
BITANGENTS AND THETA CHARACTERISTICS ON A

SMOOTH PLANE QUARTIC

SAMEER KAILASA

Contents

1. Introduction 2
2. Preliminaries on Curves 2
2.1. Notation and Facts 2
2.2. Smooth Quartic Plane Curves 2
2.3. Bitangent-Theta Characteristic Correspondence 3
3. Theta Characteristics and Quadratic Forms 4
4. Symplectic Spaces over F2 5
5. Application: Conics Through Bitangency Points 7
References 10

Date: -.

1



2 SAMEER KAILASA

1. Introduction

Let C ⊂ P2
C be a smooth quartic plane curve. A beautiful fact of enumerative

algebraic geometry is that any such C has precisely 28 bitangent lines. In fact,
much more is true: one can get a handle on the configuration of these lines via
bijections

Bit(C)↔ OTC(C)↔ OQW(C)

where Bit(C) is the set of bitangents to C, OTC(C) is the set of odd theta char-
acteristics on C, and OQW(C) is the set of odd quadratic forms on the 2-torsion
J(C)[2] of the Jacobian variety of C, whose associated bilinear form is (essentially)
the Weil pairing; we will define all these fancy objects shortly! The key idea is that
via these bijections, one can pass from statements about the configuration of the
bitangents to linear algebraic questions about a particular symplectic space over
F2. In this note, we will try to give some idea of how this contraption works; it’s a
lovely example of deep machinery touching base with down-to-earth geometry.

2. Preliminaries on Curves

2.1. Notation and Facts. We review some basic facts on curves to jog the reader’s
memory and fix notation. Most, if not all, of these facts, are proved somewhere in
[1] or [2]. For concreteness’ sake, we work over C throughout; let X be a smooth
connected projective curve, and let K denote the sheaf of rational functions on X.
§1: Given a divisor D on X, we associate the sheaf O(D) such that

O(D)(U) := {f ∈ K(U)× : D|U + div(f) ≥ 0}

and recall that the association D 7→ O(D) induces in this setting an isomorphism
Cl(X)→ Pic(X), where Cl(X) denotes the divisor class group and Pic(X) denotes
the Picard group of isomorphism classes of invertible sheaves. The degree of L ∈
Pic(X) is defined to be the degree of the corresponding divisor class under the
aforementioned isomorphism. For an element L ∈ Pic(X), we write h0(X,L) to
denote dim(H0(X,L)), i.e. the dimension of the space of global sections of L.
Recall that h0(X,L) is finite for all L ∈ Pic(X).
§2: We denote by |D| the complete linear system associated to a divisor D, i.e.

the set of all effective divisors E such that E ∼ D. For each E ∈ |D|, we have
E − D = div(f) for some f ∈ K(X)×, and the map |D| → H0(X,O(D)) given
by E 7→ f is defined up to scaling f by a constant, so we have an honest map
|D| → PH0(X,O(D)). This honest map is a bijection and, in particular, |D| is
nonempty iff h0(X,O(D)) > 0.
§3: For any morphism f : X → Y of smooth projective curves, the induced

inclusion K(Y ) ↪→ K(X) of function fields is a finite field extension; accordingly,
we define the degree of f to be the degree [K(X) : K(Y )] of this field extension.
A curve X of genus ≥ 2 is called hyperelliptic if it admits a morphism X → P1 of
degree 2. One can show that X is hyperelliptic iff it admits a degree 2 invertible
sheaf L with h0(X,L) = 2.

2.2. Smooth Quartic Plane Curves. In this section, we establish some relevant
facts on smooth quartic plane curves. Throughout, let C ⊂ P2

C denote a smooth
connected quartic plane curve.
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Lemma 2.1. Let ωC denote the canonical sheaf of rational 1-forms on C. Then
ωC ∼= OC(1), where OC(1) = ι?O(1) for ι : C ↪→ P2 and O(1) the invertible sheaf
associated to the hyperplane divisor class on P2.

Proof. This is a consequence of the adjunction formula, which states that if X is a
smooth projective variety and Y ↪→ X is a smooth codimension 1 subvariety, then

KY = (KX + Y )|Y
where KZ denotes the canonical divisor class on Z and |Y denotes restriction to
Y . On P2, let H denote the hyperplane divisor; then KX ∼ −3 ·H by a standard
computation and C, thought of as a divisor, has C ∼ 4 · H since C is a quartic.
It follows that KC = H|C , so the canonical class of C is the hyperplane section,
which corresponds to the sheaf OC(1). �

Corollary 2.2. The effective canonical divisors on C are precisely the divisors C.L
where L ⊂ P2 is a line.

Proof. This follows immediately from the above lemma and the isomorphism Cl(C) ∼=
Pic(C). �

Corollary 2.3. If D is any effective divisor of degree 2 on C, then h0(C,O(D)) =
1.

Proof. If D = P + Q for points P,Q ∈ C (not necessarily distinct), then let L be
the line through P and Q (if P = Q, the tangent to C at P ). We know C.L ∼ KC ,
by the previous corollary. Moreover, the lemma implies that KC is very ample.
Accordingly, the result of [1][Prop. IV.3.1] implies dim |D| = dim |KC | − 2. But
dim |KC | = h0(C,ωC)−1 = 2, where we have used the degree-genus formula. Hence
h0(C,O(D)) = 1 + dim |D| = 1. �

Corollary 2.4. A smooth quartic plane curve is not hyperelliptic.

Proof. If C were hyperelliptic, it would admit a degree 2 invertible sheaf L with
h0(C,L) = 2. But the above corollary shows this cannot happen.

�

2.3. Bitangent-Theta Characteristic Correspondence. We now describe the
objects of interest in this note, as well as the important bijection between them.

Definition 2.5. A bitangent to a curve C ⊂ P2 is a line L such that the divisor
C.L equals 2P + 2Q for some P,Q ∈ C, not necessarily distinct. Let Bit(C) denote
the set of bitangents to C.

Definition 2.6. A theta characteristic on a curve C is an invertible sheaf L
such that L ⊗ L ∼= ωC . Equivalently, a theta characteristic may be thought of as
a divisor class D such that 2D ∼ KC . A theta characteristic is said to be odd
(resp. even) if h0(C,L) is odd (resp. even). Let TC(C) denote the set of theta
characteristics on C, and let OTC(C) denote the set of odd theta characteristics
on C.

Proposition 2.7. Let C ⊂ P2 be a smooth quartic plane curve. There is a bijection

Bit(C)↔ OTC(C)

given by

L 7→ 1

2
(C.L)
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Proof. If L ∈ Bit(C), then C.L ∼ KC by Corollary 2.2, so 1
2 (C.L) is indeed a theta

characteristic. Moreover, by Corollary 2.3, it follows that 1
2 (C.L) is an odd theta

characteristic.
We first show the map is surjective. Suppose D is an odd theta characteristic

on C, given as a divisor with 2D ∼ KC . Since h0(C,O(D)) > 0, it follows that
|D| is nonempty; choose E ∼ D an effective divisor. Writing E = P + Q, since
2E = 2P + 2Q is canonical, it follows from Corollary 2.2 that 2E = C.L for some
line L.

To see that the map is injective, suppose two bitangents L1 and L2 yield the
same theta characteristic. It would follow that there exist points P,Q,R, S ∈ C
with {P,Q} 6= {R,S} as sets, such that P +Q ∼ R+S. But then P +Q−R−S =
div(f) for some rational function f , and such an f would yield a hyperelliptic map
C → P1. �

3. Theta Characteristics and Quadratic Forms

In this section, we will establish a correspondence between theta characteristics
on a curve X and quadratic forms on a particular F2-vector space. Our exposition
here is based upon [6]. We refer to the following facts on abelian varieties, whose
proofs can be found in [3].
§1: Associated to every smooth projective curve X of genus g, there is an abelian

variety called the Jacobian of X, denoted J(X), which is isomorphic as a group with
the subgroup Pic0(X) ⊂ Pic(X) of degree 0 line bundles. The n-torsion in J(X),
denoted J(X)[n] (and consisting of invertible sheaves L such that L⊗n ∼= OX), is
free of rank 2g as a Z/nZ module, i.e. J(X)[n] ∼= (Z/nZ)2g.
§2: For each n, there is a canonical nondegenerate alternating bilinear form

en : J(X)[n]× J(X)[n]→ µn

where µn is the multiplicative group of nth roots of unity. This is called the Weil
pairing on J(X)[n]. We will be concerned specifically with n = 2, in which case we
can construct e2 explicitly as a form taking values in the additive group Z/2Z. If
f is a rational function on X and D =

∑
npP is a divisor with Supp(D) disjoint

from Supp(div(f)), we set

f(D) :=
∏
p∈X

f(p)np

The classic Weil reciprocity law says that for rational functions f , g on X with
Supp(div(f)) and Supp(div(g)) disjoint, we have f(div(g)) = g(div(f)). Now,
suppose D1, D2 ∈ J(X)[2], so that 2D1 ∼ (f) and 2D2 = (g) for some rational
functions f and g. It follows that(

f(D2)

g(D1)

)2

=
f(div(g))

g(div(f))
= 1

We finally set

e2(D1, D2) :=

{
0 if f(D2) = g(D1)

1 if f(D2) = −g(D1)

Remark 3.1. Since any two theta characteristics on X differ by an element of
J(X)[2], it follows that there are (non-canonical) bijections J(X)[2] → TC(X)
and, in particular, we see that any curve has precisely 22g theta characteristics.
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We now cite the following deep theorem of Mumford:

Theorem 3.2. For any θ ∈ TC(X), the map qθ : J(X)[2]→ Z/2Z given by

qθ(L) := h0(X,L ⊗ θ) + h0(X, θ) (mod 2)

is a quadratic form. Moreover, for any θ, the associated bilinear form bθ(v, w) :=
qθ(v + w)− q(v)− q(w) recovers the Weil pairing, i.e. bθ = e2 for all θ ∈ TC(X).
In particular, it follows that for any v, w ∈ J(X)[2] and θ ∈ TC(X), we have

e2(v, w) ≡ h0(X, v ⊗ w ⊗ θ) + h0(X, v ⊗ θ) + h0(X,w ⊗ θ) + h0(X, θ) (mod 2)

Proof. See [4]. �

Accordingly, we define the set QW(X) to be the set of quadratic forms on J(X)[2]
whose associated bilinear form is the Weil pairing e2. The theorem above gives us
a map TC(X)→ QW(X), and in fact this is a bijection.

Proposition 3.3. Let X be a smooth projective curve of genus g. There is a
bijection

TC(X)↔ QW(X)

given by
θ 7→ qθ

Proof. If θ, θ′ ∈ TC(X) are distinct, a quick computation shows that qθ′(v)−qθ(v) =
e2(v, θ′ ⊗ θ−1). If qθ′ = qθ, then nondegeneracy of the Weil pairing would imply
θ′ ∼= θ; hence the map TC(X) → QW(X) is injective. More generally, for any q,
q′ ∈ QW(X), we have q − q′ is a linear functional on J(X)[2] (using that we’re in
characteristic 2), and hence q−q′ = e2(·, v) for some v ∈ J(X)[2]. If q ∈ QW(X), we
may write q = qθ+e2(·, v) for some v ∈ J(X)[2], and so q = qθ′ where θ′ = v⊗θ. �

4. Symplectic Spaces over F2

Definition 4.1. Let k be a field. A symplectic space (over k) is a pair (V, b)
consisting of a finite-dimensional k-vector space V and a nondegenerate alternating
bilinear form b on V . We say q is a quadratic form on (V, b) if q is a quadratic
form on V having the property that the associated bilinear form bq(v, w) := q(v +
w)− q(v)− q(w) agrees with b, i.e. bq = b.

The above considerations tell us that (J(X)[2], e2) is a symplectic space over F2.
In this section, we will record some linear algebra of symplectic spaces (especially
over F2) and bring it to bear on our particular symplectic space of interest.

Remark 4.2. If q is a quadratic form on V , then the associated bilinear form is
bq(v, w) := q(v + w) − q(v) − q(w). Moreover, if char(k) 6= 2, then we can recover
q from bq via the equation bq(v, v) = q(2v) − 2q(v) = 2q(v). Thus, if char(k) 6= 2,
there is at most one quadratic form from which a bilinear form can arise; however,
if char(k) = 2, then as we have seen, there can be many q yielding the same bq.

Proposition 4.3. A symplectic space is always even-dimensional. Moreover, any
symplectic space (V, b) of dimension 2n admits a basis of the form

{e1, · · · , en, f1, · · · , fn}
such that b(ei, ej) = b(fi, fj) = 0 and b(ei, fj) = δij for all pairs 1 ≤ i ≤ j ≤ n.
Such a basis is called a symplectic basis.
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Proof. The proof is a straightforward induction on dimension; see [5] for details. �

Definition 4.4. Let (V, b) be a symplectic space of dimension 2n. A subspace
W ⊂ V is called isotropic if b(v, w) = 0 for all v, w ∈W . Since b yields an injection
W → Ann(W ) ⊂ V ?, it follows that dim(W ) ≤ n for any isotropic subspace W . A
maximal isotropic subspace, i.e. an isotropic subspace L ⊂ V with dim(L) = n, is
called Lagrangian.

Lemma 4.5. Any basis of a Lagrangian subspace L ⊂ V extends to a symplectic
basis for (V, b).

Proof. See [5].
�

From here on, suppose we are working with a symplectic space (V, b) over F2.

Definition 4.6. Suppose q is a nondegenerate quadratic form on (V, b) and let
{e1, · · · , en, f1, · · · , fn} be a symplectic basis for (V, b). The Arf invariant of q is
the element of Z/2Z given by

Arf(q) :=

n∑
i=1

q(ei)q(fi)

Proposition 4.7. (a) The Arf invariant is well-defined, i.e. does not depend on
the choice of symplectic basis.

(b) If q is a quadratic form on (V, b), then for any v ∈ V , the map w 7→ q(w) +
b(v, w) is also a quadratic form, denoted q+v?. Moreover, we have Arf(q+v?) =
Arf(q) + q(v).

(c) If q0, q1, and q2 are all quadratic forms on (V, b), then

Arf(q0 + q1 + q2) = Arf(q0) + Arf(q1) + Arf(q2) + 〈v1, v2〉

where q0 + q1 = b(·, v1) and q0 + q2 = b(·, v2).

Proof. We just sketch the first part. Let Sp(V ) denote the group of symplectic
transformations of V , i.e. linear maps T : V → V such that b(v, w) = b(Tv, Tw)
for all pairs v, w ∈ V . In particular, any two symplectic bases differ by an element
of Sp(V ). One can show that Sp(V ) is generated by the “transvection” maps
Tu : V → V given by

Tu(v) = v + b(v, u)u.

It then suffices to show that the Arf invariant is preserved under the action of
transvections, which is a straightforward computation. We omit the proofs of parts
(b) and (c), which are also quick computations. �

Definition 4.8. A quadratic form q on (V, b) is called odd (resp. even) if Arf(q) =
1 (resp. Arf(q) = 0).

Returning to the situation of (J(X)[2], e2), we note that this definition agrees
with the correspondence TC(X) ↔ QW(X), due to the following theorem, again
deep and again due to Mumford.

Theorem 4.9. If θ ∈ TC(X), then Arf(qθ) ≡ h0(X, θ) (mod 2).

Proof. See [4]. �
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Corollary 4.10. The bijection TC(X)↔ QW(X) restricts to a bijection OTC(X)↔
OQW(X), where OQW(X) denotes the set of odd quadratic forms on (J(X)[2], e2).
In particular, in the case where X = C is a smooth quartic plane curve, we have
bijections

Bit(C)↔ OTC(C)↔ OQW(C)

We can now count the number of odd/even theta characteristics onX by counting
the odd/even quadratic forms on (J(X)[2], e2); this proceeds by a short combina-
torial argument!

Lemma 4.11. Let (V, b) be a symplectic space over F2 of dimension 2n. The num-
ber of odd (resp. even) quadratic forms on (V, b) is 2n−1(2n−1) (resp. 2n−1(2n+1)).

Proof. Choose a symplectic basis {e1, · · · , en, f1, · · · , fn}. We define on V a qua-
dratic form

q0

(
n∑
i=1

αiei + βifi

)
:=

n∑
i=1

αiβi

By a quick computation in these coordinates, one can check that q0 is in fact a
quadratic form over (V, b), and furthermore note that Arf(q0) = 0. We know that
any other quadratic form on (V, b) is of the form q = q0 + b(·, v) for some v ∈ V .
By Proposition 4.5, we see that Arf(q) = Arf(q0 + v?) = q0(v), hence the even
quadratic forms on (V, b) are in bijection with the zeroes of q0. We should therefore
count these zeroes.

We proceed by induction on n to show that the number of zeroes of q0 is 2n−1(2n+
1). The base cases n = 0 and n = 1 are easy to check by hand. Suppose the result
is true for n = k. For n = k + 1, we do casework on the pair (αk+1, βk+1). If
αk+1βk+1 = 0 (and there are three such pairs), then the corresponding solutions
are in bijection with those for the n = k case, which thus contributes 3 ·2k−1(2k+1)
zeroes to the count. If αk+1 = αk+1 = 1, then the corresponding solutions are
in bijection with the non-solutions for the n = k case, which thus contributes
2k−1(2k − 1) zeroes to the count. We conclude there are a total of

3 · 2k−1(2k + 1) + 2k−1(2k − 1) = 2k−1(2k+2 + 2) = 2k(2k+1 + 1)

as desired. �

Corollary 4.12. On a smooth projective curve X of genus g, there are 2g−1(2g−1)
odd theta characteristics and 2g−1(2g + 1) even theta characteristics.

Corollary 4.13. A smooth quartic plane curve has precisely 28 bitangent lines.

Proof. By Corollary 4.10, using that a quartic plane curve has genus 3, it follows
there are 22(23 − 1) = 28 bitangents. �

5. Application: Conics Through Bitangency Points

Let C ⊂ P2 be a smooth quartic plane curve. At this point, we have a little
machine set up that allows us to convert statements about quadratic forms on the
symplectic space (J(C)[2], e2) to statements about the the bitangent lines to C.
Broadly speaking, we can turn geometry into combinatorics and vice versa! We
have used this machine above to count the bitangents to C; in this section, we will
use it to say a bit more about their configuration. Namely, we will answer the
question:
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Question 5.1. Given L1, · · · , L4 ∈ Bit(C), when does there exist a conic Q such
that

Q.C =

4∑
i=1

1

2
(Li · C)?

Conversely, how many conics Q exist such that the above equation holds for some
L1, · · · , L4 ∈ Bit(C)?

The main reference for this section is [7].

Lemma 5.2. Suppose L1, · · · , L4 ∈ Bit(C). There is a conic Q ⊂ P2 such that

Q.C =
∑4
i=1

1
2 (Li · C) iff the quadratic forms Q1, · · · , Q4 on (J(X)[2], e2) corre-

sponding to L1, · · · , L4 satisfy

Q1 +Q2 +Q3 +Q4 = 0

Proof. Let ι : C → P2 denote the inclusion. From Lemma 2.1, we have ι?O(2) =
ω⊗2C , corresponding to the divisor class 2KC . Hence, an effective divisor E on C is
cut by a conic iff E ∼ 2KC . Given L1, · · · , L4 ∈ Bit(C) and setting Di = 1

2 (Li.C),
it follows that a conic cuts the divisorD1+· · ·+D4 iffD1+· · ·D4 ∼ 2KC . To convert
this to a statement about quadratic forms, recall from the proof of Proposition 3.3
that we have the identity qD − qD′ = e2(·, D −D′). Thus, we have

Q1+Q2+Q3+Q4 = e2(·, D1−D2)+e2(·, D3−D4) = e2(·, 2KC−D1−D2−D3−D4)

and it follows that D1 + · · ·D4 ∼ 2KC iff Q1 +Q2 +Q3 +Q4 = 0. �

To study Question 5.1, we should therefore study the corresponding object on
(J(C)[2], e2), i.e. quadruples of odd quadratic forms summing to zero.

Definition 5.3. Let (V, b) be a symplectic space over F2. A syzygetic tetrad is
a collection Q1, · · · , Q4 of distinct odd quadratic forms on (V, b) such that

Q1 +Q2 +Q3 +Q4 = 0

We wish to count the syzygetic tetrads on (V, b) in the case when dim(V ) =
dim(J(C)[2]) = 6. To do this, we introduce an additional bit of terminology.

Definition 5.4. Let (V, b) be a symplectic space over F2. A syzygetic triad is a
collectionQ1, Q2, Q3 of distinct odd quadratic forms on (V, b) such thatQ1+Q2+Q3

is odd.

Corollary 5.5. Suppose Q1, Q2, Q3 are odd quadratic forms on (V, b). Write Q1 +
Q2 = b(·, v2) and Q1 +Q3 = b(·, v3). Then Q1 +Q2 +Q3 is odd iff b(v2, v3) = 0.

Proof. This follows directly from part (c) of Proposition 4.7. �

Lemma 5.6. Assume dim(V ) = 6, and let Q1, Q2, Q3, Q4 be odd quadratic forms
on (V, b). Then, the following are equivalent:

(i) Q1, Q2, Q3, Q4 is a syzygetic tetrad
(ii) all four collections Qi, Qj , Qk with 1 ≤ i < j < k ≤ 4 are syzygetic triads

(iii) three of the four collections Qi, Qj , Qk with 1 ≤ i < j < k ≤ 4 are syzygetic
triads
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Proof. The implications (i) =⇒ (ii) =⇒ (iii) are immediate. Suppose (iii) is
true, and assume without loss of generality that the three known syzygetic triads
are those containing Q1. Write Q1 +Qi = b(·, vi) for 2 ≤ i ≤ 4. By Proposition 4.7,
it follows that Q1(vi) = 0 for all 2 ≤ i ≤ 4. Moreover, by Corollary 5.5, it follows
that b(vi, vj) = 0 for all pairs 2 ≤ i ≤ j ≤ 4; hence W := 〈v2, v3, v4〉 is isotropic.

Suppose dim(W ) = 3, so that W is Lagrangian. Extending v2, v3, v4 to a sym-
plectic basis for V (Lemma 4.5), it would follows that Arf(Q1) = 0, contradic-
tion that Q1 is odd. Hence v2, v3, v4 are linearly dependent, and it follows that
v2 + v3 + v4 = 0 (as these vectors are nonzero and pairwise distinct). We deduce
that

Q1 +Q2 +Q3 +Q4 = b(·, v2 + v3 + v4) = 0

as desired. �

Definition 5.7. For any nonzero v ∈ V , we have the associated Steiner set Sv of
odd quadratic forms Q such that Q(v) = 0. Equivalently, by Proposition 4.5, Sv is
the set of odd quadratic forms Q such that Q+ v? is also odd. We say Q,Q′ ∈ Sv
are paired if Q = Q′ + v? or, equivalently, Q + Q′ = b(·, v). Note that the pairs
partition each Sv.

Lemma 5.8. If dim(V ) = 2n, each Steiner set Sv has 2n−2(2n−1− 1) pairs of odd
quadratic forms. Equivalently, |Sv| = 2n−1(2n−1 − 1).

Proof. If {Q,Q+ v?} ⊂ Sv is a pair, we obtain an odd quadratic form on

〈v〉⊥ := {w ∈ V : b(w, v) = 0}
by restriction, which then descends to an odd quadratic form on 〈v〉⊥/〈v〉 since
Q(v) = 0. One can check that this map yields a bijection between pairs in Sv and
odd quadratic forms on the 2n − 2 dimensional space 〈v〉⊥/〈v〉. By Lemma 4.11,
the result follows. �

Lemma 5.9. Assume dim(V ) = 6 and Q1, Q2, Q3 are odd quadratic forms belong-
ing to the Steiner set Sv. Then Q1, Q2, Q3 is a syzygetic triad iff some two of them
are paired in Sv.

Proof. If some two are paired, e.g. Q1+Q2 = b(·, v), then Q1+Q2+Q3 = Q3+v? is
odd, since Q3 ∈ Sv. Conversely, suppose Q1 +Q2 +Q3 is odd. If e.g. Q1 +Q2 6= v?

and Q1 +Q3 6= v?, then Q1, Q2, Q3, Q1 + v? is a collection of four odd forms with
the property that each set of 3 containing Q1 is a syzygetic triad. It follows from
Lemma 5.6 that Q2 +Q3 = b(·, v), so Q2 and Q3 are paired. �

Proposition 5.10. Assume dim(V ) = 6. Then there are precisely 1260 syzygetic
triads and 315 syzygetic tetrads on (V, b).

Proof. There are 63 distinct Steiner sets (one for each nonzero vector in V ) and,
by Lemma 5.8, each Steiner set consists of 6 disjoint pairs. By Lemma 5.9, it
follows that there are 60 = 6 · 10 syzygetic triads contained in each Steiner set;
indeed, there are 6 ways to choose a pair and 12 − 2 = 10 ways to choose a third
quadratic form. On the other hand, each syzygetic triad Q1, Q2, Q3 is contained in
exactly three distinct Steiner sets, namely the sets Svij for each vij coming from
Qi +Qj = b(·, vij). Thus, the total number of syzygetic triads is 63 · 60/3 = 1260.
By Lemma 5.6, each syzygetic triad Q1, Q2, Q3 is contained in a unique syzygetic
tetrad (namely, Q1, Q2, Q3, Q1 +Q2 +Q3) and there are four triads in each tetrad:
thus, the total number of syzygetic tetrads is 1260/4 = 315. �
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Having established the key enumerative result, we apply it to the case (V, b) =
(J(C)[2], e2) and translate back into the language of geometry.

Proposition 5.11. (a) For any pair L,M ∈ Bit(C), there are exactly five other
pairs L′,M ′ ∈ Bit(C) such that there exists a conic Q ⊂ P2 with

Q.C =
1

2
(L+M + L′ +M ′).C

(b) There are exactly 315 conics Q ⊂ P2 such that Q.C =
∑4
i=1

1
2 (Li ·C) for some

L1, · · · , L4 ∈ Bit(C).

Proof. The pairs of bitangents alluded to in part (a) are precisely those other pairs
in the Steiner set Sv with QL +QM = e2(·, v). Part (b) follows from the bijection
between such conics and syzygetic tetrads. �
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