a
n
·
n−1∑
k=0

f ′(xk)

Note that this is exactly a left-hand Riemann sum for f ′ over the interval [a, b]! (If we had
chosen to use the linear approximation at x1 first, then we’d have gotten the right-hand
Riemann sum.)

As we take n→∞, our approximation becomes exact, so we obtain the following (extremely
important) theorem:

Theorem (Fundamental Theorem of Calculus (FTC)). If f is differentiable, then for any
interval [a, b], we have ∫ b

a

f ′(x) dx = f(b)− f(a)

The Area Under a Parabola and Antiderivatives

We can use the FTC to calculate the area under the parabola y = x2 over the interval [0, 1].
The idea is that x2 is the derivative of a function we can explicitly write down, namely
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g(x) = x3/3. Thus, ∫ 1

0

x2 dx =

∫ 1

0

g′(x) dx = g(1)− g(0) =
1

3

(We also could have set up a Riemann sum and taken the limit as the number of subdivisions
goes to infinity, but this would have been much harder; this is an example of the power of
the FTC).

This example suggests making the following definition:

Definition. Given a function f(x), an antiderivative of f is a function F (x) such that
F ′(x) = f(x).

Theorem. Let f be a continuous function. Suppose F1 and F2 are antiderivatives of a
function f . Then F1 − F2 is a constant function.

Proof. We have (F1 − F2)
′(x) = f(x)− f(x) = 0, so F1 − F2 is a constant function.

Thus, a function does not have a unique antiderivative; it has a family of antiderivatives.
But any two antiderivatives are very close to each other: they differ only by a constant. The
FTC gives us another way to describe the family of antiderivatives of a function f(x):

Theorem (FTC: Second Form). If f is a continuous function, then the function

Fa(x) =

∫ x

a

f(x) dx

is an antiderivative of f for each choice of a; these are precisely the family of antiderivatives
of f . In particular, every function has an antiderivative.

Exercise. For each positive integer n, find an antiderivative of the function xn. Use this
antiderivative to calculate ∫ 1

0

xn dx

Exercise. Suppose g(x) is a function such that g(4) = 7. Consider the function

G(x) :=

∫ x3

x2
g(t) dt

Given that G′(2) = 11, find g(8).

Exercise. In the picture, the horizontal line y = c intersects the curve y = 2x− 3x3 in the
first quadrant. For what value of c are the two shaded areas equal?
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