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An introduction

In this note, we record a short, slick proof of the fundamental combinatorial identity
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Here, A runs over the partitions of # and f A denotes the number of standard Young tableaux of shape A. This proof
was presented by John Stembridge in Math 631 at University of Michigan, and I liked it so much I wanted to write
it down with some nice pictures. Traditionally, one proves the above identity via an explicit bijection between
pairs of standard Young tableaux of size n and permutations on # letters; this is known as the Robinson-Schensted
correspondence. Our nontraditional approach is more algebraic in flavor and, according to Stembridge, is an
archetypical example of the power of such algebraic recastings in combinatorics. In particular, this approach could
be seen as an upgrade of the classic combinatorial technique “count in two ways” to an algebraic “compute in two
ways.”

The proof

Step 1: Given a partition A, we write D) to denote its Young diagram. Let ) be the C-vector space spanned by
all diagrams D, (coming from all partitions of all integers). We introduce the up operator U : Y — Y and down
operator D : Y — ) on this space, given by

Uu(D,) = Y. Dy
ACH|p|=[A+1

D(DA) = Z Dy
ADw,|pul=|A|-1

In words, U takes in a Young diagram and adds up all the ways to append one box and obtain a valid Young
diagram; D takes in a Young diagram and adds up all the ways to excise one box and obtain a valid Young diagram.
For example, we may calculate
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The key combinatorial observation is that standard Young tableau are in bijection with maximal chains of Young
diagrams ordered by inclusion. For example, the chain
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gives a recipe for filling the squares, namely to fill them in the order in which they are appended. Thus, the chain
shown above corresponds to the standard Young tableau
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(and conversely, given a standard Young tableau, one can easily reconstruct the corresponding maximal chain). In
particular, this observation implies U" (Dg) = Ya1,, f*D; and D"(D,) = f*Dg. Applying these operations in turn,
we obtain the promising result
D"U"(Dg) = (Z (fA)2> Do
Abn

To show the desired identity, we will now compute this vector another way.



Step 2: Remarkably, the operators U and D satisfy the defining relation of the Weyl algebra, namely

DU—-UD =1

In this step, we show the relation holds. To do so, we should study and count the summands appearing in UD(D,)
and DU(D,). The summands appearing in UD (D, ) are precisely the diagrams obtained from D, by excising a
corner block and reattaching it somewhere that yields another valid Young diagram (possibly reattaching to the
same position whence it came, yielding D, again). Similarly, the summands appearing in DU (D, ) are precisely the
diagrams obtained from D, by attaching a block to produce a valid Young diagram, then excising a corner (possibly
excising the same block that was attached, yielding D, again).

Call any summand not equal to D), a proper summand. Note that for each appearance of D, as a proper summand
of UD(D, ), there is a corresponding appearance as a proper summand of DU(D, ) (and vice versa). To see this, just
imagine doing the diagram surgeries in reverse, e.g.
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Hence, when calculating (DU — UD)(D), ), all the proper summands cancel, leaving just
(DU —UD)(D,) = (#{summands in U(D,)} — #{summands in D(D,)})D, =: a,D,

To complete Step 2, we should show a, = 1 for all partitions A. To attach a block to D, and obtain a valid Young
diagram, we can append the block to the end of any row with length strictly less than that of the row above it, or we
can put the block as a new row. To excise a block from D, and obtain a valid Young diagram, we can slice out the
block at the end of any row whose length is strictly greater than that of the row below it. Indeed, this implies

a) = (#{pairs of consec. rows with unequal lengths} + 1) — (#{pairs of consec. rows with unequal lengths}) =1

Step 3: It's smooth sailing from here. We just compute with the relation DU — UD = 1. A quick computation
shows this relation implies DU" = nU"~1 4+ U"D for all n, hence

D"U"(Dg) = nD"'U""1(Dg) + U"D(Dg) = nD"'U"~1(Dgp)

By induction, this clearly implies D"U" (Dg) = n!Dg, thereby completing the proof.

A brief remark

Apparently, Young’s lattice (the lattice of Young diagrams ordered by inclusion) is an example of what’s called
a differential poset, on account of the appearance of the Weyl algebra action that is analogous to the relation
[x,9x] = 1 for differential operators. There is basically one other interesting example of a differential poset, which
is called the Young-Fibonacci lattice. Stanley conjectures that every differential poset must be squished between
Young’s lattice and the Young-Fibonacci lattice, in the sense that for any differential poset, the number r(n) of
vertices of rank n satisfies

p(n) < r(n) <,

where p(n) is the number of partitions of n and F, is the nth Fibonacci number. The upper bound was proven in
2012 and the lower bound remains open. I thought this was cool.
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