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Abstract

We extend the local Langlands conjectures to a certain class of discon-
nected groups, allowing non-abelian component groups, and recast in this
language some aspects of twisted endoscopy. We further introduce nor-
malized twisted transfer factors and a normalized correspondence between
an L-packet for a disconnected group and the set of representations of the
centralizer groups of its Langlands parameter.

1 INTRODUCTION

Let F be a local field of characteristic zero. The goal of this paper is to extend
the refined local Langlands conjecture to the case of disconnected groups. We
recall briefly the statement of this conjecture, referring to [Kal16a] for details.
Given a connected reductive F -group G′ there should be a bijection between
the set of (equivalence classes of) Langlands parameters φ : LF → LG′ and the
set of L-packets Πφ(G

′). An L-packet is a finite set of irreducible admissible
representations ofG′(F ). It is empty if and only if φ is non-relevant for G′. The
L-packets are disjoint and exhaust the set of isomorphism classes of irreducible
admissible representations of G′(F ). To enumerate the constituents of Πφ(G′)
one fixes an inner twisting ξ : G → G′ with G quasi-split and enriches it to a
rigid inner form datum (ξ, z). One further fixes a Whittaker datum w for G.
The inner twisting provides an identification of dual groups Ĝ′ = Ĝ and of
L-groups LG′ = LG. Let Z ⊂ G be a finite central subgroup that is sufficiently
large to realize z. Let Ḡ = G/Z. The natural quotient map G → Ḡ is an
isogeny. Let ̂̄G → Ĝ be the dual isogeny and let Z( ̂̄G)+ be the preimage of
Z(Ĝ)Γ. The element z provides a character [z] : π0(Z( ̂̄G)+) → C×. When F is
p-adic the character [z] determines the equivalence class of the rigid inner twist
(G′, ξ, z) uniquely. When F = R multiple equivalence classes of rigid inner
twists may lead to the same character [z], and they are related by H1(R, G′

sc).
Let Sφ ⊂ Ĝ be the centralizer of the image of φ and let S+

φ be its preimage

in ̂̄G. Let Irr(π0(S+
φ ), [z]) be the set of isomorphism classes of those irreducible

representations of the finite group π0(S+
φ ) whose restriction to π0(Z( ̂̄G)+) is [z]-

isotypic. There should be a map Πφ(G
′)→ Irr(π0(S+

φ ), [z]). In the p-adic case it
should be bijective. In the case F = R the map should become bijective if one
replaces Πφ(G′) with the disjoint union over all rigid inner twists giving rise to
the same character [z]. In all cases, this map depends on the choice of w and the
rigid inner twist data. That same data provides a normalization ∆[ė, z,w, (ξ, z)]
of the Langlands–Shelstad transfer factor for each refined endoscopic datum ė
for G and z-pair z for it. The map Πφ(G

′) → Irr(π0(S+
φ ), [z]) is expected to

satisfy the endoscopic character identites with respect to this normalization
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of the transfer factor when the parameter φ is tempered. More precisely, if
π 7→ ρπ is the above map, then a semi-simple element ṡ ∈ S+

φ leads to the
virtual character Θṡφ =

∑
π∈Πφ(G′) trρπ(ṡ)Θπ of G′(F ). At the same time the

connected centralizer Ĥ of the image s ∈ Ĝ of ṡ and the parameter φ lead to
a quasi-split group H and a parameter φz for its cover Hz that is part of the
z-pair, hence to a similar virtual character SΘφz =

∑
πz∈Πφz (Hz) dimρπzΘπz

on Hz(F ). The transfer factor ∆[ė, z,w, (ξ, z)] gives rise to a correspondence of
functions f ↔ f z between functions on G′(F ) and functions of Hz(F ) and the
expected character identity is Θṡφ(f) = SΘφz(f z). A suitable generalization is
supposed to hold in the non-tempered case once φ has been replaced by an
Arthur parameter. We note here that we have absorbed the Kottwitz sign e(G′)
into the transfer factor, rather than into the virtual character Θṡφ.

In this paper we extend these conjectures to certain disconnected algebraic
groups whose identity component is reductive. Motivation for this comes on
the one hand from the natural occurrence of disconnected groups in number
theoretic contexts, most notably the orthogonal groups, and on the other hand
from the natural occurrence of disconnected groups in representation theoretic
contexts, for example by taking centralizers of semi-simple elements. In fact,
disconnected groups appear in the classification of tempered representations
of connected reductive groups. If M ′ is a Levi subgroup of the connected re-
ductive group G′ and σ is a square-integrable representation of M ′(F ), the
subgroup of G′(F ) that normalizes M ′ and stabilizes the isomorphism class
of σ plays an important role in the decomposition into irreducible pieces of
the parabolic induction of σ. In order to properly normalize the intertwining
operators needed to decompose this parabolic induction one is led to study
the representation theory of disconnected groups of this form. This leads to a
normalized version of Arthur’s local intertwining relation [Art89, §7], [Art13,
§2.4]. We will present this in a forthcoming paper as an application of the re-
sults of the current paper.

The class of disconnected groups we consider in this paper are those affine
algebraicF -groups G̃′ whose identity componentG′ is reductive, and for which
there exists an isomorphism G̃′ ∼= G′ ⋊ A over the algebraic closure F̄ of F ,
where A is a finite (possibly non-abelian) group of automorphisms of G′ that
preserves a F̄ -pinning. The second condition is automatically fulfilled if G′ is
adjoint, but in general it does restrict the class of disconnected groups we are
considering. The possible forms of such groups G̃′ can be classified cohomo-
logically in a manner similar to the connected case. In the connected case the
classification has two steps – one first classifies quasi-split groups by means of
based root data, and then inner forms in terms of Galois cohomology. In the
disconnected case the classification has three steps – one first classifies quasi-
split disconnected groups, then inner forms, and then (what we have called)
“translation forms”. A quasi-split disconnected group is of the form G ⋊ A,
where G is a quasi-split connected reductive F -group, and A is a subgroup of
its automorphism group that fixes an F -pinning. One sees easily that we may
assume without loss of generality that A is a constant group scheme. Then we
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have [G⋊ A](F ) = G(F )⋊ A. An inner form of G⋊ A is obtained by twisting
via elements of Z1(F,G/Z(G)A). A translation form is obtained by twisting via
elements of Z1(F,Z1(A,Z(G))). These two twisting steps can be performed in
either order. While in the quasi-split case the split exact sequence

1→ G→ G⋊A→ A→ 1

remains exact on F -points and retains a canonical splitting, after inner twisting
or translational twisting neither of these statements is true in general. More
precisely, given z̄ ∈ Z1(F,G/Z(G)A) there is a natural subgroup A[z̄] ⊂ A so
that if G̃z̄ is the corresponding inner form of the quasi-split group G̃ = G⋊ A,
then the sequence

1→ Gz̄(F )→ G̃z̄(F )→ A[z̄] → 1

is exact, but it is not equipped with a natural splitting even if it is split. A sim-
ilar remark applies to translation forms. In this paper we extend the formula-
tion of the refined local Langlands correspondence to inner forms of quasi-split
disconnected groups, leaving the treatment of translation forms, as well as the
removal of the condition (G̃′)F̄

∼= (G′ ⋊A)F̄ , to a future paper.
There are multiple questions one must answer when attempting to extend

the Langlands conjectures to the disconnected setting: What will be the dual
group, or the L-group, of a disconnected group? What will be the concept of
a Langlands parameter and of its centralizer? What are endoscopic groups?
What are transfer factors and how does one normalize them?

We hasten to say that we do not perform any non-trivial harmonic analysis
in this paper. Instead, we use the already established framework of twisted en-
doscopy and the fundamental results of Langlands, Shelstad, Kottwitz, Arthur,
Waldspurger, and Ngo. Part of this paper consists of introducing a slightly
different language for this theory. We hope that this language will be benefi-
cial for some applications. One advantage it provides is that the statements of
the conjectures for disconnected groups become formally very similar to the
statements for connected groups. Another advantage it provides is in organiz-
ing multiple automorphisms of a connected reductive group. We note further
that our language does not encompass the full generality of twisted endoscopy,
even if we restirct attention to a cyclic component group. Indeed, we do not
consider a character ω : G(F ) → C×, and the automorphisms of Gz̄ we obtain
from elements of G̃z̄(F ) are not as general as the theory of twisted endoscopy
allows.

With this in mind, the answers we give to the above questions are the fol-
lowing. Consider a quasi-split disconnected reductive group G̃ = G⋊A and an
inner form G̃z̄ corresponding to an element z̄ ∈ Z1(F,G/Z(G)A). The groups
G̃ and G̃z̄ will have the same set of Langlands parameters, and this is the set
of Langlands parameters for the connected group G (and its inner form Gz̄).
Thus, the notion of Langlands parameters remains unchanged when we pass
from the connected group G to the disconnected group G̃. What changes is
the notion of equivalence. Two parameters for Gz̄ are considered equivalent if
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they are conjugate under Ĝ. We declare two parameters for G̃z̄ to be equivalent
if they are conjugate under Ĝ ⋊ A[z̄]. Note that the notion of equivalence de-
pends on the inner form z̄ being considered, in contrast to the case of connected
groups.

The new notion of equivalence leads to a new notion of the centralizer
group Sφ of a Langlands parameter φ : LF → LG. Indeed, Sφ can be viewed
as the group of self-equivalences of φ. In the disconnected case we now obtain
S̃
[z̄]
φ as the group of self-equivalences of φ in the new sense of equivalence. In

other words, S̃[z̄]
φ is the centralizer of φ in the group Ĝ ⋊ A[z̄]. We obtain the

exact sequence
1→ Sφ → S̃[z̄]

φ → A[φ],[z̄] → 1,

where A[φ],[z̄] = A[φ]∩A[z̄] is the stabilizer in A[z̄] of the Ĝ-conjugacy class of φ.
Let Πφ(G̃z̄) denote the set of irreducible admissible representations of G̃z̄(F )

whose restriction to Gz̄(F ) intersects Πφ(Gz̄). We think of Πφ(G̃z̄) as the L-
packet for the disconnected group G̃z̄(F ) associated to the parameter φ. To
enumerate its members, choose a lift z ∈ Z1(u → W,Z → G) of z̄, where
Z ⊂ Z(G)A is a sufficiently large finite subgroup, thereby realizing G̃z̄ as a
rigid inner form of G̃. The stabilizer A[z] of the cohomology class of z for the
action of A equals A[z̄]. Choose an A-invariant Whittaker datum for G. As
above we obtain from z a character [z] : π0(Z(

̂̄G)+) → C×. Let S̃+,[z]
φ be the

preimage of S̃[z]
φ in ̂̄G ⋊ A[z]. This group surjects onto A[φ],[z] and we have the

exact sequence
1→ S+

φ → S̃+,[z]
φ → A[φ],[z] → 1.

Then there should be a map

Πφ(G̃z̄)→ Irr(π0(S̃+,[z]
φ ), [z]),

which is again bijective in the p-adic case, and becomes bijective in the real case
once its target has been replaced by a suitable disjoint union. As in the con-
nected case, this map should lead to character identities with respect to a nor-
malized transfer factor ∆[ė, z,w, (ξ, z)]. More precisely, a semi-simple element
˙̃s ∈ S̃+

φ leads to the virtual character Θ
˙̃s
φ =

∑
π̃∈Πφ(G̃z̄)

trρπ̃( ˙̃s)Θπ̃ of G̃z̄(F ).

The connected centralizer Ĥ of the image s̃ ∈ Ĝ ⋊ A of ˙̃s and the parameter φ
lead to a quasi-split connected reductive group H and a parameter φz for its
cover Hz, hence to a similar virtual character SΘφz =

∑
πz∈Πφz (Hz) dimρπzΘπz

on Hz(F ). The transfer factor ∆[ė, z,w, (ξ, z)] gives rise to a correspondence of
functions f ↔ f z between functions on G̃z̄(F ) and functions of Hz(F ) and the
expected character identity is Θ

˙̃s
φ(f) = SΘφz(f z). Note the strong similarity

with the connected case.
The normalization of the transfer factor is one of the main tasks of this

paper. The relative transfer factor for twisted endoscopy was introduced in
[KS99] and some adjustments were later made in [KS]. It is a function that
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assigns a complex number to two pairs of elements (γ, δ̃), where γ is a suffi-
ciently regular semi-simple element of Hz(F ), and δ̃ is a strongly regular semi-
simple element of G̃z̄(F ) that lies in a fixed coset determined by the image of
s̃ in A. If one fixes arbitrarily a pair (γ, δ̃), then one obtains from this a func-
tion of just one such pair, called an absolute transfer factor. But the arbitrary
choice means that this function is well-defined only up to multiplication by a
non-zero complex scalar. A specific normalization useful for applications was
given in [KS99, §5.3] for quasi-split twisted groups. In this paper we provide
a normalization for all (rigid) inner forms of quasi-split twisted groups. We
call this factor ∆KS . By a simple averaging procedure we obtain from it the
transfer factor ∆[ė, z,w, (ξ, z)] used in the above paragraph, which may now be
supported on multiple cosets of Gz̄(F ) in G̃z̄(F ).

The normalization of ∆KS involves two ingredients. The first is a definition
of an absolute term ∆new

III that replaces the relative term ∆III constructed in
[KS99, §4.4]. The construction we offer here is shorter and simpler than the one
of loc. cit. for two reasons. First, our setting ensures that the class z of [KS99,
Lemma 3.1.A(3)] is trivial. This implies that the transfer of twisted classes be-
tween the twisted group and its quasi-split form is defined over F , and that
the rational structure of the endoscopic group H does not need a shift. Second,
we define an absolute invariant inv(γz, δ̃) that measures the relative position of
a related pair (γz, δ̃), thus avoiding the complications caused by dealing with
two related pairs simultaneously. The construction of the invariant involves
a blend of the techniques from [KS99] and [Kal16b], and an interpretation of
conjugacy classes in inner form of disconnected groups in terms of a certain
non-abelian cohomology set H1(F,G⇒ G). The second ingredient of ∆KS is a
generalization of the Kottwitz sign e(G′) defined in [Kot83] to the case of inner
forms of twisted groups, or equivalently to cosets of inner forms of quasi-split
disconnected reductive groups.

Besides stating the conjectures, we prove a number of reduction results in
this paper. We show how the conjectures for disconnected groups can be re-
duced to the conjectures for connected groups, a conjecture on the compati-
bility of the conjectures for connected groups with automorphisms, and a cer-
tain amplification of the endoscopic character identity conjecture in twisted en-
doscopy. We also discuss various functorial constructions, such as restriction
and induction of component groups.

Finally, we prove our conjectures in the special case when the identity com-
ponent is a torus. In this case, the representation theory of the identity compo-
nent essentially disappears and one can clearly see the additional information
present in the consideration of disconnectedness. The core of the proof consists
of showing that two group extensions, produced from the same data but on in
terms ofG and the other in terms of Ĝ, are canonically isomorphic. To illustrate
the point let us discuss the case of pure inner forms. Consider a torus T and a
finite group of F -automorphisms A. Then T̃ = T ⋊ A is a quasi-split discon-
nected group in our sense. Let z ∈ Z1(F, T ) and let T̃z be the corresponding
pure inner form. Of course the identity components of T̃ and T̃z are canoni-
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cally identified, but the disconnected groups T̃ (F ) = T (F ) ⋊ A and T̃z(F ) are
not. Let φ : WF → LT be a Langlands parameter and let θ : T (F ) → C× be
the corresponding character. Let A[φ],[z] be the subgroup of A that fixes both
the T̂ -conjugacy class of φ and the cohomology class of z. Simple arguments
reduce the problem to the case A = A[φ],[z]. The L-packet Πφ(T̃z) consists of
the irreducible representations of (the usually non-abelian) group T̃z(F ) whose
restriction to T (F ) is θ-isotypic. The set Irr(S̃φ, [z]) consists of the irreducible
representations of S̃φ whose restriction to T̂Γ is [z]-isotypic (note we do not
need the covers S̃+

φ and [ ̂̄T ]+ since we are using a pure inner form). Therefore
we are led to consider the following two push-out diagrams

1 // T (F ) //

θ

��

T̃z(F ) // A // 1

C×

and
1 // T̂Γ //

[z]

��

S̃φ // A // 1

C×

Both push-outs are central extensions of A by C×. The id-isotypic irreducible
representations of the first extension are in canonical bijection with Πφ(T̃z),
while those of the second extension are in canonical bijection with Irr(S̃φ, [z]).
The conjecture about the internal structure of L-packets requires us to show
that these two extensions are canonically isomorphic. There appears to be no a-
priori reason why these extensions should even be isomorphic, let alone canon-
ically. But we are able to produce a canonical isomorphism. We then continue
to show that this isomorphism satisfies the endoscopic character identities with
respect to the normalized transfer factor.

We now describe the contents of the paper. In §3 we discuss basic results
about disconnected groups, such as the classification of their forms in §3.1,
focusing on inner forms in §3.2. In §3.3 we recall facts about twisted conjugacy
classes and norms from [KS99] and adapt them to our present language. In §3.4
we discuss Whittaker data invariant under A. In §3.5 we extend the definition
of the Kottwitz sign e(G′) of a connected reductive group to inner forms of
quasi-split twisted groups.

The next two sections – §4 and §5 – contain the statments of the refined local
Langlands conjecture in the settings of pure respectively rigid inner forms. We
have decided to present these cases separately, rather than only dealing with
the general case of rigid inner forms, because we feel that the setting of pure
inner forms illustrates more clearly the ideas behind conjugacy classes, rela-
tive positions, and invaraints, as well as the structure of the conjecture. The
more general case of rigid inner forms follows the same structure and ideas,
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but combines them with a technical cohomological discussion. In §4 we first
discuss the concept of rational conjugacy classes across pure inner forms, their
norms, and the associated invariants. These are based on the non-abelian co-
homology set H1(F,G ⇒ G). The constructions are ultimately the same as
those of [KS99], but our language is slightly different and our situation is more
specialized, which makes the arguments simpler and shorter. For this reason
we have given them in full detail in the hope that this would be helpful to the
reader. In §4.6 we state the first part of the refined local Langlands conjecture –
the correspondence between parameters and packets and the internal structure
of packets. We then recall the notion of twisted endoscopic data from [KS99].
Our definitions are in fact slightly different, both for data and for their isomor-
phisms. This difference is very mild; it ensures that absolute transfer factors
are invariant under isomorphisms. We then turn to the normalization of trans-
fer factors in the setting of pure inner forms. In §4.9 we explain how the factor
∆[ė, z,w, (ξ, z)] is related to the twisted factor ∆KS . The normalization of ∆KS

is done in §4.10 and §4.11. We have again split the exposition in the hope that
this will make the construction most transparent, by first treating the less tech-
nical set-up when a z-pair is not needed, and then the more general case when
it is. In §4.12 we summarize the fundamental results of Langlands, Shelstad,
Kottwitz, Arthur, Waldspurger, and Ngo, on endoscopic transfer of functions.
These results allow us to state the second part of the refined local Langlands
conjecture – the character identities – in §4.13.

The treatment of rigid inner forms in §5 requires the blending of the hyper-
cohomology techniques of [KS99, A.3] and the Galois gerbes of [Kal16b]. This
is done in the first two subsections. We the rest of the section consists of slight
generalizations of material of §4, and we allow ourselves to be more brief. The
refined local Langlands conjecture for rigid inner forms is stated in §5.6.

In §6 we discuss how the parameterization of the internal structure of L-
packets depends on the choice of Whittaker datum. This is the disconnected
analog of the corresponding results from [Kal13].

In §4.4 we discuss how the conjectures change when we change the compo-
nent group of the disconnected group. The simplest possible change is passing
to a subgroup of the component group. It is discussed in §7.1. In §7.2 we dis-
cuss how the conjectures for disconnected groups can be related to those for
connected groups and twisted endoscopy. This clarifies the information that
the disconnected case caries beyond the connected case and the twisted case.
There is an operation dual to restriction, which may be called induction. If G
is a connected reductive group on which a finite group of automorphisms A
operates, and B is a group containing A, one can form the connected reduc-
tive group H = IndBAG, on which B operates. We discuss in §7.5 how the
conjectures for inner forms of G ⋊ A imply those for inner forms of H ⋊ B.
The discussion here is elementary, but unfortunately rather long and technical.
We have included it because the process of induction appears quite often in
applications.

In §8 we prove the conjectures made here in the special case of tori. We close
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the paper is three short appendices. In §A we formulate a conjecture about
the compatibility of the refined local Langlands correspondence for connected
groups with automorphisms. This conjecture is undoubtedly well-known to
experts, but we have not been able to locate a reference. In §B we discuss au-
tomorphisms of reductive groups that arise via Weil-restriction. In §C we re-
view orthogonality relations for irreducible projective representations of finite
groups.
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2 NOTATION

Throughout the paper, F will denote a local field of characteristic zero, Γ the
absolute Galois group with respect to a fixed algebraic closure F̄ of F , and WF

the Weil group. We will write Z1(Γ, G) for the set of continuous 1-cocycles of Γ
valued in the discrete group G(F̄ ), H1(Γ, G) for the set of cohomology classes
of such cocycles, Z̃1(Γ, G) for the set of continuous sections z̃ : Γ → G(F̄ ) ⋊ Γ

of the natural projection, and H̃1(Γ, G) for the set of G(F̄ )-conjugacy classes of
such sections. The assignment z 7→ z̃ defined by z̃(σ) = z(σ) ⋊ σ is a bijection
Z1(Γ, G) → Z̃1(Γ, G) that descends to a bijection H1(Γ, G) → H̃1(Γ, G). We
will switch freely in the notation between z̃ and z.

Given an automorphism a of G and δ ∈ G we have the element δ̃ = δ ⋊ a ∈
G ⋊ a ⊂ G ⋊ ⟨a⟩. The assignment δ̃ 7→ δ translates the action of G on G ⋊ a
by conjugation to the action of G on itself by a-twisted conjugation. When a is
understood from the context, we will switch freely between δ̃ and δ.
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3 DISCONNECTED GROUPS
{sec:disc_grps}

3.1 Split disconnected groups and their forms
{sub:disc_forms}

Let F be a local field of characteristic zero. We denote by WF the Weil group
of F and by Γ the absolute Galois Gal(F/F ). In this paper we will study affine
algebraic groups defined over F whose connected component is reductive. We
will call such groups “disconnected reductive” for short. We will however
restrict our attention to those disconnected reductive groups G̃ that satisfy the
following condition:

{cnd:main}
Condition 3.1. There exists an isomorphism defined over F

G̃→ G⋊A

where G is a connected reductive group, A is a finite group, and A acts on G by
automorphisms which preserve a fixed F̄ -pinning.

Not all disconnected reductive groups satisfy this condition. The most ba-
sic counterexample is the normalizer of the torus in SL2. On the other hand,
this condition is satisfied by many naturally occurring disconnected reductive
groups, including the orthogonal groups as well as the groups involved in the
classification of tempered representations of connected reductive groups. The
latter are among the main motivations for our study.

Just as in the connected case, one can classify the possible G̃ that satisfy
the above condition in terms of root data and Galois cohomology. First, one
can consider a split connected reductive group G defined over F and a finite
group A, interpreted as a constant groups scheme over F , and let A act on G
and preserve a fixed F -pinning. Then G⋊A is a special case of a disconnected
reductive group defined over F and we will call it “split”. This adjective carries
for us a double meaning – not only is the connected component G split, but the
extension G ⋊ A is also split. It is clear that the split disconnected reductive
group G ⋊ A is classified by the root datum of G and the action of A on this
root datum.

Now fix an isomorphism ι : G̃→ G⋊A as in Condition 3.1. We may assume
without loss of generality that G is split and that A preserves an F -pinning.
Then

Γ→ Aut(G⋊A), σ 7→ ι−1σ(ι)

is a 1-cocycle and the isomorphism class of G̃ is determined by the split form
G⋊A and the cohomology class of this 1-cocycle.

In order to understand this cohomology better, we look more closely at
Aut(G⋊A). The action ofG onG⋊A by conjugation factors throughG/Z(G)A,
where Z(G)A is the group of fixed points for the action of A on the center of
G. Thus G/Z(G)A is a subgroup of Aut(G ⋊ A), and in fact this subgroup
is normal, because G is a characteristic subgroup of G ⋊ A (being the neutral
connected component).
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Consider now the group Z1(A,Z(G)) of 1-cocycles of A valued in Z(G).
The map sending z ∈ Z1(A,Z(G)) to the automorphism g ⋊ a 7→ gz(a) ⋊
a of G ⋊ A embeds Z1(A,Z(G)) as a normal subgroup of Aut(G ⋊ A). The
two normal subgroups G/Z(G)A and Z1(A,Z(G)) of Aut(G ⋊ A) commute.
Their intersection can be described as the subgroup Z(G)/Z(G)A of G/Z(G)A,
or equivalently its isomorphic image B1(A,Z(G)) ⊂ Z1(A,Z(G)) under the
differential z 7→ z · a(z)−1.

We thus have the normal subgroup G/Z(G)A · Z1(A,Z(G)) of Aut(G⋊A).
It has a complement. In order to specify it, we use the pinning of G defined
over F and preserved by the action of A and let Autpin(G ⋊ A) be those auto-
morphisms of G ⋊ A whose restriction to G preserves the pinning and which
preserve the subgroup 1⋊A of G⋊A. We conclude

Aut(G⋊A) = (G/Z(G)A · Z1(A,Z(G)))⋊ Autpin(G⋊A).

This means that any form of G ⋊ A can be obtained by a 3-step process: First,
using an element of Z1(Γ,Autpin(G ⋊ A)) one twists the rational structure of
G ⋊ A. The result is again a group of the form G ⋊ A, where now G is a
quasi-split connected reductive group, A is a (not necessarily constant) finite
group scheme over F , and A acts on G again by automorphisms that preserve
a fixed F -pinning. We shall call such disconnected reductive groups “quasi-
split”. Second, using an element z ∈ Z1(Γ, G/Z(G)A) we twist the quasi-split
group G̃ = G⋊ A and obtain an “inner form” G̃z of it. Finally, we twist G̃z by
an element of Z1(Γ, Z1(A,Z(G))) to obtain a “translation form” of G̃z .

3.2 Inner forms
{sub:inner}

Let G be a connected reductive group, defined and quasi-split over F . Let
(T,B, {Xα}) be an F -pinning of G and let A be a finite group that acts on G by
pinned automorphisms. Assume given an action of Γ on A so that for σ ∈ Γ

we have σ(a(g)) = σ(a)(σ(g)). Thus G̃ = G ⋊ A is a quasi-split disconnected
group in the sense of the previous subsection.

We have an exact sequence of algebraic groups

1→ G→ G̃→ A→ 1

which leads to an exact sequence of topological groups

1→ G(F )→ G̃(F )→ AΓ → 1.

Both of these extensions are split and come equipped with a splitting.
The group G acts on G̃ by conjugation and this action preserves the decom-

position G̃ =
⊔
a∈AG⋊ a of G̃ into left G-cosets. In addition, the group G̃ acts

on itself by conjugation, and this action preserves the group G.
Writing Ḡ = G/Z(G)A, the group Ḡ ⋊ Γ acts on the group G̃, with ḡ ⋊ σ

acting as the automorphism Ad(ḡ) ◦ σ. Given z̄ ∈ Z1(Γ, Ḡ), we denote by G̃z̄
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the algebraic group defined over F which satisfies G̃z̄(F ) = G̃(F ) and where
Γ acts on G̃z̄(F ) via the homomorphism ˜̄z : Γ→ Ḡ⋊ Γ and the action of Ḡ⋊ Γ

on G̃(F ). We call G̃z̄ the inner form of G̃ corresponding to z̄.
We still have the exact sequence of algebraic groups

1→ Gz̄ → G̃z̄ → A→ 1

but the sequence of F -points

1→ Gz̄(F )→ G̃z̄(F )→ A,

need not be exact. The image of the last map lies in AΓ and we denote it by
A[z̄] ⊂ AΓ. We obtain an extension

1→ Gz̄(F )→ G̃z̄(F )→ A[z̄] → 1.

Unlike the case of the quasi-split group G̃, this extension, even when it is split,
does not come equipped with a distinguished splitting.

The action of Gz̄(F ) on G̃z̄ preserves the subset G̃z̄(F ). The action of G̃z̄(F )
onGz̄ is realized by automorphisms defined over F and in particular preserves
the subset Gz̄(F ).

If we replace A by AΓ the group G̃z̄(F ) remains unchanged. Since we shall
ultimately be interested in the topological group G̃z̄(F ) and its representations,
we will assume from now on that the action of Γ onA is trivial. In other words,
we will treat the group A as a constant group scheme.

3.3 Strongly regular semi-simple elements and norms
{sub:norms}

We recall some material from [KS99]. An automorphism θ of G is called quasi-
semi-simple if it preserves a Borel pair. A maximal torus that is part of a θ-
stable Borel pair is called θ-admissible. The automorphism θ is furthermore
called strongly regular if Cent(θ,G) is abelian. For such an automorphism θ,
there is a unique θ-admissible maximal torus ofG, namely Cent(Cent(θ,G), G).
If S ⊂ G is a θ-invariant maximal torus we will write Sθ = S/(1 − θ)S for the
quotient of θ-coinvariants.

We shall call an element of G ⋊ A (strongly regular) semi-simple, if the
automorphism of G it induces by conjugation is (strongly regular) quasi-semi-
simple. Clearly these notions are invariant under conjugacy by G⋊A.

{lem:c1}
Lemma 3.2. 1. Let δ̃ = δ ⋊ a ∈ G̃(F̄ ) be semi-simple. Given an a-admissible

maximal torus S ⊂ G there exists g ∈ G(F̄ ) such that δ̃∗ = g−1δ̃g belongs to
S(F̄ )⋊ a.

2. Write δ̃∗ = δ∗ ⋊ a, so that δ∗ ∈ S(F̄ ). Write γ ∈ Sa(F̄ ) for the image of δ∗ in
the torus Sa = S/(1− a)S of a-coinvariants. The set of pairs (S, γ) obtained in
this way for a fixed δ̃ and varying g forms a single Ga,◦(F̄ )-conjugacy class.
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3. If (S1, γ1) and (S2, γ2) are two such pairs, then all g ∈ Ga,◦(F̄ ) such that
Ad(g)(S1, γ1) = (S2, γ2) induce the same isomorphism Ad(g) : S1 → S2.

4. Given γ ∈ Sa(F̄ ), the set of δ̃ ∈ G̃(F̄ ) corresponding to the Ga,◦(F̄ )-conjugacy
class of (S, γ) is a single G(F̄ )-conjugacy class.

Proof. This is essentially [KS99, Lemma 3.2.A]. Let (Tδ̃, Bδ̃) be a Borel pair nor-
malized by δ̃ and let C be a Borel subgroup containing S and normalized by a.
Let g ∈ G(F̄ ) be such that Ad(g)(S,C) = (Tδ̃, Bδ̃). Set δ̃∗ = g−1δ̃g. Then (S,C)

is normalized by both δ̃∗ and a, so also by δ∗, hence δ∗ ∈ S(F̄ ).
For the second point, we fix for i = 1, 2 elements gi ∈ G(F̄ ) such that δ̃∗i =

g−1
i δ̃gi ∈ Si(F̄ )⋊ a and the image of δ∗i is γi. Choose a-stable Borel subgroups
Ci of G defined over F̄ and containing Si. Since any two a-stable Borel pairs
are conjugate under Ga,◦(F̄ ), we may modify g2 to assume S1 = S2 = S and
C1 = C2 = C. Thus δ̃∗1 and δ̃∗2 belong to S⋊a and are conjugate by g := g−1

2 g1. It
follows that Sa,◦ and Ad(g−1)Sa,◦ are maximal tori of Cent(δ̃∗1 , G)◦. Modifying
g1 on the right we may assume Ad(g−1) normalizes Sa. Then it normalizes S
and its image in Ω(S,G) is a-fixed. It is thus representable by an element of
Ga,◦(F̄ ).

For the third point, let δ∗1 ∈ S1(F̄ ) and δ∗2 ∈ S2(F̄ ) be elements map-
ping to γ1 and γ2 and such that δ̃∗1 and δ̃∗2 are G(F̄ )-conjugate to δ̃. A given
g ∈ Ga,◦(F̄ ) with Ad(g)(S1, γ1) = (S2, γ2) can only be modified to hg for
h ∈ Ga,◦(F̄ ) normalizing S2 and fixing γ2. Thus there exists s ∈ S2(F̄ ) such that
Ad(sh) ∈ Cent(δ̃∗2 , G) = Sa2 . It follows that the isomorphism Ad(g) : S1 → S2

carrying γ1 to γ2 does not depend on the choice of g.
The final point follows immediately from the fact that the set of δ̃∗ = δ∗ ⋊ a

such that δ∗ maps to γ forms a single S(F̄ )-conjugacy class.
{dfn:norm}

Definition 3.3. Let δ̃ = δ⋊ a ∈ G̃z̄(F ) be strongly regular semi-simple. A norm
of δ̃ is a pair (S, γ) consisting of a maximal torus S ⊂ G defined over F and
a-admissible, and an element γ ∈ Sa(F ), such that there exists g ∈ G(F̄ ) the
property that δ̃∗ = g−1δ̃g ∈ S(F̄ ) ⋊ a and the image of δ∗ ∈ S(F̄ ) in Sa(F̄ )
equals γ.

{lem:c2}
Lemma 3.4. Let δ̃ = δ ⋊ a ∈ G̃z̄(F ) be strongly regular semi-simple.

1. There exists a norm (S, γ) of δ̃.

2. For any two norms (S1, γ1) and (S2, γ2) of δ̃ the canonical isomorphism Ad(g) :
S1 → S2, g ∈ Ga,◦(F̄ ), carrying γ1 to γ2 is defined over F .

Proof. The arguments for the first point are contained in the proofs of [KS99,
Lemmas 3.3.B,3.3.C]. By Lemma 3.2 we may find h ∈ G(F̄ ) such that δ̃0 :=

Ad(h)−1δ̃ ∈ T (F̄ ) ⋊ A, where we recall that T is the maximal torus that is
part of the A-invariant F -pinning of G. Since δ̃ is fixed by Ad(zσ) ⋊ σ for all
σ ∈ Γ, its G-conjugacy class is fixed by σ, and part (4) of Lemma 3.2 implies
that the Ω(T,G)a-orbit of the image γ0 ∈ Ta(F̄ ) of δ0 is Γ-invariant. Thus for

13



every σ ∈ Γ there exists wσ ∈ Ω(T,G)a such that wσσ(γ0) = γ0. Since δ̃ is
strongly regular, no element of Ω(T,G)a fixes γ0, and hence wσ is determined
by σ. The map σ 7→ wσ is a 1-cocycle. Since Ω(T,G)a = Ω(T asc, G

a
sc), Steinberg’s

theorem implies the existence of g ∈ Gasc such that g−1σ(g) normalizes T asc and
induceswσ . Set δ̃∗ = Ad(gh−1)δ̃. Then S = Ad(g)T is the unique δ̃∗-admissible
maximal torus and we have δ∗ ∈ S(F̄ ). The image γ ∈ Sa(F̄ ) of δ̃∗ under the
projection S → Sa coincides with the image of γ0 under Ad(g) : Ta → Sa and
is Γ-fixed.

The second point follows from part (3) of Lemma 3.2, since both Ad(g) and
Ad(σ(g)) map (S1, γ1) to (S2, γ2).

3.4 A-special Whittaker data
{sub:awhit}

We continue with a connected reductive group G defined and quasi-split over
F , and A a finite group of automorphisms that leaves invariant an F -pinning
of G.

Let (T,B, {Xα}) be an F -pinning and let ψF : F → C× be a non-trivial
character. Recall from [KS99, §5.3] that one obtains a generic character ψ :
U(F ) → C×, where U ⊂ B is the unipotent radical, via the following pro-
cedure: The fixed pinning induces an isomorphism from the abelianization
U ab = U/[U,U ] to

∏
α∈∆ Ga. This isomorphism is defined over F if we let Γ act

on the product in a way compatible with the action of Γ on ∆. The summation
map

∏
α∈∆ Ga → Ga is then defined over F . The generic character ψ is given

by the composition

U(F )→ U ab(F )→
( ∏
α∈∆

Ga
)
(F )→ F → C×.

Definition 3.5. An A-special Whittaker datum is a Whittaker datum obtained
from an A-invariant F -pinning and a non-trivial character of F via the above
procedure.

It is clear that an A-special Whittaker datum is A-invariant.

Fact 3.6. Any two A-special Whittaker data are conjugate by Gad(F )
A.

Proof. We may realize the two A-special Whittaker data using two A-invariant
F -pinnings and the same character ψ : F → C×. The result follows from the
fact that the set of F -pinnings is a torsor for Gad(F ).

{fct:gasurj}
Fact 3.7. The map GA → GAad is surjective.

Proof. Let (T,B, {Xα}) be anA-invariant F -pinning ofG. Applying the Bruhat
decomposition it is enough to consider a single cell BadwBad for w ∈ Ω(T,G)A.
Let n ∈ N(T,G) be the Tits lift of w with respect to the pinning. Then n ∈
N(T,G)A. The cell for G is then the set-wise direct product T ×U ×{n}× (U ∩
w−1Ūw), where Ū is the unipotent radical of the Borel subgroup T -opposite to
B. The restriction to U of the map G→ Gad is an isomorphism, and the cell for
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Gad is the set-wise direct product Tad×U×{n}×(U∩w−1Ūw). By directness of
the product and the fact that n is A-fixed it is enough to prove that TA → TAad is
surjective. But since A fixes a basis of X∗(Tad) the group TAad is connected and
the result follows.

{cor:asw}
Corollary 3.8. Let w be an A-special Whittaker datum. The set of G(F )A-conjugacy
classes of A-special Whittaker data is in 1-1 correspondence with

im
(
GAad(F )→ H1(F,Z(G)A)

)
.

3.5 The twisted Kottwitz sign
{sub:sgn_twisted}

Let G be a quasi-split connected reductive F -group G, let a be an automor-
phism preserving an F -pinning, and let z̄ ∈ Z1(Γ, G/Z(G)a). We have the
inner form [G ⋊ a]z̄ of the coset G ⋊ a. We assume that [G ⋊ a]z̄ has F -point.
Under this assumption we are going to define a sign e([G ⋊ a]z̄) ∈ {±1} gen-
eralizing the definition of the sign e(Gz̄) due to Kottwitz [Kot83] in the sense
that e([G⋊ id]z̄) = e(Gz̄).

By definition we will have e([G⋊ a]z̄) = e([Gad ⋊ a]z̄). Therefore, to lighten
the notation, we may assume that G is adjoint. We then have z ∈ Z1(Γ, G),
where we have dropped the bar from the notation. The existence of an F -point
in [G⋊ a]z is equivalent to the class of z being fixed by a. Let Z be the center of
Gsc and let ξ ∈ H2(Γ, Z)a be the image of the class of z under the connecting
homomorphism for the exact sequence 1→ Z → Gsc → G→ 1.

We will now construct an element λ ∈ H0(Γ, X∗(Z))a, whose cup-product
with ξ will be an element of order 2 in H2(Γ,Gm). Its invariant will be the
desired sign e([G ⋊ a]z) ∈ {±1}. Let (T,B) be a Borel pair in Gsc invariant
under Γ and a. Let Ω ⊂ X∗(T ) be the set of fundamental weights. This set
receives an action of Γ× ⟨a⟩. Let

λT =
∑
O

∑
χ∈O

χ,

where O runs over a set of representatives for the action of ⟨a⟩ on the set of
Γ-orbits in Ω. It is clear that λ ∈ H0(Γ, X∗(T )) and that its image in the group
H0(Γ, X∗(T ))a of a-coinvariants is independent of the choice of representa-
tives. Via restriction we obtain the desired element λ ∈ H0(Γ, X∗(Z))a. Since
any two Borel pairs ofG that are invariant under both Γ and a are conjugate un-
der Gasc(F ), we see that λ does not depend on the choice of a Borel pair (T,B).
The definition of e([G ⋊ a]z) ∈ F̄× is thus complete. We will see momentarily
(Corollary 3.13) that 2λ = 0 and hence e([G⋊ a]z) ∈ {±1}.

{fct:sgn_kott}
Fact 3.9. If a = 1 then λT is one half the sum of the positive roots and hence e([G ⋊
a]z) = e(Gz).

{fct:sgn_prod}
Fact 3.10. The sign e([G ⋊ a]z) is multiplicative: given (Gi, ai, zi) for i = 1, 2 we
have e([(G1 ×G2)⋊ (a1, a2)](z1,z2)) = e([G1 ⋊ a1]z1) · e([G2 ⋊ a2]z2).
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{lem:sgn_ind}
Lemma 3.11. Let H = G ×G · · · ×G and let b be the automorphism of H given by
b(g0, . . . , gn−1) = (g1, . . . , gn−1, a(g0)). Then

e([H ⋊ b]z) = e([G⋊ a]z),

where we have used the obvious identification H1(Γ, H)b = H1(Γ, G)a.

Proof. If (T,B) is a Borel pair of G invariant under Γ and a, then TH = T ×
· · · × T and BH = B × · · · × B is a Borel pair of H invariant under Γ and b.
The element λTH

∈ X∗(TH) = X∗(T ) ⊕ · · · ⊕ X∗(T ) is equal to (λT , 0, . . . , 0),
while the diagonal embedding G → H realizes the identification H1(Γ, H)b =
H1(Γ, G)a. The claim follows.

These observations reduce the study of e([G ⋊ a]z) to quasi-split adjoint
groups of the form G = ResE/FH , where H is an absolutely simple quasi-split
adjoint group defined over a finite extension E/F . Via the Shapiro isomor-
phism H1(F,G) = H1(E,H), which on the level of cocycles is given by restric-
tion followed by evaluation at 1, we obtain from z an element z′ ∈ Z1(E,H).
On the other hand, Lemma B.1 shows that the pinned automorphism a of G
is related to a pinned isomorphism a′ : H → Hσ0 , for some σ0 ∈ Γ that nor-
malizes E. What we mean by a′ being a pinned isomorphism is this. We have
by construction H ×E Ē = Hσ0 ×E Ē. The F -pinning of G arises from an E-
pinning of H , which via this identification gives a pinning of Hσ0 ×E Ē which
is immediately seen to be Galois-invariant, i.e. an E-pinning.

We would like to relate the sign e([G⋊a]z) to a sign e([H⋊a′]z′), but for this
we need to generalize the definition to allow for the more general situation that
now a′ is not an automorphism of the E-group H , but rather an isomorphism
H → Hσ0 . This is however very easy. Indeed, fixing a Borel pair (T,B) of
H that is preserved by a′ in the sense just explained, the set Ω ⊂ X∗(T ) of
fundamental weights receives an action of ΓE ⋊ ⟨a′⟩, where ΓE = Gal(F̄/E)
and a′ acts on ΓE via conjugation by σ0. We still have an action of ⟨a′⟩ on the
set of ΓE-orbits in Ω and the formula for λT still makes sense. At the same time,
for any ΓE-module M with isomorphism a′ : M → Mσ0 we have an action of
a′ on Hi(ΓE ,M), given by conjugation by σ0 on ΓE , and the action of a′ on
M . One checks that [z′] ∈ H2(ΓE , Z(Hsc))

a′ and λ ∈ H0(ΓE , X
∗(Z(Hsc)))a′ .

Pairing these gives the sign e([H ⋊ a′]z′).
{lem:sgn_weil}

Lemma 3.12. We have e([G⋊ a]z) = e([H ⋊ a′]z′).
{cor:sgn_sgn}

Corollary 3.13. We have e([G⋊ a]z)
2 = 1.

Proof. By the previous reduction steps it is enough to consider the case when
G is absolutely simple and adjoint and a is a pinned isomorphism G → Gσ0

for some finite order automorphism σ0 of F . If a is trivial then e([G ⋊ a]z) is
the Kottwitz sign e(Gz), so assume that a is non-trivial. Then G is of type An,
Dn, or E6. Consider the action of a on X∗(Z(Gsc)). In type An this is the action
of negation on Z/nZ, whose group of coinvariants is of order 1 or 2. In type
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Dn the automorphism a has non-trivial coinvariants in X∗(Z(Gsc)) only if it is
of order 2, in which case these coinvariants are again of order 2. In type E6

the automorphism a acts by negation on X∗(Z(Gsc)) = Z/3Z and hence has a
trivial group of coinvariants. In all cases we see that H0(Γ, X∗(Z(Gsc)))

a is of
order at most 2, hence the claim.

Consider a parabolic pair (Mz, Pz) of Gz whose G(F̄ )-conjugacy class is a-
invariant. For example, this is the case for any minimal parabolic pair. Choose
an a-invariant Borel pair (T0, B0) of G. There exists g ∈ G(F̄ ) and a unique
standard parabolic pair (M,P ) such that Ad(g)(M,P ) = (Mz, Pz). Since Ad(zσ)◦
σ preserves (Mz, Pz) for each σ ∈ Γ, the standard pair (M,P ) is Γ-invariant.
Replacing zσ by g−1zσσ(g) we may assume that (M,P ) = (Mz, Pz), i.e. (M,P )
is Γ-invariant both as a parabolic pair of G as well as of Gz . This implies
zσ ∈ Z1(Γ,M) for all σ ∈ Γ.

Consider now gz⋊a ∈ [G⋊a]z(F ). By assumption Ad(gz⋊a)(M,P ) isG(F̄ )-
conjugate to (M,P ), hence also Gz(F )-conjugate. Thus, upon multiplying gz⋊
a by an element of Gz(F ) on the left we may achive that it preserves (M,P ).
This means again that the G(F̄ )-conjugacy class of (M,P ) is a-invariant, hence
(M,P ) is itself a-invariant, which in turn implies gz ∈ M(F̄ ). We conclude
gz ⋊ a ∈ [M ⋊ a](F ). These preparations allow us to state the following.

{lem:sgn_levi}
Lemma 3.14. e([G⋊ a]z) = e([M ⋊ a]z).

Proof. We maintain the notation of the preceding two paragraphs. We have
[z] ∈ H1(Γ,M)a and its image under H1(Γ,M)a → H1(Γ, G)a → H2(Γ, ZGsc)

a

is used in the construction of e([G ⋊ a]z); let us call this image hG. On the
other hand the image under H1(Γ,M)a → H1(Γ,Mad)

a → H2(Γ, ZMsc)
a is

used in the construction of e([M ⋊ a]z); let us call this image h2. Let M† be the
preimage of M in Gsc. This is a Levi subgroup of Gsc and its derived subgroup
is the simply connected group Msc. Therefore ZGsc ⊂ ZM† ⊃ ZMsc . A look at
the following commutative diagram

1 // ZGsc
// Gsc // G // 1

1 // ZGsc
// M† //
?�

OO

M // //?�

OO

����

1

1 // ZMsc
// Msc ////?�

OO

Mad // 1

shows that the images of h1 and h2 in H2(Γ, ZM†)a agree. On the other hand
we may consider the element λTGsc

∈ H0(Γ, X∗(TGsc))a computed in terms of
the Borel pair (TGsc , BGsc) of Gsc that is the preimage of (T0, B0). Let BM† =
BGsc ∩M†, TMsc = TGsc ∩Msc, BMsc = BGsc ∩Msc. Then (TGsc , BM†) is a Borel
pair for M† and (TMsc , BMsc) is a Borel pair for Msc. The set ∆∨

G of simple co-
roots for (TGsc , BGsc) is a basis for X∗(TGsc). It contains the set ∆∨

M of simple
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coroots for (TMsc , BMsc), which in turn is a basis for X∗(TMsc) ⊂ X∗(TGsc). Let
ΩM ⊂ Ω be the set of those fundamental weights that pair non-trivially with
an element of ∆∨

M . The image of ΩM under X∗(TGsc)→ X∗(TMsc) is a basis for
X∗(TMsc), while the image of Ω∖ΩM is zero. The map X∗(TGsc)→ X∗(TMsc) is
equivariant both under Γ and a and the subset ΩM of Ω is stable under both Γ
and a. Therefore the image of under X∗(TGsc) → X∗(TMsc) under λTGsc

equals
the element λTMsc

computed in terms of (TMsc , BMsc). This shows that the im-
age of λTGsc

under X∗(λTGsc
) → X∗(Z(M†)) has the property of having the

same restriction to X∗(ZGsc) as λTGsc
and the same restriction to X∗(ZMsc) as

λTMsc
.

We will now give alternative expressions for the sign e([G⋊ a]z) in the two
cases when F is assumed real or p-adic, beginning with the p-adic case. For a
moment consider a connected reductive F -group J and an automorphism b of
it. We are not assuming that J is quasi-split and we make no assumptions on
b. Let (M0, P0) be a minimal F -parabolic pair for J . There exists g ∈ J(F ) such
that Ad(g)◦b preserves (M0, P0) and g is unique up to multiplication on the left
by elements of M0(F ). Therefore Ad(g) ◦ b induces an action on the maximal
split central torus AJ0 of M0 and this action depends only on the image of b in
the group Out(G)(F ). We will write (AJ0 )

b for the group of fixed points for the
action of Ad(g) ◦ b on AJ0 . We can apply this construction to the quasi-split
adjoint p-adic group G and its inner form Gz , both of which have an F -rational
automorphism a. In the case of Gz , that automorphism is well-defined only up
to multiplication by an inner automorphism, but this is enough. Let A0 and Az
be maximal split tori in G0 and Gz .

{lem:sgn_padic}
Lemma 3.15. e([G⋊ a]z) = (−1)dim(Aa

0 )−dim(Aa
z).

Proof. Define e′([G⋊a]z) = (−1)dim(Aa
0 )−dim(Aa

z), so that we want to show e([G⋊
a]z) = e′([G⋊ a]z). The sign e′([G⋊ a]z) does not change if we replace G by its
adjoint group, because dim(Aa0) = dim((A0/AG)

a)+dim(AaG) and analogously
dim(Aaz) = dim((Az/AG)

a) + dim(AaG). Note that (A0/AG)
a and (Az/AG)

a are
tori, since in the notation of the group J above the action of Ad(g) ◦ b on AJ0
preserves the set of simple relative roots, and those form a basis ofX∗(AJ0 /AJ).

One checks that e′ satisfies the analogs of Fact 3.10 and Lemmas 3.11 and
3.12, and 3.14. This reduces to the case that G is adjoint and absolutely simple
and Gz is anisotropic. Thus G = PGLn and G′ corresponds to a division alge-
bra of degree n and invariant r/n for some r coprime to n. The class of G′ in
H1(Γ, G) = Z/nZ must be fixed by a, which acts by multiplication by −1. This
forces a = 1 and the claim follows from Fact 3.9 and [Kot83].

4 THE CONJECTURE FOR PURE INNER FORMS

{sec:pure}
4.1 Pure inner forms

{sub:pure}
Let z ∈ Z1(Γ, G) and let z̃ : Γ → G⋊ Γ be the corresponding section. We have
the inner form G̃z as in Subsection 3.2. We will call such inner forms pure, in
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analogy with the case of connected groups. In the exact sequence

1→ Gz(F )→ G̃z(F )→ A[z] → 1,

the group A[z] is the stabilizer in AΓ of the cohomology class [z] ∈ H1(Γ, G).

4.2 Rational conjugacy classes
{sub:pure_rat}

For a given a ∈ A we want to describe those δ̃ = δ⋊a ∈ G⋊A that are rational
for G̃z , i.e. δ̃ ∈ G̃z(F ). This is by definition equivalent to the commutativity of
z̃(σ) = z(σ) ⋊ σ and δ̃ for all σ ∈ Γ. Following Vogan’s suggestion [Vog93] in
the case of connected reductive groups, we shall consider all pure inner forms
together, and are thus lead to consider the set of pairs (z̃, δ̃), where z̃ ∈ Z̃1(Γ, G)

and δ̃ ∈ G(F̄ )⋊A commute. This is the set of rational elements of all pure inner
forms of G̃. The group G(F̄ ) acts on this set by conjugation. Two elements
(z̃, δ̃1) and (z̃, δ̃2) with the same first component lie in the same conjugacy class
if and only if δ̃1 and δ̃2 are conjugate under Gz(F ). Thus the set of G(F̄ )-orbits
of commuting pairs (z̃, δ̃) can be seen as the set of rational conjugacy classes of
rational elements of pure inner forms of G̃.

The set of rational elements, and its quotient under rational conjugacy, have
the following cohomological interpretation. Given a pair (z̃, δ̃), with z̃(σ) =

z(σ) ⋊ σ and δ̃ = δ ⋊ a, the commutativity of z̃ and δ̃ is equivalent to the
equation a(z(σ)) = δ−1z(σ)σ(δ) for all σ ∈ Γ. This equation says that δ is a
coboundary between the 1-cocycles z and a(z). This leads us to consider the
set

Z1(Γ, G
1

a
⇒G)

consisting of pairs (z, δ), where z ∈ Z1(Γ, G) and δ ∈ G satisfy the above
equation. Slightly more generally one could consider for two group homomor-
phisms (b, a) : G⇒ G the set of pairs (z, δ) consisting of z ∈ Z1(Γ, G) and δ ∈ G
such that a(z(σ)) = δ−1b(z(σ))σ(δ). For our purposes the case b = id will be
sufficient. In order to ease typesetting, we shall use the notation Z1

a(Γ, G⇒ G)
instead. As just discussed, the set Z1

a(Γ, G ⇒ G) is identified with the disjoint
union

⊔
z∈Z1(Γ,G)[G⋊ a]z(F ). Taking the union over a ∈ A we obtain an iden-

tification between the disjoint union
⊔
z∈Z1(Γ,G) G̃z(F ) and the disjoint union⊔

a∈A Z
1
a(Γ, G⇒ G).

Fix a ∈ A. The action of G(F̄ ) by conjugation on the set of pairs (z̃, δ̃)
is translated to the action of G(F̄ ) on (z, δ) ∈ Z1

a(Γ, G ⇒ G) by g(z, δ) =
(gz(σ)σ(g−1), gδa(g)−1). We let H1

a(Γ, G⇒ G) be the set of orbits of that action
and thus obtain an identification of⊔

a∈A
H1
a(Γ, G⇒ G)

with the set of rational conjugacy classes of rational elements of pure inner
forms of G̃.

19



Keeping in line with our notation, we shall write Z̃1
a(Γ, G ⇒ G) for the

set of commuting z̃ ∈ Z̃1(Γ, G) and δ̃ ∈ G ⋊ a, and H̃1
a(Γ, G ⇒ G) for their G-

conjugacy classes, and will freely use the bijectionsZ1
a(Γ, G⇒ G)→ Z̃1

a(Γ, G⇒
G) and H1

a(Γ, G⇒ G)→ H̃1
a(Γ, G⇒ G) given by (z, δ) 7→ (z̃, δ̃).

4.3 The invariant
{sub:pure_inv}

We are particularly interested in the G-conjugacy classes of pairs (z̃, δ̃) for
which δ̃ is semi-simple and strongly regular. According to Lemma 3.4 such
a conjugacy class has a norm (S, γ), well-defined up to Ga,◦(F̄ )-conjugacy. We
shall now define an element inv(γ, (z, δ)) ∈ H1

a(Γ, S ⇒ S).
{lem:inv}

Lemma 4.1. 1. If (z∗, δ∗) is a representative of the equivalence class of (z, δ) such
that δ∗ ∈ S and the image of δ∗ in Sa is γ, then z∗(σ) ∈ S and hence (z∗, δ∗) ∈
Z1
a(Γ, S ⇒ S). The class inv(γ, (z, δ)) ∈ H1

a(Γ, S ⇒ S) is independent of the
choice of (z∗, δ∗).

2. If (S′, γ′) is another norm of the same equivalence class, and (z′, δ′) the corre-
sponding representative, the unique isomorphism Ad(g) : S → S′ mapping γ
to γ′ induces an isomorphism H1

a(Γ, S ⇒ S) → H1
a(Γ, S

′ ⇒ S′) identifying
the class inv(γ, (z, δ)) of (z∗, δ∗) with the class inv(γ′, (z, δ)) of (z′, δ′).

Proof. Since the element γ is Γ-fixed, the S(F̄ )-conjugacy class of δ̃∗ is Γ-fixed
(in fact the two statements are equivalent). For σ ∈ Γ let s(σ) ∈ S be such that
σ(δ̃∗) = Ad(s(σ))δ̃∗. Since z̃∗(σ) = z∗(σ) ⋊ σ commutes with δ̃∗ we see that
z∗(σ)s(σ) commutes with δ̃∗, thus z∗(σ)s(σ) ∈ Sa, thus z∗(σ) ∈ S.

Let us show that the class of (z̃∗, δ̃∗) in H̃1
a(Γ, S ⇒ S) is independent of the

choice of (z̃∗, δ̃∗). Another such choice is of the form Ad(h)(z̃∗, δ̃∗) for some
h ∈ G(F̄ ). By assumption hδ∗a(h−1) maps to γ, so there exists s ∈ S(F̄ ) such
that shδ∗a(sh)−1 = δ∗, i.e. sh ∈ Cent(δ̃, G) = Sa, thus h ∈ S, as claimed.

Now let (S′, γ′) be another norm and choose by Lemma 3.2 an element
g ∈ Ga,◦(F̄ ) such that Ad(g) : S → S′ carries γ to γ′. Then Ad(g)(z̃∗, δ̃∗) is a
representative of the conjugacy class of (z̃, δ̃) and lies in Z̃1(Γ, S′ ⇒ S′).

4.4 Comparison with [KS99]
{sec:comp}

It would be informative to compare the notions of norms and invariants given
here with those in [KS99]. In short, the notions of norms are the same apart
from cosmetics, while the notion of invariant introduced here is the twisted
analog of the untwisted absolute invariant introduced in [Kal11, §2.1], and
thus refines the relative invariant introduced in [KS99, §4.4], and generalizes
the absolute invariant introduced in the setting of quasi-split groups in [KS99,
§5.3].

More precisely, let (z̃, δ̃) ∈ Z̃1
a(Γ, G ⇒ G). Then θ = Ad(δ̃) is an automor-

phism ofGz defined over F . The element δ̃ is semi-simple and strongly-regular
if and only if 1 ∈ Gz(F ) is θ-semi-simple and θ-strongly regular. Let θ∗ = a.
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The map m : Cl(Gz, θ)→ Cl(G, θ∗) of [KS99, §3.1] is given by h 7→ h · δ̃ and in
particular sends 1 to δ̃. The 1-cochain defined in [KS99, Lemma 3.1.A] and de-
note by zσ there (beware that this is not the same as our zσ here) is identically
equal to 1.

Now let (z̃∗, δ̃∗) and γ ∈ Sa(F ) be be as in Lemma 4.1. Then γ is a norm of 1
in the sense of [KS99, §3.3]. Moreover, if g ∈ G is such that g−1(z̃∗, δ̃∗)g = (z̃, δ̃),
then the 1-cocycle v(σ) = gu(σ)σ(g)−1 considered in [KS99, Lemma 4.4.A],
which takes values in Ssc, when composed with the natural map Ssc → S,
becomes equal to z∗.

We have the the isomorphism

Z1
a(Γ, S ⇒ S)→ Z1(Γ, S

1−a−→ S), (z, δ) 7→ (z−1, δ) (4.1) {eq:ksiso}{eq:ksiso}

and it allows us to view inv(γ, (z, δ)) as an element of H1(Γ, S
1−a−→ S). This

element is then an absolute version of the relative invariant inv(γ, δ; γ̄, δ̄) intro-
duced in [KS99, §4.4], and a generalization of the absolute invariant inv(γ, δ)
that was introduced in [KS99, §5.3].

4.5 The dual group
{sub:dual}

Let Ĝ be a complex dual group for G. We rigidify it by fixing a Γ-invariant
pinning (T̂ , B̂, {X̂α}) and requiring it to be dual to the fixed pinning of G.
That is, we assume given an identification X∗(T̂ ) = X∗(T ) under which the
B-positive coroots are identified with the B̂-positive roots. We define the L-
group of G as LG = Ĝ ⋊ WF , where WF acts on Ĝ by fixing the pinning.
We also let the group A act on Ĝ by fixing the pinning. More precisely, given
a ∈ A, we have the automorphism a∗ of X∗(T ) given by (a∗λ)(x) = a(λ(x))

for x ∈ Gm, and we let a act on T̂ = Hom(X∗(T ),C×) by [at](λ) = t(a−1
∗ λ) for

t ∈ T̂ and λ ∈ X∗(T ). Note that the automorphism a of Ĝ obtained in this way
is related to the automorphism θ̂ of Ĝ obtained from θ∗ = a as in [KS99, §1.2]
by a = θ̂−1. This will later have the effect of H1(Γ, S

1−a−→ S) being paired with

H1(WF , Ŝ
1−a−1

−→ Ŝ).

4.6 The local correspondence
{sub:pure_llc}

Given an irreducible admissible representation of the locally profinite group
G̃z(F ), its restriction to Gz(F ) is a finite length semi-simple admissible repre-
sentation. We shall say that a representation of G̃z(F ) is G-tempered respec-
tively G-discrete, if its restriction to Gz(F ) contains (equivalently, consists of)
a tempered respectively discrete representations.

We will now begin formulating the refined local Langlands conjecture for
the disconnected groups G̃z . The irreducible admissible G-tempered represen-
tations of G̃z will again be parameterized by pairs (ϕ, ρ). The first part of the
pair, the Langlands parameter ϕ, will remain unchanged. That is, we will use
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the same tempered Langlands parameters ϕ : LF → LG as for the connected
group G. However, we will change what we mean by equivalence of param-
eters. Two parameter will be seen as G̃-equivalent if they are conjugate under
the group Ĝ⋊A. Given a parameter ϕ, its group of G̃-self-equivalences is then
S̃ϕ = Cent(ϕ, Ĝ⋊A). This group contains the group Sϕ = Cent(ϕ, Ĝ) of G-self-
equivalences of ϕ. We have the exact sequence

1→ Sϕ → S̃ϕ → A[ϕ] → 1,

where A[ϕ] is the stabilizer in A of the G-equivalence class of ϕ. This exact
sequence leads to the exact sequence

1→ π0(Sϕ)→ π0(S̃ϕ)→ A[ϕ] → 1.

Recall from [Kot86] that the cohomology class [z] gives a character π0(Z(Ĝ)Γ)→
C×, which we will also denote by [z]. The stabilizer of this character in A is
equal to the stabilizer of the cohomology class of z – this is immediate if F is
p-adic, and can be checked if F = R. Let A[ϕ],[z] = A[ϕ] ∩ A[z]. If we pull back
the above extension to A[ϕ],[z] we obtain the extension

1→ π0(Sϕ)→ π0(S̃
[z]
ϕ )→ A[ϕ],[z] → 1,

where S̃[z]
ϕ = Cent(ϕ, Ĝ⋊ A[z]). The pull-back of an irreducible representation

of π0(S̃
[z]
ϕ ) to π0(Z(Ĝ)Γ) is either [z]-isotypic, or it does not contain [z]. We write

Irr(π0(S̃
[z]
ϕ ), [z]) for the set of irreducible representations of π0(S̃

[z]
ϕ ) whose pull-

back to π0(Z(Ĝ)Γ) is [z]-isotypic.
Let us remark at this point that we could alternatively consider the set

Irr(π0(S̃ϕ), [z]) of those irreducible representations whose restriction to π0(Z(Ĝ)Γ)
contains the character [z]. Since Z(Ĝ)Γ is not central in S̃ϕ, this restriction will
contain other characters as well. According to Clifford theory induction from
S̃
[z]
ϕ to S̃ϕ gives a bijection between Irr(π0(S̃

[z]
ϕ ), [z]) and Irr(π0(S̃ϕ), [z]). Indeed,

any element of S̃ϕ that normalizes S̃[z]
ϕ and stabilizes ρ ∈ Irr(π0(S̃

[z]
ϕ ), [z]) also

stabilizes [z] and thus belongs to S̃[z]
ϕ , so Indρ is irreducible. However, working

with Irr(π0(S̃
[z]
ϕ ), [z]) will be more convenient for us.

Consider for a moment the special case z = 1. Choose an A-special Whit-
taker datum w for G. Any w-generic representation π of G(F ) has a canonical
extension π̃ to G̃(F ) = G(F ) ⋊ AΓ, obtained by setting π̃(a) to be the unique
G(F )-map π ◦ a−1 → π that preserves one (hence any) w-Whittaker functional.
We shall say that these π̃ are w-generic representations of G̃(F ). We can now
state the first part of the local Langlands conjecture for the groups G̃z . In the
case F = R set KG̃z to be the associated K-group, i.e. the disjoint union of G̃z′
for all z′ in the image of H1(R, Gz,sc)→ H1(R, Gz)→ H1(R, G).

{cnj:llc_pure_is}
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Conjecture 4.2. The choice of an A-special Whittaker datum w on G determines a bi-
jection between the set of irreducible admissible G-tempered representations of G̃z(F )
when F/Qp, or any member of KG̃z(F ) when F = R, and the set of Ĝ⋊A-conjugacy
classes of pairs (ϕ, ρ̃), where ϕ : LF → LG is a tempered Langlands parameter, and
ρ̃ ∈ Irr(π0(S̃

[z]
ϕ ), [z]). When z = 1 the representation corresponding to (ϕ, ρ̃) is w-

generic if and only if ρ̃ = 1.

Let us write Π̃ϕ,z for the finite set of representations of G̃z(F ) corresponding
to pairs (ϕ, ρ̃) for a fixed ϕ and varying ρ̃. These can be called L-packets for
the disconnected group G̃z(F ). In the §4.13 we will add another piece of the
conjecture, which will in particular determine uniquely the sets Π̃ϕ,z in terms
of theL-packets of the connected groupGz . The new information in Conjecture
4.2 is thus contained in the bijection between Π̃ϕ,z and Irr(π0(S̃

[z]
ϕ ), [z]).

4.7 Endoscopic data
{sub:endo}

We shall use essentially the same notion of endoscopic data as in [KS99, §2.1],
with one minor but important difference that affects both the definition of da-
tum as well as of an isomorphism of data. More precisely, an endoscopic datum
will be a tuple e = (Ge,Ge, s̃e, ξe) consisting of

(4.7.1) a quasi-split connected reductive group Ge defined over F ;

(4.7.2) a split extension Ge of WF by Ĝe (but without the choice of splitting);

(4.7.3) a semi-simple element s̃e ∈ Ĝ⋊A;

(4.7.4) a homomorphism ξe : Ge → LG of extensions;

and satsfying

(4.7.5) the homomorphism WF → Out(Ĝe) arising from the extension Ge is
transported under the canonical identification Out(Ĝe) = Out(Ge) to the
one given by the rational structure of Ge;

(4.7.6) ξe induces an isomorphism Ĝe → Cent(s̃e, Ĝ)◦; {item:e0}

(4.7.7) s̃e commutes with the image of ξe. {item:e1}

This completes the description of the tuple e. An isomorphism e → e′ is an
element g ∈ Ĝ satisfying

(4.7.8) ξe
′
= Ad(g) ◦ ξe;

(4.7.9) s̃e
′
= Ad(g)s̃e modulo Z(Ĝ)◦. {item:e2}
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The difference between these definitions and those in [KS99] is the following.
First, we are only considering here the case ω = 1 and hence a = 1. Second, our
requirement (4.7.7) is stricter than [KS99, (2.1.4a)]. The definition [KS99, (2.1.6)]
of isomorphism however implies that every isomorphism class of endoscopic
data in the sense of [KS99] contains a representative that satisfies (4.7.7). Third,
our requirement (4.7.9) is stricter than [KS99, (2.1.6)]. This implies that a single
isomorphism class in the sense of [KS99] can consist of multiple isomorphism
classes in the sense of our definition.

4.8 Two constructions of endoscopic data
{sub:endocnst}

We now review two constructions of endoscopic data, one geometric and one
spectral. In the case of connected groups, they are summarized in [She83, §4.2].
In the twisted case the geometric appears in the proof of [KS99, Lemma 7.2] and
the spectral one appears at the end of [KS99, §2].

We begin with the spectral construction, which is a little easier to describe.
Let ϕ : LF → LG be an L-parameter and s̃ ∈ S̃ϕ a semi-simple element. The
pair (ϕ, s̃) leads to an endoscopic datum as follows. Set Ĝe = Cent(s̃, Ĝ)◦, Ge =
Ĝe · ϕ(WF ), and let ξe be the natural inclusion. Let Ge be the quasi-split group
defined over F that is dual to Ĝe and whose rational structure is determined
by Γ→ Out(Ĝe) = Out(Ge), the first map coming from the extension Ge. Then
(Ge,Ge, s̃, ξe) is an endoscopic datum. Note that ϕ factors through ξe and thus
becomes a parameter for Ge (in order to relate it to Ge, one needs to further
choose a z-pair).

For the geometric construction, let G̃z̄ be an inner form of G̃ and let δ̃ ∈
G̃z̄(F ) be strongly regular semi-simple. Let S′ ⊂ G be the maximal torus
Cent(Cent(δ̃, G), G). As a maximal torus of Gz̄ it is defined over F , and Ad(δ̃) :
S′ → S′ is an automorphism defined over F . Let κ ∈ H1(WF , (1−δ̃) : Ŝ′ → Ŝ′).
The pair (δ̃, κ) leads to an endoscopic datum (Ge,Ge, s̃e, ξe) and a stable conju-
gacy class of elements γe ∈ Ge(F ) as follows.

Choose a norm (S, γ) of δ̃ and g ∈ G(F̄ ) such that g−1δ̃g = δ̃∗ = δ∗ ⋊ a ∈
S(F̄ )⋊ a with δ∗ 7→ γ. Then Ad(g) provides an isomorphism H1(WF , (1− δ̃) :
Ŝ′ → Ŝ′) → H1(WF , (1 − a) : Ŝ → Ŝ). Choose an a-invariant Borel pair
(T̂ , B̂) of Ĝ and an a-invariant Borel subgroupC containing S. These lead to an
equivariant isomorphism Ŝ → T̂ under which a 1-hypercocycle representing
κ is transported to a pair (t−1

w , s) satisfying, for every w ∈ WF , the relation
s−1σS(s) = t−1

w a(tw), where σ ∈ Γ is the image of w and σS is the transport
of the action of σ on Ŝ to T̂ . This transport is given by ωσ ⋊ σ, for a uniquely
determined ωσ ∈ Ω(T̂ , Ĝ)a. The map σ 7→ ωσ belongs toZ1(Γ,Ω(T̂ , Ĝ)a). In the
long exact sequence of Γ-cohomology associated to the short exact sequence

1→ T̂ a,◦ → N(T̂ a,◦, Ĝa,◦)→ Ω(T̂ , Ĝ)a → 1

the image of the class of ωσ is an element of H2(Γ, Ŝ), whose restriction to
H2(WF , Ŝ) vanishes according to [Lan79, Lemma 4]. It follows that there exist
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lifts nσ ∈ N(T̂ a,◦, Ĝa,◦) of ωσ so that w 7→ nw ⋊ w is a homomorphism WF →
N(T̂ a,◦, Ĝa,◦) ⋊ WF . Then η : w 7→ twnw ⋊ w is a group homomorphism
WF → N(T̂ , Ĝ) whose image commutes with s ⋊ a. Define s̃e = s ⋊ a, Ĝe =

Cent(s̃e, Ĝ)◦, Ge = Ĝe · η(WF ), and let ξe be the natural inclusion. Let Ge be
the quasi-split group defined over F , dual to Ĝe, and with rational structure
determined by Γ → Out(Ĝe) = Out(Ge), where the first map comes from the
extension Ge. It is immediately checked that (Ge,Ge, s̃e, ξe) is an endoscopic
datum.

The a-equivariant isomorphism Ŝ → T̂ and the inclusion T̂ a,◦ → Ĝe give
a caonical Ge(F̄ )-conjugacy class of embeddings Sa → Ge. Thus the element
γ gives a canonical Ge(F̄ )-conjugacy class of strongly regular semi-simple ele-
ments of Ge(F̄ ). This class is Γ-invariant, so by [Kot82, Corollary 2.2] gives a
stable class of elements γe ∈ Ge(F ). This completes the geometric construction.

4.9 Normalized transfer factor invariant under G̃z(F )
{sub:pure_tf}

Fix an A-special Whittaker datum as in §3.4. Let e = (Ge,Ge, s̃e, ξe) be an en-
doscopic datum. There may or may not exist an isomorphism Ge → LG

e of
extensions of WF by Ĝe. If it does we choose one such, denote it by ξz and
write Gz = Ge. If it does not, we can choose a z-extension Gz → Ge and ap-
ply [KS99, Lemma 2.2.A] which guarantees that the inclusion Ĝe → Ĝz always
extends to an L-embedding ξz : Ge → LG

z. We denote by z the pair (Gz, ξz).
We will define a normalized absolute transfer factor ∆[w, e, z] as a function

that assigns complex values to pairs (γz, δ̃) of Gz(F ) × G̃z(F ), where both γz

and δ̃ are strongly regular semi-simple. As a function of δ̃ the transfer factor
∆[w, e, z] will be conjugation-invariant under the full group G̃z(F ). The defini-
tion is by the formula

∆[w, e, z](γz, δ̃) =
∑

c∈G̃z(F )/Gz(F )

∆KS [w, e, z](γ
z, cδ̃c−1), (4.2) {eq:pure_tf}{eq:pure_tf}

which in turn uses a normalized absolute Kottwitz-Shelstad transfer factor
∆KS [w, e, z] that we will define below. The latter is a function that assigns
complex values to pairs (γz, δ̃) of Gz(F ) × [G ⋊ b−1]z(F ), where b ∈ A is the
image of s̃e and both γz and δ̃ are strongly regular semi-simple. In the variable
δ̃ this function is only Gz(F )-conjugation invariant.

Following [KS, §5.5], the factor ∆KS [w, e, z] is defined by

∆KS [w, e, z] := e([G⋊ b−1]z̄)ϵL(V, ψ)(∆
new
I )−1∆II(∆

new
III )

−1∆IV . (4.3) {eq:pure_tf1}{eq:pure_tf1}

The terms ϵL(V, ψ), ∆new
I , ∆II , and ∆IV have already been defined, in [KS99,

§5.3], [KS, §3.4], [KS99, §4.3], and [KS99, §4.5], respectively, but we will recall
them for the convenience of the reader below. They are absolute, i.e. they
depend on a single pair of elements (γz, δ̃). The term ∆new

III will be defined in
this paper. It is also absolute. A relative version of it, i.e. one depending on
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two pairs of related elements, was defined in [KS99, §4.4]; in the quasi-split case
z = 1 an absolute version was defined in [KS99, §5.3]; in the untwisted case an
absolute version was defined in [Kal11] for pure inner forms of p-adic groups,
and generalized in [Kal16b] to arbitrary inner forms of connected groups over
local fields. In this paper we will define an absolute version for arbitrary z in
the twisted setting. The term e([G⋊b−1]z̄) was defined in §3.5. When z̄ = 1 it is
equal to 1, while the term ∆new

III coincides with the absolute term ∆III defined
in [KS99, §5.3]. The factor ∆KS is an absolute transfer factor whose relative
version is the factor ∆′ of [KS, §5.4]. When z = 1 then ∆KS coincides with the
absolute factor [KS, (5.5.2)]. When b = 1 the factor ∆KS differs from the factor
[Kal16b, (5.10)] by the term e(Gz), which in the notation of loc. cit. would be
e(G′). This change is made for convenience of exposition and will be reflected
in the absence of the term e(Gz) in the character identities (4.4) as compared to
[Kal16b, (5.9),(5.11)].

Before we come to ∆new
III we briefly recall the definition of the other factors.

These factors depend on auxiliary data that we describe first. Let (T,B, {Xα})
be an F -pinning of G invariant under b. Let ψ : F → C× be a non-trivial
character. It is assumed that the Whittaker datum arising from the pinning
and the character is the given datum w. Let Rres(S,G) be the set of restrictions
to Sbsc of the absolute roots of S in G. Fix a-data and χ-data for Rres(S,G).

Let γe ∈ Ge be the image of γz under the natural map Gz → Ge. The
complex number ∆KS [w, e, z](γ

z, δ̃) is zero unless γe transfers to a norm of δ̃.
More precisely, let (S, γ) be a norm of δ̃ in the sense of Definition 3.3. It exists
and is unique up to Gb(F̄ )-conjugacy according to Lemma 3.4. In order for
∆KS [w, e, z](γ

z, δ̃) to not be zero, there must exists an admissible isomorphism
Se → Sb carrying γe to γ, where Se is the centralizer of γe. We now assume such
an isomorphism exists. It is then uniquely determined by the pair (γe, γ) and
we call it φγe,γ . Via this isomorphism we obtain an embedding R(Se, Ge) →
Rres(S,G). We can transport the chosen a-data and χ-data to R(Se, Ge). Recall
that S is a b-admissible maximal torus of G, γ ∈ Sb(F ), and there exists g ∈
G(F̄ ) such that g−1δ̃g = δ̃∗ = δ∗ ⋊ b−1 with δ∗ ∈ S(F̄ ) mapping to γ.

The term ϵL(V, ψ) is the root number of the virtual Γ-representation V =
X∗(T )bC − X∗(T e)C, where T e is the (unique up to conjugation) minimal Levi
subgroup of Ge.

The term ∆II is a fraction. Its numerator is a product over Γ-orbits of αres ∈
Rres(S,G), where the factor corresponding to αres is χαres((Nα(δ

∗) − 1)/aαres)
when αres is of type R1 or R2, and χαres(Nα(δ

∗) + 1) if αres is of type R3. Here
α ∈ R(S,G) is any preimage of αres and Nα is the sum of the members of the
b-orbit of α, which we recall is uniquely determined by αres. The denominator
is a product over Γ-orbits of αe ∈ R(Se, Ge) ⊂ Rres(S,G), where the factor
corresponding to αe is χαe

((αe(γ
e)− 1)/aαe

).
The term ∆IV is again a fraction. Its numerator is a product over αres ∈

Rres(S,G), where the factor corresponding to αres is |Nα(δ∗)− 1| 12 when αres is
of type R1 or R2, and |Nα(δ∗) + 1| 12 if αres is of type R3. The denominator is a
product over αe ∈ R(Se, Ge) ⊂ Rres(S,G), where the factor corresponding to
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αe is |αe(γ
e)− 1| 12 .

The term ∆I is obtained by taking the Tate-Nakayama pairing of an ele-
ment t ∈ H1(Γ, Sbsc) with an element sS ∈ π0([Ŝad]

Γ
b ), or equivalently of the

image of t in H1(Γ, Sb,◦) with an element sS ∈ π0([Ŝ]
Γ
b ). The element t is

the twisted splitting invariant of S, obtained as follows. Let C ⊂ G be a
Borel subgroup defined over F̄ containing S and invariant under b; its ex-
istence is the definition of b-admissibility of S. Choose h ∈ Gbsc such that
h(T,B)h−1 = (S,C). Let w(σ) ∈ N(T bsc, G

b
sc)/T

b
sc be the image of h−1σ(h) and

let n(σ) ∈ N(T bsc, G
b
sc) be the Tits lift of w(σ) with respect to the chosen pinning

of G. Thus n(σ)(h−1σ(h))−1 ∈ T b. Let y(σ) =
∏
α∨(aαres) ∈ Sbsc, where the

product runs over those α ∈ R(S,C) that satisfy −σ(α) ∈ R(S,C). Then t is
the class of y(σ) · hn(σ)σ(h)−1. To obtain the element sS ∈ π0([Ŝ]

Γ
b ), choose

a member of the canonical Ĝe-conjugacy class of embeddings Ŝe → Ĝe and
compose it with ξe and φ̂γe,γ to obtain an embedding Ŝb,◦ → Ĝ. The image of
this embedding commutes with s̃e. It extends uniquely to an admissible em-
bedding Ŝ → Ĝ, see Lemma 4.3 below. Replacing e by an isomorphic datum if
necessary we may arrange that the image of Ŝ is b-invariant. Writing s̃e = se⋊b
we see that se commutes with the image of Ŝb,◦, hence also with the image of
Ŝ, and hence lies in that image. We transport se to Ŝ and project to [Ŝ]b and
obtain sS .

4.10 Normalized factor ∆KS without z-pair
{sub:pure_tf1}

We turn to the construction of ∆new
III . For simplicity we shall first assume that

there exists an L-isomorphism ξz : Ge → LG
e, so that Gz = Ge and γz = γe.

In Lemma 4.1 we defined an element inv(γ, (z, δ)) ∈ H1
b−1(Γ, S ⇒ S) which

we transport via the isomorphism (4.1) to H1(Γ, (1 − b−1) : S → S). On
the other hand, the constructions of [KS99, §4.4] provide an element A0 of
H1(WF , (1− b) : Ŝ → Ŝ). We recall them here, as they take a particularly sim-
ple form in our set-up. Namely, transport the choosen χ-data forRres(Sb, G) via
the admissible isomorphism Se → Sb to Rres(S

e, Ge). From these χ-data one
obtains L-embeddings ξeS : LS

e → LGe and ξ1S : LSb → LG1, where G1 is the
principal endoscopic group of G⋊ b−1, i.e. the quasi-split connected reductive
group with L-group Ĝ1 ⋊WF , where Ĝ1 = Ĝb,◦. We have the natural embed-
ding LG1 → LG and the L-isomorphism Lφγe,γ : LSb → LS

e corresponding
to φγe,γ . The two L-embeddings LSb → LG given by ξ1S and ξz ◦ ξeS ◦ Lφγe,γ

are defined up to Ĝ-conjugacy and we arrange them so that their restrictions
to Ŝb are equal. Let ξS : LS → LG be the unique extension of ξ1S of Lemma 4.3.
By Corollary 4.5 there exists a (uniquely determined) 1-cocycle aS : WF → Ŝ

such that ξe ◦ ξeS ◦ Lφγe,γ(t ⋊ w) = ξS(taS(w) ⋊ w) for all t ⋊ w ∈ Ŝb ⋊WF .
The property Ad(s̃e)ξe = ξe and the above equation immediately imply that s̃e

commutes both with ξ1S(Ŝb) and with w 7→ ξS(aS(w) ⋊ w). Commuting with
ξ1S(Ŝ

b) implies s̃e = s⋊ b with s ∈ ξS(Ŝ). Let sS ∈ Ŝ be the preimage of s under
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ξS . The commuting of s̃with ξS(aS(w)⋊w) is then equivalent to (1−b)aS(w) =
sS · (σS(w)sS)−1, which says that (a−1

S , sS) ∈ Z1(WF , (1 − b) : Ŝ → Ŝ). We let
A0 be the class of (a−1

S , sS).
In [KS99, §A.3] a pairing was defined between the cohomology groups

H1(WF , (1−b) : Ŝ → Ŝ) andH1(Γ, (1−b−1) : S → S). We define ∆new
III (γ

z, δ̃) =
⟨inv(γ, (z, δ)), A0⟩.

{lem:lembex}
Lemma 4.3. There exists a unique L-embedding ξS : LS → LG extending ξ1S .

Proof. If ξS were given, for s ⋊ w ∈ Ŝ ⋊WF = LS the equality ξS(s ⋊ w) =
ξS(s) · ξ1S(w) would hold. Two different extensions of ξ1S would thus differ
by an element of Ω(S,G)(F ) that induces a trivial action on Sb, equivalently
on Sb, but this only holds for 1 ∈ Ω(S,G)(F ). This shows uniqueness. For
existence we fix Γ-invariant Borel pairs (T̂ , B̂) of Ĝ and (T,B) of G. Then
(T̂ b, B̂b) is a Γ-invariant Borel pair of Ĝb,◦. Fix a b-invariant Borel subgroup
C of G defined over F̄ and containing S, and let g ∈ Gb,◦ conjugate (T,B) to
(S,C). Composing the dual of Ad(g) : T → S with the natural identification
of the dual of T with T̂ given by B and B̂ gives an admissible isomorphism
ξS : Ŝ → T̂ . Its restriction Ŝb,◦ → T̂ b,◦ is also an admissible isomorphism, and
after conjugating ξ1S within Ĝb,◦ we can arrange that this latter isomorphism
coincides with ξ1S . Let ωσ ∈ Ω(T,G)b = Ω(T̂ , Ĝ)b be the image of g−1σ(g) ∈
N(Sb, Gb,◦). Then the transport via ξS of the action of w ∈WF on Ŝ is given by
ωσw

⋊w on T̂ . The same is true for ξ1S and we see that ξ1S(1⋊w) ∈ N(T̂ b,◦, Ĝb,◦)⋊
WF lifts ωσw ⋊ w. It follows that Ad(ξ1S(1 ⋊ w))ξS(s) = ξS(wsw

−1), hence
s⋊ w 7→ ξS(s) · ξ1S(1⋊ w) is an L-embedding extending ξ1S .

{fct:lembimg}
Fact 4.4. Let G be an extension of WF by Ĝ and let ξ : LS → G be an L-embedding.

1. The image of ξ is the subgroup of G defined by

S = {x ∈ G|∀s ∈ Ŝ : xξ(s⋊ 1)x−1 = ξ(σx(s)⋊ 1), }

where σx ∈ Γ is the image of x.

2. In particular, the image of ξ depends only on the restriction of ξ to Ŝ.

3. ξ is a homeomorphism onto its image.

Proof. Certainly the image of ξ is contained in S. Given x ∈ S let w be its image
in WF and consider x′ = ξ(1 ⋊ w) ∈ S. Then x′x−1 ∈ Ĝ commutes with ξ(Ŝ)
and thus belong to ξ(Ŝ), i.e. x = ξ(s⋊w). The second point is immediate from
the first, and the third follows from the open mapping theorem and the fact
that LS is locally compact, Hausdorff, and σ-compact.

{cor:lembcomp}
Corollary 4.5. There exists a 1-cocycle aS : WF → Ŝ such that the L-embeddings
ξe ◦ ξeS ◦ Lφγe,γ and ξS ◦ ãS are Ĝ-conjugate.

28



Proof. Let ξS : LS → LG and ξ′S : LS → LG be the unique extensions of ξ1S and
ξe ◦ ξeS ◦ Lφγe,γ given by Lemma 4.3. Their restrictions to Ŝ are Ĝ-conjugate,
so we assume they are equal. It follows from Fact 4.4 that ξS and ξ′S have the
same image and are homeomorphisms onto it, so we may form ξ′S ◦ ξ

−1
S . This

is an automorphism of the topological group Ŝ ⋊WF restricting to the identity
on both Ŝ and WF . Thus it is given by multiplication by aS ∈ Z1(WF , Ŝ).

4.11 Normalized factor ∆KS with z-pair
{sub:pure_tf2}

We now drop the assumption that there exists an L-isomorphism LGe ∼= Ge
and instead choose a z-pair z = (Gz, ξz). We denote by Sz the centralizer of
γz. Let Sz

1 be the fiber product of S → Sb ∼= Se ← Sz. The automorphism
b × id of S × Sz preserves Sz

1 and we denote the automorphism it induces
by b1. It fixes the kernel of Sz

1 → S pointwise. Hence the endomorphism
(1 − b−1

1 ) of Sz
1 induces a homomorphism (1 − b−1

1 ) : S → Sz
1. We are going

to refine the invariant inv(γ, (z, δ)) ∈ H1
b−1(Γ, S ⇒ S) ∼= H1(Γ, (1 − b−1) :

S → S) constructed above to an element inv(γz, (z, δ)) ∈ H1(Γ, (1 − b−1
1 ) :

S → Sz
1). If (z̃∗, δ̃∗) is a representative of the G-conjugacy class of (z̃, δ̃) as in

Lemma 4.1, then δz = (δ∗, γz) belongs to Sz
1(F̄ ) and satisfies (b−1

1 − 1)z∗(σ) =
(δz)−1σ(δz), so (z∗,−1, δz) ∈ Z1(Γ, (1 − b−1

1 ) : S → Sz
1)) and its class is the

invariant inv(γz, (z, δ)) we want.
This invariant will be paired with an element A0 ∈ H1(WF , (1 − b) : Ŝz

1 →
Ŝ), whose construction is essentially the one given in [KS99, §4.4]. We have
as above the L-embeddings ξ1S : LSb → LG1 and ξeS : LS

e → LGe. They will
become part of a diagram as follows

LS

ξS

((LSb
ξ1S

//

Lφγe,γ

��

OO

LG1 // LG

U // Ge

ξe
aa

ξz}}
LSe

ξeS //

��

LGe // LGz

LSz

ξzS

55

All arrows are L-embeddings. The unnamed arrows LG1 → LG, LGe → LGz,
LSb → LS, and LSe → LSz are the canonical ones. The arrows ξS and ξzS
are the unique ones extending ξ1S and ξeS by Lemma 4.3. We would like to
apply Corollary 4.5, but unfortunately have no embedding LGe → LG. Instead,
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following Fact 4.4 we define

U = {x ∈ Ge|∀s ∈ Ŝ : xξeS(s⋊ 1)x−1 = ξeS(σx(s)⋊ 1)},

which would be the image of ξeS if we had an identification LGe ∼= Ge, which we
do not. It is still an extension of WF by Ŝe and Fact 4.4 implies ξz(U) ⊂ ξzS(LSz)
and ξe(U) ⊂ ξS(

LS). Applying again the open mapping theorem we obtain
L-embeddings α0 : U → LSz and β : U → LS. Compose α0 with the L-
automorphism of LSz given by inversion on Ŝz to obtain α : U → LSz, and
consider α × β : U → L(S × Sz). Its composition with L(S × Sz) → LSz

1 kills
Ŝe ⊂ U , thus descends to an L-homomorphism ãS :WF → LSz

1, i.e. a 1-cocycle
aS : WF → Ŝz

1. As before one checks that s̃e = ξS(sS) ⋊ b and (a−1
S , sS) ∈

Z1(WF , (1− b1) : Ŝz
1 → Ŝ), and we define A0 to be the class of this element.

As in Subsection 4.10 we define ∆new
III (γ

z, δ̃) to be the pairing of inv(γz, (z, δ))
and A0.

4.12 Transfer of functions
{sub:trans}

In §4.10 and §4.11 we defined a factor ∆new
III , which leads to the factor ∆KS [w, e, z]

via (4.3), which in turn leads to the factor ∆[w, e, z] via (4.2).
Let f ∈ C∞c (G̃z(F )). For any δ̃ ∈ G̃z(F ) we can form the integral of f

over the G̃z(F )-conjugacy class of δ̃, after fixing an invariant measure on this
conjugacy class. We will call this integral Oδ̃(f). Since the G̃z(F )-conjugacy
class of δ decomposes as a disjoint union of finitely many Gz(F )-conjugacy
classes, Oδ̃(f) is a sum of finitely many twisted orbital integrals.

{lem:trans}
Lemma 4.6. For any function f ∈ C∞c (G̃z(F )) there exists a function f z ∈ H(Gz)
such that for all strongly regular γz ∈ Gz(F ) we have

SOγz(f z) =
∑
δ̃

∆[w, e, z](γz, δ̃)Oδ̃(f)

where the sum runs over the set of strongly regular G̃z(F )-conjugacy classes in G̃z(F ).
More precisely, if f z,KS is the function that satisfies

SOγz(f z,KS) =
∑
δ̃

∆KS[w, e, z](γ
z, δ̃)Oδ̃(f),

where now δ̃ runs over the strongly regular semi-simple elements in [G ⋊ a]z(F )

modulo Gz(F )-conjugacy and a−1 ∈ A is the image of s̃e, then f z = f z,KS0 , where
f0(δ̃) =

∑
c∈G̃z(F )/Gz(F ) f(c

−1δ̃c).

Proof. This follows immediately from the deep results on geometric transfer
in twisted endoscopy due to Shelstad [She12] in the archimedean case and
Ngo [Ngô10] and Waldspurger [Wal97], [Wal08] in the non-archimedean case.
Indeed, in

∑
δ̃∆[w, e, z](γz, δ̃)Oδ̃(f) we are summing over G̃z(F )-conjugacy
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classes in G̃z(F ), and then integrating over each such class. We may equally
well sum over Gz(F )-conjugacy classes in G̃z(F ), and then integrate over each
such class. After this reparameterization, we plug in (4.2) and use the fact that
∆KS is invariant under Gz(F )-conjugation in the variable δ̃ to switch the sums
over c and δ̃. This brings the right hand side to∑
c∈G̃z(F )/Gz(F )

∑
δ̃∈G̃z(F )/Gz(F )−conj

∆KS [w, e, z](γ
z, cδ̃c−1)

∫
x∈Gz(F )/Gz(F )δ̃

f(xδ̃x−1)dx.

Changing variables to replace δ̃ and x by c−1δ̃c and cxc−1 and moving the sum
over c to the right we obtain∑
δ̃∈G̃z(F )/Gz(F )−conj

∆KS [w, e, z](γ
z, δ̃)

∫
x∈Gz(F )/Gz(F )δ̃

∑
c∈G̃z(F )/Gz(F )

f(c−1xδ̃x−1c)dx.

Let a−1 ∈ A be the image of s̃e. Then ∆KS = 0 unless δ̃ ∈ [G ⋊ a]z(F ). Fix
δ̃0 ∈ [G⋊a]z(F ) and write θ = Ad(δ̃0). Let f0(δ) =

∑
c∈G̃z(F )/Gz(F ) f(c

−1δδ̃0c).
Then we obtain∑

δ∈Gz(F )/θ−conj

∆KS [w, e, z](γ
z, δδ̃0)

∫
x∈Gz(F )/Gz(F )δθ

f0(xδθ(x
−1)).

By construction ∆KS [w, e, z](γ
z, δδ̃0) is a normalization of the Kottwitz-Shelstad

transfer factor for the twisted group (Gz, θ) and its twisted endoscopic datum
e, evaluated at (γz, δ). The results of Shelstad, Ngo, and Waldspurger now im-
ply the existence of a function f z so that the above formula becomes equal to
SOγz(f z).

4.13 Character identities
{sub:pure_charid}

Consider a parameter ϕ : LF → LG and a semi-simple element s̃ ∈ S̃
[z]
ϕ .

The pair (ϕ, s̃) leads to an endoscopic datum e = (Ge,Ge, s̃, ξe) by the spec-
tral construction described in Subsection 4.8. Choose a z-pair (Gz, ξz) and let
ϕz = ξz ◦ ϕ, a tempered parameter for Gz. We assume the existence of an L-
packet Πϕz on Gz(F ) and of its stable character SΘϕz . Let us write the bijection
Irr(π0(S̃

[z]
ϕ ), [z])→ Π̃ϕ,z from Conjecture 4.2 as ρ̃ 7→ π̃ρ̃.

{cnj:llc_pure_ci}
Conjecture 4.7. For any pair of functions f and f z as in Lemma 4.6 we have

SΘϕz(f z) =
∑
ρ̃

trρ̃(s̃) ·Θπ̃ρ̃(f), (4.4) {eq:charid}{eq:charid}

where ρ̃ runs over Irr(π0(S̃
[z]
ϕ ), [z]).

As we have already remarked in §4.9, equation (4.4) applied to the con-
nected case G̃ = G differs from equation [Kal16b, (5.9),(5.11)] because it is
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missing the factor e(G′). This factor has now been built into the definition of
the transfer factor (4.3), because in the disconnected case this is notationally
more convenient.

We will refer to Conjectures 4.2 and 4.7 together as the refined local Langlands
conjecture for pure inner forms of quasi-split disconnected groups.

Remark 4.8. Let a ∈ A be the image of s̃. If the function f is supported away
from the Gz(F )-cosets in G̃z(F ) which are A-conjugate to a−1, then f z = 0.
Thus the conjecture contains the statement that the right hand side is also zero
in this case.

Remark 4.9. Let χ : A → C× be a character. Then π̃χ⊗ρ̃ = χ ⊗ π̃ρ̃. If a ∈ A is
the image of s̃ and f is a function on G̃z(F ) supported on the Gz(F )-coset of
b ∈ A, then tr(χ ⊗ ρ̃)(s̃) = χ(a)tr(ρ̃)(s̃), while Θχ⊗π̃ρ̃(f) = χ(b)Θπ̃ρ̃(f). From
this it follows that the right hand side above is zero if f is supported only on
cosets for b ∈ A such that ab ̸= 1 in Aab.

5 THE CONJECTURE FOR RIGID INNER FORMS

{sec:rigid}
In the preceding section, we introduced a refined local Langlands conjecture
for pure inner forms of quasi-split disconnected groups. Those are inner forms
of quasi-split disconnected groups G ⋊ A that arise from H1(Γ, G). A general
inner form of G⋊A arises from H1(Γ, G/Z(G)A) and in this section we are go-
ing to extend the conjecture from pure inner forms to general inner forms. Just
like in the connected setting, the notion of an inner form needs to be rigidified.
For this we can use the cohomology set H1(u → W,Z(G)A → G) defined in
[Kal16b], see also [Kal18]. However, in order to normalize the transfer factors
in the disconnected case, we shall need a generalization of this cohomology set
to complexes of tori of length 2, as well as a Tate-Nakayama duality theorem for
this generalization. This will be the concern in the first two subsections below.
Thankfully, what is needed is little more than a combination of the arguments
of [Kal16b] and [KS99, App. A].

5.1 Definitions of hyper(co)homology groups
{sub:coho}

Consider a complex Z → T → U , where T and U are tori, Z is finite, and
Z → T is injective. We write f for the map T → U , and leave the map Z → T
unnamed. Let T̄ be the quotient T/Z. The map f induces a map f̄ : T̄ → U .

We shall first define and study a cohomology group H1(u → W,Z → T →
U) that combines the group H1(u → W,Z → T ) of [Kal16b] and the group
H1(Γ, T → U) of [KS99, App. A]. Define Z1(u → W,Z → T → U) to consists
of pairs z ∈ Z1(u → W,Z → T ) and c ∈ C0(Γ, U) such that f̄(z̄) = ∂c, where
z̄ ∈ Z1(Γ, T̄ ) is the image of z. Define H1(u → W,Z → T → U) to be the
quotient of Z1(u→W,Z → T → U) by the subgroup B1(Γ, T → U) consisting
of {(t−1σ(t), f(t))|t ∈ T (F̄ )}.
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This definition involves a particular choice of extension 1 → u → W →
Γ → 1 in the distinguished isomorphism class. Just like in the case of H1(u →
W,Z → G), the cohomology set H1(u → W,Z → T → U) is independent of
that choice, in that there is a unique isomorphism between the two versions
of it coming from two choices of extensions. The argument is as follows. It
is enough to show that an automorphism of the extension W acts trivially on
H1(u → W,Z → T → U). The vanishing of H1(Γ, u) asserted in [Kal16b,
Theorem 3.1] implies that such an automorphism is of the form Ad(x) for some
x ∈ u. An element (z, u) ∈ Z1(u → W,Z → T → U) is sent by Ad(x) to (z′, u)
where z′(w) = z(xwx−1) = z(x · σ(x−1))z(w) = z(x) · σ(z(x)))−1 · z(w), where
σ ∈ Γ is the image of w. So the difference between (z, u) and (z′, u) is measured
by (z(x) · σ(z(x))−1, 1) ∈ B1(Γ, T → U). We are using here that f |Z = 1.

We have the following analog of [Kal16b, (3.6)]:

T̄ (F )

��

T̄ (F )

��
1 // H1(Γ, Z)

Inf //

��

H1(u→W,Z → Z)
Res //

��

Hom(u, Z)Γ

1 // H1(Γ, T → U)
Inf // H1(u→W,Z → T → U)

Res //

a

��

Hom(u, Z)Γ

��

// H2(Γ, T → U)

H1(Γ, T → U) // H1(Γ, T̄ → U) //

��

H2(Γ, Z)

��

// H2(Γ, T → U)

1 1

(5.1) {eq:bfd2}{eq:bfd2}
We also have the following analog of the long exact sequence [KS99, (A.1.1)]

0→ H0(Γ, Z)→ H0(Γ, T )→ H0(Γ, U)→
→ H1(u→W,Z → T → U)→ H1(u→W,Z → T )→ H1(Γ, U)→
→ H2(Γ, T̄ → U)→ H2(Γ, T̄ )→ H2(Γ, U)→
→ . . .

Note that the kernel of H1(u → W,Z → T → U) → H1(u → W,Z → T )
lies in the subgroup H1(Γ, T → U) of H1(u → W,Z → T → U) and the
map H1(u → W,Z → T ) → H1(Γ, U) factors through the surjection H1(u →
W,Z → T )→ H1(Γ, T̄ ). The difference between [KS99, (A.1.1)] and (5.1) is that
we have replaced H1(Γ, T → U) by H1(u → W,Z → T → U), Hi(Γ, T → U)
by Hi(Γ, T̄ → U), and Hi(Γ, T ) by Hi(Γ, T̄ ), for i > 1.

Finally let K and C be the kernel and cokernel of f , respectively, so that we
have an exact sequence 1 → K → T → U → C → 1 of diagonalizable groups.
By assumption Z ⊂ K and thus we also have 1 → K̄ → T̄ → U → C, where
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K̄ = K/Z. We have the commutative diagram with exact rows

0 // H1(Γ,K) //
� _

��

H1(Γ, T → U) //
� _

��

H0(Γ, C) // H2(Γ,K)

��
0 // H1(u→W,Z → K) //

����

H1(u→W,Z → T → U) //

����

H0(Γ, C) // H2(Γ, K̄)

0 // H1(Γ, K̄) // H1(Γ, T̄ → U) // H0(Γ, C) // H2(Γ, K̄)

Next we shall define a functor Ȳ+,tor(Z → T → U) that combines the func-
tor Ȳ+,tor(Z → T ) of [Kal16b] and the homology groups H0(WK/F , X∗(T ) →
X∗(U))0 of [KS99, App. A]. Consider the homomorphism f∗ : X∗(T )→ X∗(U).
The assumption Z ⊂ ker(f) implies that this homomorphism extends (nec-
essarily uniquely) to f∗ : X∗(T̄ ) → X∗(U). We consider this as a complex
placed in degrees 0 and 1. For every finite Galois extension K/F splitting T
and U we have the hyperhomology groups H0(WK/F , X∗(T ) → X∗(U)) and
H0(WK/F , X∗(T̄ ) → X∗(U)), as well as their subgroups H0(−)0 defined in
[KS99, App. A.3]. Let us recall some details. The group of inhomogenous
n-chains Cn(WK/F , X∗(T )) consists of all set-theoretic maps Wn

K/F → X∗(T )

with finite support. If y is such a map, its differential ∂y : Wn−1
K/F → X∗(T ) is

given by

∂y(w1, . . . , wi−1) =
∑
x

x−1y(x,w1, . . . , wn−1)

+

n−1∑
i=1

(−1)i
∑
x

y(w1, . . . , wi−1, wix
−1, x, wi+1, . . . , wn−1)

+ (−1)n
∑
x

y(w1, . . . , wn−1, x),

where x runs over WK/F . The group Z0(WK/F , X∗(T ) → X∗(U)) has the
explicit description as the set of pairs {(λ, µ1)|λ ∈ C0(WK/F , X∗(T )), µ1 ∈
C1(WK/F , X∗(U)), f∗(λ) = ∂µ1), while the group B0(WK/F , X∗(T ) → X∗(U))
is given by {(∂λ1, f∗(λ1)−∂µ2)|λ1 ∈ C1(WK/F , X∗(T )), µ2 ∈ C2(WK/F , X∗(U))}.
Then H0 = Z0/B0. The subgroup Z0(−)0 consists of those (λ, µ1) satisfying in
additionNK/Fλ = 0, andH0(−)0 = Z0(−)0/B0. Note thatH0(WK/F , X∗(T ))0 =

H−1
Tate(ΓK/F , X∗(T )) = [X∗(T )/IX∗(T )]tor, where I is the augmentation ideal in

ΓK/F , or equivalently in Γ. In [Kal16b] we used the notation Ytor(T ) for this
finite abelian group.

{fct:tn++esy1}
Fact 5.1. We have the exact sequence

H1(WK/F , X∗(T ))→ H1(WK/F , X∗(U))→
→H0(WK/F , X∗(T )→ X∗(U))0 → Ytor(T )→ Ytor(U).

Proof. Left to the reader.
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We define H0(WK/F , X∗(T ) → X∗(T̄ ) → X∗(U))0 = Z0(WK/F , X∗(T̄ ) →
X∗(U))0/B0(WK/F , X∗(T )→ X∗(U)).

{fct:tn++esy2}
Fact 5.2. We have the exact sequence

H1(WK/F , X∗(T ))→ H1(WK/F , X∗(U))→
→H0(WK/F , X∗(T )→ X∗(T̄ )→ X∗(U))0 → Ȳ+,tor(Z → T )→ Ytor(U).

Proof. Left to the reader.

There is a coinflation map Cn(WL/F , X∗(T )) → Cn(WK/F , X∗(T )) for a
tower L/K/F defined by

coinfy(w1, . . . , wn) =
∑

ẇi∈p−1(wi)

y(ẇ1, . . . , ẇn),

where p : WL/F → WK/F is the natural projection. This map respects dif-
ferentials and induces a corresponding map Hn(WL/F , X∗(T ) → X∗(U)) →
Hn(WK/F , X∗(T )→ X∗(U)). It mapsH0(WL/F , X∗(T )→ X∗(U))0 toH0(WK/F , X∗(T )→
X∗(U))0, this relies on the torsion-freeness of X∗(T ).

{fct:ks1}
Fact 5.3. Consider a tower of finite Galois extensions L/K/F and assume K splits T
and U . Then the following diagram commutes

H0(WL/F , X∗(T )→ X∗(U))0 //

��

H1(K/F, T (K)→ U(K))

H0(WK/F , X∗(T )→ X∗(U))0 // H1(L/F, T (L)→ U(L))

OO

where the left map is coinflation, the right map is inflation, and the horizontal maps
are the isomorphisms [KS99, (A.3.4)]. Both vertical maps are isomorphisms.

Proof. This is diagram [KS99, (A.3.11)], and its commutativity is proved there.
The fact that inflation is an isomorphisms follows from the 5-lemma applied to
the exact sequence

T (F )→ U(F )→ H1(K/F, T (K)→ U(K))→ H1(K/F, T (K))→ H1(K/F,U(K))

and its L/F -analog. The fact that coinflation is an isomorphism follows from
the commutativty of the above diagram.

The coinflation map induces a map

H0(WL/F , X∗(T )→ X∗(T̄ )→ X∗(U))0 → H0(WK/F , X∗(T )→ X∗(T̄ )→ X∗(U))0.

Fact 5.4. This is an isomorphism.
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Proof. We apply the 5-lemma to the exact sequence

H1(X∗(T ))→ H1(X∗(U))→ H0(X∗(T )→ X∗(T̄ )→ X∗(U))0 → Ȳ+,tor(T )→ Ytor(U),

where we take homology of WL/F , and then map it, via the coinflation map,
to the same exact sequence but for WK/F . For the last two terms coinflation
induces the identity. For the first two terms, it is an isomorphism due to Fact
5.3 applied to the complexes 1→ T and 1→ U .

We define Ȳ+,tor(Z → T → U) as the inverse limit of H0(WK/F , X∗(T ) →
X∗(T̄ )→ X∗(U))0 with respect to coinflation.

{fct:tn++esy3}
Fact 5.5. Let H1(X∗(T )) denote the inverse limit of H1(WK/F , X∗(T )) with respect
to coinflation. We have the exact sequence

H1(X∗(T ))→ H1(X∗(U))→ Ȳtor(Z → T → U)→ Ȳ+,tor(T )→ Ytor(U).

Finally, we consider the dual homomorphism f̂ : Û → T̂ . It lifts (uniquely)
to a homomorphism ̂̄f : Û → ̂̄T . Let Ẑ be the kernel of the isogeny ̂̄T → T̂ , and
let K̂ and Ĉ be the kernel and cokernel of f̂ . Then [̂̄f ]−1(Ẑ) = K̂.

We define the group Z1
cts(WF , Ẑ → ̂̄T ← Û) to consist of the pairs (z, ċ),

where z ∈ Z1
cts(WF , Û) and ċ ∈ ̂̄T satisfying ∂c = f̂(z), where c ∈ T̂ is the

image of ċ. We define B1(WF , Ẑ → ̂̄T ← Û) to consist of (∂u, ̂̄f(u)) for u ∈ Û ,
and H1 = Z1/B1. This group fits into the exact sequence

H1
cts(WF , T̂ )← H1

cts(WF , Û)← H1
cts(WF , Ẑ → ̂̄T ← Û)← [ ̂̄T ]+ ← ÛΓ.

Define H1
cts(WF , Ẑ → ̂̄T ← Û)red to be the quotient of H1

cts(WF , Ẑ → ̂̄T ← Û)

by the image of [ ̂̄T ]+,◦. Then we obtain the exact sequence

H1
cts(WF , T̂ )← H1

cts(WF , Û)← H1
cts(WF , Ẑ → ̂̄T ← Û)red ← π0([

̂̄T ]+)← π0(Û
Γ).

(5.2) {eq:tn++esd1}{eq:tn++esd1}
We introduce on H1(u→ W,Z → T → U) the unique topology that makes

the homomorphism U(F ) → H1(u → W,Z → T → U) continuous and open.
Analogously, we introduce on Ȳtor(Z → T → U) the unique topology that
makes the homomorphisms H1(WK/F , X∗(U)) → Ȳtor(Z → T → U) continu-
ous and open. Here H1(WK/F , X∗(U)) is topologized to make the Langlands
isomorphism a homeomorphism.

5.2 Generalized Tate-Nakatyama duality
{sub:tnd++}

We shall now define a perfect pairing

H1(u→W,Z → T → U)⊗H1
cts(WF , Ẑ → ̂̄T ← Û)red → C× (5.3) {eq:tnd++}{eq:tnd++}

that generalizes the pairing [KS99, (A.3.12),(A.3.16)], which can be seen as the
special case Z = 1. We do this in two steps – first introducing a pairing of
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elementary nature between H1
cts(WF , Ẑ → ̂̄T ← Û) and Ȳ+,tor(Z → T → U),

and then an isomorphism of arithmetic nature Ȳ+,tor(Z → T → U)→ H1(u→
W,Z → T → U).

Given (z, ċ) ∈ Z1
cts(WK/F , Ẑ → ̂̄T → Û) and (λ̄, µ1) ∈ Z0(WK/F , X∗(T̄ ) →

X∗(U))0 define ⟨(z, ċ), (λ̄, µ1)⟩K ∈ C× as

⟨ċ, λ̄⟩T̄ ·
∏

w∈WK/F

⟨z(w), µ1(w)⟩−1
U ,

where ⟨−,−⟩T̄ is the pairing ̂̄T × X∗(T̄ ) → C× and ⟨−,−⟩U is the analogous
pairing for U . It is immediate that if L/K/F is a tower of Galois extensions and
z is inflated from WK/F we have ⟨(z, ċ), coinf(λ̄, µ1)⟩K = ⟨(z, ċ), (λ̄, µ1)⟩L. It is
immediately checked that this pairing annihilates the (co)boundaries on both
sides, as well as the image of [ ̂̄T ]+,◦, and therefore induces a pairing

H1
cts(WF , Ẑ → ̂̄T → Û)red ⊗ Ȳtor(Z → T → U)→ C× (5.4) {eq:elempair}{eq:elempair}

functorial in Z → T → U .
Recall the pairing H1

cts(WF , Û) ⊗ H1(WF , X∗(U)) → C× that underlies the
Langlands isomorphism H1

cts(WF , Û) → Homcts(U(F ),C×) and the pairing
π0(T̂

Γ) ⊗ Ytor(T ) → C×. The latter was generalized to π0([ ̂̄T ]+) ⊗ Ȳ+,tor(Z →
T )→ C× in [Kal16b, Prop. 5.3].

{fct:tn++d1}
Fact 5.6. The pairing (5.4) is compatible with the pairing π0([ ̂̄T ]+) ⊗ Ȳ+,tor(Z →
T ) → C×, as well as the negative of the pairing H1(WF , Û) ⊗H1(WF , X∗(U)) →
C×, and induces an isomorphism

H1
cts(WF , Ẑ → ̂̄T ← Û)red → Homcts(Ȳtor(Z → T → U),C×).

Proof. The compatibility of the three pairings is immediate from the explicit
formula defining (5.4). The compatibility with the negative Langlands pair-
ing together with the definition of the topology on Ȳtor(Z → T → U) implies
that the image of the resulting homomorphism H1

cts(WF , Ẑ → ̂̄T → Û) →
Hom(Ȳtor(Z → T → U),C×) lies in Homcts(...). Applying the functor Homcts(−,C×)
to the exact sequence of Fact 5.5 produces an exact sequence: for Hom(−,C×)
this is because C× is an injective abelian group, and passing from abstract to
continuous homomorphisms doesn’t ruin exactness due to the definition of the
topology on Ȳtor(Z → T → U). This exact sequence maps to the exact sequence
(5.2), with the first two maps being the negative Langlands pairing, the middle
map being (5.4), and the fourth and fifth map coming from [Kal16b, Proposi-
tion 5.3]. All maps except for the middle one are known to be isomorphisms,
and the 5-lemma applies.

We now turn to the isomorphism Ȳ+,tor(Z → T → U) → H1(u → W,Z →
T → U). We fix as in [Kal16b, §4.4ff] an exhaustive tower Ek/F of finite Ga-
lois extensions, compatible sections sk : ΓEk/F → WEk/F and ζk : ΓEk/F →
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ΓEk+1/F , a co-final sequence nk of natural numbers, a compatible sequence
lk : F̄× → F̄× of nk-roots. Define ck(σ, τ) = rec−1

k (sk(σ)sk(τ)sk(στ)
−1). Then

ξk = dlkck ⊔Ek/F δe ∈ Z2(Γ, uk) gives rise to the extension Wk = uk ⊠ξk Γ of
Γ by uk. We have the 1-cochain αk ∈ C1(Γ, uk) of [Kal16b, (4.8)] leading to
the surjective group homomorphism fk : Wk+1 → Wk defined by fk(x ⊠ σ) =
p(x)αk(σ)⊠ σ, where p : uk+1 → uk is the surjective group homomorphism of
[Kal16b, (3.2)]. ThenW = lim←−kWk is an extension of Γ by u in the distinguished
isomorphism class.

We are now going to construct the isomorphism by refining and merging
together the constructions of [KS99, §A.3] and [Kal16b, §4.6]. More precisely,
a central role in the constructions of [KS99, §A.3] is played by two maps ϕ =
ϕT,k : C1(WEk/F , X∗(T )) → T (Ek) and ψ = ψT,k : C0(WEk/F , X∗(T ))0 →
Z1(ΓEk/F , T (Ek)), where C0(WEk/F , X∗(T ))0 is simply the kernel of the norm
map for the action of ΓEk/F on X∗(T ). They are functorial in T and satisfy
ϕ ◦ ∂ = 0 and ∂ ◦ ϕ = ψ ◦ ∂. We shall now recall these maps and give a
refinement ψ̇ of ψ using some material from [Kal16b, §4.6].

Fix k such that Ek splits both T and U and ord(Z) divides nk. Consider
λ̄ ∈ X∗(T̄ ) and µ1 : WEk/F → X∗(U) such that (λ̄, µ1) ∈ Z0(WEk/F , X∗(T̄ ) →
X∗(U))0. As in [KS99, §A.3] define ϕU (µ1) ∈ U(Ek) by

ϕU,k(µ1) =
∏
σ,τ,a

σ(µ1(as(τ)))(ck(σ, τ)
−1σ(a)−1),

the product running over ΓEk/F × ΓEk/F × E×
k . As explained there, this is

an explicit formula for the restriction map of 1-chains C1(WEk/F , X∗(U)) →
C1(E

×
k , X∗(U)) composed with the isomorphism C1(E

×
k , X∗(U))→ X∗(U)⊗Z

E×
k = U(Ek). Furthermore, we define ψ̇T (λ̄) ∈ Z1(u → W,Z → T ) as the

inflation along W → Wk = uk ⊠ξk Γ of the element zλ̄,k of [Kal16b, Lemma
4.7], which we recall is defined as

x⊠ ρ 7→ ϕλ̄,k(x) · (lkck ⊔Ek/F nkλ̄)(ρ) = ϕλ̄,k(x) ·
∏

σ∈ΓK/F

ρσ(nkλ̄)(lkcρ,σ).

The image z̄λ̄,k ∈ Z1(Γ, T̄ ) of zλ̄,k is given by ck∪ λ̄ = ψT̄ (λ̄) and hence satisfies
the equation f(z̄λ̄,k)−∂ϕU (µ1) = f(ψT̄ (λ̄))−∂ϕU (µ1) = ψU (f∗(λ̄))−ψU (∂µ1) =
0, due to the functoriality of ψ. We conclude that (zλ̄,k, ϕU (µ1)) ∈ Z1(u →
W,Z → T → U).

Now consider (∂λ1, f∗(λ1)−∂µ2) ∈ B0(WEk/F , X∗(T )→ X∗(U)). Then we
have ψ̇T (∂λ1) = ψT (∂λ1) = ∂ϕT (λ1), and hence (ψ̇T (∂λ1), ϕU (f∗(λ1)−∂µ2)) =
(∂ϕT (λ1), f∗(ϕT (λ1))) is a coboundary.

We conclude that we have defined a group homomorphism

H0(WEk/F , X∗(T )→ X∗(T̄ )→ X∗(U))0 → H1(u→W,Z → T → U).

Next, we consider the composition of this homomorphism with the coinflation
map

H0(WEk+1/F , X∗(T )→ X∗(T̄ )→ X∗(U))0 → H0(WEk/F , X∗(T )→ X∗(T̄ )→ X∗(U))0.
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In [KS99, §A.3] a homomorphism c : C0(WEk+1/F , X∗(T ))0 → C0(Ek+1/F, T (Ek+1))
is defined, and it is shown that

inf ◦ ϕk ◦ coinf = ϕk+1 + c∂,

inf ◦ ψk ◦ coinf = ψk+1 + ∂c.

The homomorphism c is defined by the formula

c(λ) =
∏

σ∈ΓEk/F

(σλ)

 ∏
ν∈ΓEk+1/Ek

ck+1(v, ζk(σ))

 .

The compatibility of the chosen sections sk and sk+1 implies, via [Kal16b, Lemma
4.4], that this homomorphism is trivial, because the inner product is equal to
ck(1, σ) = 1. It follows that for µ′

1 :WEk+1/F → X∗(U) the element ϕU,k+1(µ
′
1) ∈

U(Ek+1) is equal to the image of ϕU,k(coinf(µ′
1)) ∈ U(Ek) under the natural in-

clusion U(Ek) → U(Ek+1). On the other hand, the inflation of zλ̄,k to Wk+1

equals zλ̄,k+1 according to [Kal16b, Lemma 4.7], which in our notation here
means ψ̇T,k(coinf(λ̄)) = ψ̇T,k+1(λ̄). This gives a commutative diagram

Z0(WEk+1/F , X∗(T̄ )→ X∗(U))0

coinf

��

ψ̇T,k+1,ϕU,k+1

++
Z1(u→W,Z → T → U)

Z0(WEk/F , X∗(T̄ )→ X∗(U))0

ψ̇T,k,ϕU,k
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already on the level of (co)cycles, and it in turn induces a commutative diagram
on the level of (co)homology, leading to a homomorphism

Ȳtor(Z → T → U)→ H1(u→W,Z → T → U). (5.5) {eq:arithiso}{eq:arithiso}
{fct:tn++d2}

Proposition 5.7. The homomorphism (5.5) is a functorial isomorphism. It is indepen-
dent of the choices made in its construction.

Proof. It is immediate from the construction that this homomorphism is functo-
rial. The fact that it is an isomorphism follows from the 5-lemma, applied to the
exact sequence just below diagram (5.1) and the corresponding exact sequence
of Fact 5.2. The maps between the first two terms of these exact sequences are
the Langlands isomorphism H1(X∗(T ))→ T (F ) and its analog for U , the map
between the third terms is (5.5), between the fourth terms it is the isomorphism
Ȳ+,tor(Z → T ) → H1(u → W,Z → T ) of [Kal16b, §4], and between the fifth
terms it is the Tate-Nakayama isomorphism Ytor(U)→ H1(Γ, U).

We next argue that this homomorphism is independent of the choices of
sections sk (and also ζk) and root maps lk. For this, let ζ ′k, s′k, and l′k be other
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choices. We obtain c′k ∈ Z2(ΓEk/F , E
×
k ), ξ

′
k ∈ Z2(Γ, uk), W ′

k = uk ⊠ξ′k Γ. Let
W ′ = lim←−W

′
k. The construction above gives a group homomorphism

Ȳtor(Z → T → U)→ H1(u→W ′, Z → T → U).

Every isomorphism W ′ → W of extensions induces the same isomorphism
H1(u → W,Z → T → U) → H1(u → W ′, Z → T → U) and we need to show
that the triangle

H1(u→W,Z → T → U)

��

Ȳtor(Z → T → U)

44

**
H1(u→W ′, Z → T → U)

commutes. Define ηk : ΓEk/F → E×
k by s′k(σ) = ηk(σ)sk(σ). Define αk′,k ∈

C1(Γ, uk) by

αk′,k(σ) = (l′kc
′
k · (lkck)−1 · (dlkηk)−1) ⊔Ek/F δe.

{lem:tn++i1}
Lemma 5.8. The assignment x ⊠ σ 7→ xαk′,k(σ) ⊠ σ defines an isomorphism of
extensions ḡk :W ′

k →Wk that satisfies zλ̄,k ◦ ḡk = z′
λ̄,k
· d(lkηk ⊔Ek/F nkλ̄)

−1.

Proof. This is a direct computation, using [Kal16b, Fact 4.3].

Consider the diagram

W ′
k+1

ḡk+1 //

f ′
k

��

Wk+1

fk

��
W ′
k

ḡk // Wk

This diagram does not commute. Define βk : ΓEk/F → F̄× by

βk(a) = lkηk(a)
−1

∏
b∈ΓEk+1/F

b7→a

lkηk+1(b).

{lem:tn++i2}
Lemma 5.9. 1. βk(σ)nk = 1 and hence βk ∈ uk;

2. fk ◦ ḡk+1 = Ad(β−1
k ) ◦ ḡk ◦ f ′k.
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Proof. We begin with the second point. From the definitions of fk and ḡk we
have

fk(ḡk+1(x⊠ σ)) = p(dlk+1ηk+1 ⊔Ek+1/F δe)
−1(dlkηk ⊔Ek/F δe) · ḡk(f

′
k(x⊠ σ))

= d[p(lk+1ηk+1 ⊔Ek+1/F δe)
−1(lkηk ⊔Ek/F δe)] · ḡk(f

′
k(x⊠ σ)).

Recall the torus Sk defined as the quotient of ResEk/FGm by the diagonal copy
of Gm. Its subgroup Sk[nk] of nk-torsion points is precisely uk. We can compute
lkηk ⊔Ek/F δe ∈ Sk explicitly and see that it is represented by the map ΓEk/F →
F̄× sending a to lkηk(a). The analogous formula holds for lk+1ηk+1⊔Ek+1/F δe ∈
Sk+1, whose image under p then sends a to

∏
b lkηk+1(b), where b runs over the

elements of ΓEk+1/F mapping to a. Thus the argument of d is β−1
k as claimed.

We come to the first point and need to prove that the function ΓEk/F → F̄×

defined by a 7→ ηk(a)
−1
∏
b 7→a ηk+1(b) represents the trivial element of Sk. For

this we recall that the sections sk and sk+1 were chosen to satisfy

sk+1(yζk(x)) = sk+1(y)sk+1(ζk(x)) and sk(x) = πWk (sk+1(ζk(x))),

for y ∈ ΓEk+1/Ek
and x ∈ ΓEk/F , where πWk is the natural projectionWEk+1/F →

WEk/F . From these we obtain via direct calculation the following identities

ηk+1(vζ
′
k(a)) = ηk+1(v) · vηk+1(ζ

′
k(a)) and ηk(a) =

∏
v∈ΓEk+1

/Ek

vηk+1(ζ
′
k(a)),

which imply ηk(a)−1
∏
b 7→a ηk+1(b) =

∏
v ηk+1(v). This is a constant function

in a, hence represents the trivial element of Sk.

Choose β̇k ∈ u mapping to βk ∈ uk. Define β̇<k =
∏k−1
i=1 β̇i. Define gk :

W ′
k → Wk as Ad(β̇<k) ◦ ḡk. Then (gk)k commutes with the transition maps fk

and f ′k and induces an isomorphism g : W ′ → W . We transport zλ̄ via g and
obtain an element z′′

λ̄
∈ Z1(u→ W ′, Z → S) that we want to compare with z′

λ̄
.

Lemma 5.8 implies

z′′λ̄,k(x⊠ σ) = z′λ̄,k(x⊠ σ) · ϕλ̄,k(β̇<k · σβ̇<k
−1

) · d(lkηk ⊔Ek/F nkλ̄)
−1

= z′λ̄,k(x⊠ σ) · d(ϕλ̄,k(β̇<k) · lkηk ⊔Ek/F nkλ̄)
−1

On the other hand, the identity ϕU,k(µ1) = ϕ′U,k(µ1) − ηk ∪ f∗(λ̄) was veri-
fied in [KS99, §A.3]. Since f |Z = 1 we have f(ϕλ̄,k(β̇<k) · lkηk ⊔Ek/F nkλ̄) =

f̄(ηk ∪ λ̄) = ηk ∪ f∗(λ̄). It follows that (ψ̇T,k(λ̄), ϕU,k(µ1)) is cohomologous to
(ψ̇′
T,k(λ̄), ϕ

′
U,k(µ1)), and so are their inflations.

Finally we argue that the homomorphism is independent of the choices of
sequences nk and Ek. If n′k is another sequence, we may reduce to the special
case nk|n′k by comparing both nk and n′k to n′′k = nkn

′
k. In the special case nk|n′k

choose a compatible system l′k with l
′n′

k+1/n
′
k

k+1 = l′k and define lk = l
′n′

k/nk

k . It is
immediate to check that we have equality of cocycles ξk = ξ′k and zλ̄,k = z′

λ̄,k
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(we have of course choosen ζk = ζ ′k and sk = s′k). This shows independence
of the choice of nk. For the choice of Ek, note first that passing to a co-final
subsequence has no effect. If E′

k is another sequence, we may pass to co-final
subsequences of both Ek and E′

k to arrange Ek ⊂ E′
k ⊂ Ek+1 ⊂ E′

k+1. Define
E′′
k by E′′

2k = Ek and E′′
2k+1 = E′

k. Then E′′
k is again an exhaustive sequence, of

which both Ek and E′
k are co-final subsequences. This shows independence of

the choice of Ek.
{lem:tn++d3}

Lemma 5.10. The isomorphism 5.5 satisfies the following compatibilities.

1. The maps H1(WF , X∗(U)) → Ȳ+,tor(Z → T → U) and H1(u → W,Z →
T → U) → H0(Γ, U) translate the isomorphism 5.5 to the negative of the
Langlands isomorphism H1(WF , X∗(U))→ H0(Γ, U).

2. The maps Ȳ+,tor(Z → T → U)→ Ȳ+,tor(Z → T ) and H1(u→ W,Z → T →
U)→ H1(u→W,Z → T ) translate the isomorphism (5.5) to the isomorphism
constructed in [Kal16b, §4].

Proof. This follows by inspecting the construction of (5.5). Indeed, the defi-
nition of ψ̇T (λ̄) as the inflation of zλ̄,k from Wk to W is the same as the con-
struction in [Kal16b, §4.6]. On the other hand, the definition of ϕU used here is
the same as the one in [KS99, §A.3]. The fact that it yields the negative of the
Langlands isomorphism comes from the inverse in the formula

∏
a∈K× xa(a

−1)
appearing in the middle of page 131 in loc. cit.

{cor:tn++d4}
Corollary 5.11. The pairing (5.3) satisfies the following compatibilities.

1. The maps H0(Γ, U) → H1(u → W,Z → T → U) and H1(WF , Ẑ → T̂ ←
Û)→ H1(WF , Û) translate the pairing (5.3) the the Langlands pairing.

2. The mapsH1(u→W,Z → T → U)→ H1(u→W,Z → T ) and π0([ ̂̄T ]+)→
H1(WF , Ẑ → T̂ ← Û)red translate the pairing (5.3) to the pairing [Kal16b,
Corollary 5.4].

Proof. This follows directly from Fact 5.6 and Lemma 5.10. Note that in the case
of the Langlands pairing both the Fact and the Lemma contain a negation, and
the two cancel out.

5.3 Rational classes and invariants for rigid inner forms
{sub:rigid_rat}

With the cohomological preliminaries out of the way, we can now extend the
considerations of Section 4 to the case of general inner forms. In this subsection
we extend the concepts of rational classes and their invariants.

We begin again with a quasi-split disconnected group G̃ = G ⋊ A. More
precisely, letG be a connected reductive group, defined and quasi-split over F .
Let (T,B, {Xα}) be an F -pinning ofG and letA be a finite group that acts onG
by pinned automorphisms. Assume given an action of Γ on A so that for σ ∈ Γ
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we have σ(a(g)) = σ(a)(σ(g)). As we argued in Subsection 4.1 we may replace
A by AΓ and therefore assume that Γ acts trivially on A.

A given z̄ ∈ Z1(Γ, G/Z(G)A) leads to the inner form G̃z̄ of G⋊ A, where Γ

acts on G̃z̄(F̄ ) via the twisted action σ 7→ Ad(z̄(σ))⋊σ. The elements of G̃z̄(F )
are those δ̃ ∈ (G ⋊ A)(F̄ ) that commute with z̄(σ) ⋊ σ. Given a norm (S, γ)
of δ̃ = δ ⋊ a we would like to define a cohomological invariant measing the
relative position of (S, γ) and δ̃. If we mimic the constructions of Subsection
4.3 we would arrive at an element inv(γ, (z̄, δ)) of H1(Γ, S/Z(G)A

1−a−→ S), but
that would be too crude for our purposes.

In order to define the right invariant, we need to work with z ∈ Z1(u →
W,Z(G)A → G) instead of z̄ ∈ Z1(Γ, G/Z(G)A). Thus we consider the set
of pairs (z, δ̃), where z ∈ Z1(u → W,Z(G)A → G), δ̃ ∈ (G ⋊ A)(F̄ ), and
δ̃ commutes with z̄(σ) ⋊ σ, where now z̄ ∈ Z1(Γ, G/Z(G)A) is the image of
z modulo Z(G)A. This is the set of rational elements of rigid inner forms of
G⋊A. The surjectivity ofZ1(u→W,Z(G)A → G)→ Z1(Γ, G/Z(G)A) asserted
in [Kal16b, Proposition 3.6] implies that this set surjects onto the set of rational
elements of inner forms considered above. Furthermore, the set of rational
elements of pure inner forms of G ⋊ A injects into the set of rational elements
of rigid inner forms of G ⋊ A. The group G acts on the latter set by the same
formula as in the case of pure inner forms, and the orbits of that action are the
set of rational conjugacy classes of rational elements of rigid inner forms.

We can extend the cohomological notation of Subsection 4.2 as follows.
Given two homomorphisms (a, b) : G ⇒ G and a central subgroup Z ⊂ G
that equalizes them, we consider the set Z1

b,a(u → W,Z(G)A → G ⇒ G) of
pairs (z, δ), where z ∈ Z1(u → W,Z → G) and δ ∈ G satisfying a(z(w)) =
δ−1b(z(w))σw(δ), where σw ∈ Γ is the image of w ∈ W . In our applications
we will take b = id and abbreviate Z1

b,a to Z1
a . As before, (z, δ) lies in Z1

a if
and only if δ̃ = δ ⋊ a commutes with z̃(w) = z(w) ⋊ σw, and we write Z̃1

a for
the set of commuting pairs (z̃, δ̃). The group G acts by conjugation on the set
Z̃1
a , or equivalently by (g−1z(w)σw(g), g

−1δa(g)) on the set Z1
a , and the sets of

orbits under this action are denoted by H̃1
a respectively H1

a . The set of ratio-
nal elements of rigid inner forms of G ⋊ A is

⋃
a∈A Z̃

1
a , and the set of rational

conjugacy classes of rational elements is the set
⋃
a∈A H̃

1
a .

As in the case of pure inner forms, given a rational element (z̃, δ̃) and a
norm (S, γ) for the G-conjugacy class of δ̃, we choose a representative (z̃∗, δ̃∗)

of the G-orbit of (z̃, δ̃) as in Lemma 4.1 and the same argument implies that
(z̃∗, δ̃∗) ∈ Z̃1

a(u → W ;Z(G)A → S ⇒ S) and its cohomology class is inde-
pendent of the choice of (z̃∗, δ̃∗). Moreover, (z∗,−1, δ∗) lies in the set H1(u →
W,Z(G)A → S

1−a−→ S) defined in Subsection 5.1. We shall denote either of
these classes by inv(γ, (z, δ)) or inv(γ, (z̃, δ̃)). The image of this invariant in
H1(Γ, S/Z(G)A

1−a−→ S) is equal to the cruder invariant inv(γ, (z̄, δ)) mentioned
above.
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5.4 Refined endoscopic data
{sub:ref_endo}

As in the case of connected groups, rigid inner forms require a refinement of
the notion of endoscopic datum. The necessary refinement is directly analo-
gous to that in the connected case. Namely, let Z ⊂ Z(G)A be finite, Ḡ =

G/Z, and ̂̄G → G the isogeny dual to G → Ḡ. Given an endoscopic da-
tum e = (Ge,Ge, s̃e, ξe) in the sense of Subsection 4.7, a refinement consists
of choosing a preimage ṡe ∈ ̂̄G⋊A of s̃e. The refined endoscopic datum is then
ė = (Ge,Ge, ṡe, ξe). An isomorphism ė → ė′ of two such data is given by g ∈ Ĝ
satisfying ξe

′
= Ad(g) ◦ ξe and ṡe

′
= Ad(g)ṡe modulo Z( ̂̄G)◦.

5.5 Normalized transfer factors
{sub:rigid_tf}

Given a refined endoscopic datum ė and a z-pair z for e we shall now define a
normalized transfer factor: a function ∆[w, ė, z] that assigns complex numbers
to pairs (γz, δ̃) of strongly regular semi-simple elements γz ∈ Gz(F ) and δ̃ ∈
G̃z(F ). This factor is given by the same formula (4.2) as in the case of pure
inner forms, but with a different construction of ∆KS [w, ė, z], which depends
on the refinement ė of e. That in turn is given by the same formula (4.3), but
we have to specify what ∆new

III is. We shall now give this construction in the
general case involving a z-pair.

The considerations are rather analogous to those of Subsection 4.11. We
follow the notation there. Thus we have γz ∈ Sz(F ), (z̃, δ̃) ∈ Z̃1

b−1(u→W,Z →
G ⇒ G), a norm (S, γ) for δ̃, and a representative (z̃∗, δ̃∗) of the G-conjugacy
class of (z̃, δ̃) with δ∗ ∈ S(F̄ ) mapping to γ ∈ Sb(F ). The element δz = (δ∗, γz)
lies in the fiber product Sz

1 of S → Sb ∼= Se ← Sz. Under the homomorphism
(b−1

1 − 1) : S → Sz
1, the 1-cocycle z∗ ∈ Z1(u → W,Z → S) maps to a 1-

cocycle (b−1
1 − 1)z∗ ∈ Z1(Γ, Sz

1) that satisfies (b−1
1 − 1)z∗(σ) = (δz)−1σ(δz), and

so (z∗,−1, δz) belongs to Z1(u → W,Z → S
1−b−1

1−→ Sz
1). The class inv(γz, (z, δ))

of this element is independent of the choice of (z∗, δ∗). Its image in Z1(u →
W,Z → S

1−b−1

−→ S) equals the class inv(γ, (z, δ)) defined in Subsection 5.3.
Next we define a class Ȧ0 ∈ H1(WF , Ẑ → Ŝ ← Ŝz

1) refining the class A0 ∈
H1(WF , Ŝ → Ŝ) of Subsection 4.11. Following the definition of A0 we have the
element (a−1

S , sS) ∈ Z1(WF , (1− b1) : Ŝz
1 → Ŝ). In addition to s̃e = ξS(sS)⋊ b,

we now also have ṡe = ξS(ṡS)⋊ b, where we form S̄ = S/Z and use the unique
extension of ξS to LS̄ → LḠ to define ṡS ∈ ̂̄S. Then (a−1

S , ṡS) ∈ Z1(WF , Ẑ →
Ŝ ← Ŝz

1) and its class is Ȧ0.
We now define ∆new

III (γ
z, (z, δ)) to be the value of the pairing constructed in

Subsection 5.2 at the classes inv(γz, (z, δ)) and Ȧ0.
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5.6 The local correspondence and character identities
{sub:llc_rigid}

Let ϕ : LF → LG be a tempered Langlands parameter. In subsection 4.6 we
introduced the group of G̃-equivalences S̃ϕ = Cent(ϕ, Ĝ⋊A). It was part of an
exact sequence

1→ Sϕ → S̃ϕ → A[ϕ] → 1,

where A[ϕ] is the stabilizer in A of the G-equivalence class of ϕ. For a finite
subgroup Z ⊂ Z(G)A we have the isogenies G → Ḡ = G/Z and ̂̄G → Ĝ

and we define S̃+
ϕ to be the preimage in ̂̄G ⋊ A of S̃ϕ. This is analogous to the

definition of S+
ϕ as the preimage in ̂̄G of Sϕ given in [Kal16b, §5.4]. We have

again the exact sequence

1→ S+
ϕ → S̃+

ϕ → A[ϕ] → 1.

We are now interested in the rigid inner form G̃z for some z ∈ Z1(u→W,Z →
G). Let A[z] be the stabilizer of the class of z, and A[ϕ],[z] = A[ϕ] ∩ A[z]. Pulling
back the above exact sequence along the inclusion A[ϕ],[z] → A[ϕ] we obtain the
exact sequence

1→ S+
ϕ → S̃

+,[z]
ϕ → A[ϕ],[z] → 1.

In the case F = R set KG̃z to be the associated K-group, i.e. the disjoint
union of G̃z′ for all z′ in the image of H1(R, Gz,sc) → H1(R, Gz) → H1(u →
W,Z(G)A → Gz)→ H1(u→W,Z(G)A → G).

{cnj:llc_rigid}
Conjecture 5.12. 1. The choice of an A-special Whittaker datum w on G deter-

mines a bijection between the set of irreducible admissible G-tempered represen-
tations of G̃z(F ) when F/Qp, or any member of KG̃z(F ) when F = R, and
the set of Ĝ ⋊ A-conjugacy classes of pairs (ϕ, ρ̃), where ϕ : LF → LG is a
tempered Langlands parameter, and ρ̃ ∈ Irr(π0(S̃

+,[z]
ϕ ), [z]). When z = 1 the

representation corresponding to (ϕ, ρ̃) is w-generic if and only if ρ̃ = 1.

2. This bijection satisfies the character identity (4.4) for a pair of functions f and
f z as in Lemma 4.6, where now the transfer factor is the one constructed in
Subsection 5.5.

6 CHANGE OF WHITTAKER DATA
{sec:change_whit}

In [Kal13] we studied how the bijection Irr(π0(S+
φ )) → Πφ of the refined local

Langlands conjecture depends on the Whittaker datum w, in the case of a con-
nected reductive group. Strictly speaking loc. cit. considered only pure and
extended pure inner twists, but not rigid inner twists, which were unavailable
at the time. In this section we shall extend these considerations to the case of
rigid inner forms of quasi-split groups and may be connected or disconnected.

Consider first the connected case, which will serve primarily to recall no-
tation from [Kal13]. Let G be a quasi-split connected reductive group defined

45



over F and let w1,w2 be two Whittaker data. There is a unique element of
cok(G(F )→ Gad(F )) conjugating w1 to w2, which we denote by (w1,w1). Re-
call from [Kal13, Lemma 4.1] that there is a natural injection

cok
(
G(F )→ Gad(F )

)
→ ker

(
H1(WF , Z(Ĝsc))→ H1(WF , Z(Ĝ))

)D
.

It essentially comes from Poitou-Tate duality

H1(Γ, Z(Gsc))⊗H1(Γ, X∗(Z(Gsc)))→ H2(Γ,Gm)→ Q/Z

and the identification X∗(Z(Gsc)) = Z(Ĝsc) via the exponential map exp :

X∗(T̂sc) ⊗Z C → T̂sc with kernel X∗(T̂sc). Given a tempered Langlands pa-
rameter ϕ : LF → LG we endow the exact sequences

1→ Z(Ĝsc)→ Ĝsc → Ĝad → 1, 1→ Z(Ĝ)→ Ĝ→ Ĝad → 1

with LF -action via Ad(ϕ(−)). The actions on Z(Ĝsc) and Z(Ĝ) are of course
simply the Γ-action inflated to LF and H1(LF ,−) = H1(WF ,−) for these two
groups. The connecting homomorphism H0(LF , Ĝad)→ H1(Γ, Z(Ĝsc)) is con-
tinuous and thus factors through the component group of the complex alge-
braic group H0(LF , Ĝad). We have Sϕ = H0(LF , Ĝ) and its image under that
connecting homomorphism lands in ker(H1(WF , Z(Ĝsc)) → H1(WF , Z(Ĝ))).
Therefore (w1,w2) induces a character of π0(Sϕ/Z(Ĝ)Γ) = π0(S

+
ϕ /Z(

̂̄G)+). If

ιi : Irr(S+
ϕ )→ Πϕ(G)

are the two bijections of the refined local Langlands correspondence, where
we are using compound L-packets encompassing all rigid inner forms, then
according to [Kal13, (1.1)] we have

ι2(ρ) = ι1(ρ⊗ (w1,w2)).

We now turn to the disconnected case. Thus let G̃ = G⋊A be a quasi-split,
(possibly) disconnected, reductive group, and let w1,w2 be A-special Whit-
taker data for G. Let z ∈ Z1(u→W,Z(G)A → G). We denote by

ιi : Irr(π0(S̃
+,[z]
ϕ ), [z])→ Πϕ(G̃z)

the bijections of Conjecture 5.12 with respect to the Whattaker data wi. The
approach to comparing these is the same as in the connected case. We use the
exact sequences

1→ Z(Ĝsc)→ Ĝsc⋊A→ Ĝad⋊A→ 1, 1→ Z(Ĝ)→ Ĝ⋊A→ Ĝad⋊A→ 1

to obtain the connecting map H0(LF , Ĝad ⋊ A) → H1(WF , Z(Ĝsc)). This map
is no longer a homomorphism, but rather a twisted homomorphism (i.e. a
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1-cocycle) for the action for Ĝad ⋊ A on Z(Ĝsc) given by the projection to A

and the natural action of A on Z(Ĝsc). Nonetheless, this map factors through
π0(H

0(LF , Ĝad⋊A)) and sends S̃ϕ = H0(LF , Ĝ⋊A) to ker(H1(WF , Z(Ĝsc))→
H1(WF , Z(Ĝ))). In this way we obtain a twisted homomorphism

π0(S̃ϕ/Z(Ĝ)
Γ)→ ker(H1(WF , Z(Ĝsc))→ H1(WF , Z(Ĝ))).

Since the character (w1,w2) of ker(H1(WF , Z(Ĝsc)) → H1(WF , Z(Ĝ))) is A-
invariant, its pull back under this twisted homomorphism is a character of
π0(S̃ϕ/Z(Ĝ)

Γ) = π0(S̃
+
ϕ /Z(

̂̄G)+), which we may pull back further to π0(S̃
+,[z]
ϕ ).

Proposition 6.1.
ι2(ρ) = ι1(ρ⊗ (w1,w2)).

Proof. Let s̃ = s ⋊ a ∈ S̃ϕ. As in the proof of [Kal13, Theorem 4.3] it is enough
to prove the identity

∆KS [w2] = ⟨(w1,w2), s⟩−1 ·∆KS [w1].

To prove this we choose an additive characterψ ofF andA-invariantF -pinnings
spli giving rise to wi. We write ∆KS according to (4.3) and note that only
∆I depends on the pinnings. Let g ∈ GAad(F ) conjugate spl1 to spl2 and let
x ∈ H1(F,Z(Gsc)

A) be the image of g under the connecting homomorphism
for the exact sequence (cf. Fact 3.7)

1→ Z(Gsc)
A → GAsc → GAad → 1.

The argument of [LS87, (2.3.1)] shows that the twisted splitting invariant in
H1(F, T asc) with respect to spl2 is the product of the twisted splitting invariant
with respect to spl1 with x (note that loc. cit. uses conjugation on the right, so
their g is our g−1). Therefore ∆I [w2] = ⟨x, s⟩−1∆I [w1], as claimed.

7 CHANGE OF COMPONENT GROUP
{sec:change_comp}

7.1 Restriction
{sub:comp_rest}

Assume now given a map of finite groups B → A. We can consider the discon-
nected groupsGA = G⋊A andGB = G⋊B, whereB acts onG via its map toA.
We can consider restriction of representations along the mapGBz (F )→ GAz (F ).
Dually, the map Ĝ ⋊ B → Ĝ ⋊ A induces for each tempered Langlands pa-
rameter ϕ a map π0(S

B,+,[z]
ϕ )→ π0(S

A,+,[z]
ϕ ) and we can consider restriction of

representations along this map as well.
Let the G-tempered representation πA of GAz (F ) correspond under Conjec-

ture 5.12 to the pair (ϕ, ρA) with ϕ : LF → LG and ρA ∈ Irr(π0(S
A,+,[z]
ϕ ), [z]).

Let the G-tempered representation πB of GBz (F ) correspond under Conjecture
4.2 to the pair (ϕ′, ρB) with ϕ′ : LF → LG and ρB ∈ Irr(π0(S

B,+,[z]
ϕ′ ), [z]). We
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thus have the multiplicity of πB in ResπA. If the parameters ϕ′ and ϕ are GA-
equivalent we may replace (ϕ, ρA) by an equivalent pair and assume ϕ = ϕ′.
Then we also have the multiplicity of ρB in Res ρA.

{cnj:llc_rest}
Conjecture 7.1. The multiplicity of πB in ResπA is zero unless ϕ and ϕ′ are GA-
equivalent. Assuming that and arranging ϕ = ϕ′, this multiplicity is equal to the
multiplicty of ρB in Res ρA.

Remark 7.2. Let G̃ = G ⋊ A and B = {1}. Applying Conjecture 7.1 we ob-
tain a complete description of the set Π̃ϕ,z in terms of the L-packet Πϕ,z of
the connected group Gz(F ): An irreducible G-tempered representation π̃ of
G̃z(F ) belongs to Π̃ϕ,z if and only if its restriction to Gz(F ) intersects Πϕ,z .
Equivalently, the set Π̃ϕ,z consists precisely of the irreducible constituents of
the inductions to G̃z(F ) of the elements of Πϕ,z . Hence the content of Conjec-
ture 5.12 is in the internal structure and character identities with normalized
transfer factors. Note that, just like in the connected case, the packets Π̃ϕ,z are
disjoint and exhaust the set of isomorphism classes of irreducible admissible
G-tempered representations, assuming this is the case for the packets Πϕ,z .

7.2 Slicing by cosets
{sub:comp_coset}

In this section we assume the validity of the refined local Langlands corre-
spondence for connected groups, as well as its functoriality as expressed in
Conjecture A.1. Given a tempered parameter ϕ : LF → LG we then have
the L-packet Πϕ(Gz). If π ∈ Πϕ(Gz) and ρ ∈ Irr(π0(S+

ϕ )) corresponding to

each other then Conjecture A.1 implies A[z]
π = A

[ϕ]
ρ . We have the elements

απ ∈ H2(A
[z]
π ,C×) and αρ ∈ H2(A

[ϕ]
ρ ,C×) corresponding to the projective ex-

tension of π to G̃z(F )π and of ρ to π0(S̃
+,[z]
ϕ,ρ ), respectively. The elements απ and

αρ are equal if and only if the representation π ⊠ ρ∨ of Gz(F )× π0(S+
ϕ ) has an

extension to G̃z(F )π×A[z]
π
π0(S̃

+,[z]
ϕ,ρ ). Such an extension is then well-defined up

to a character of A[z]
π .

{cnj:coset}
Conjecture 7.3. Let ϕ : LF → LG be a tempered parameter. Let π ∈ Πϕ(Gz) and
ρ ∈ Irr(π0(S+

ϕ )) correspond to each other. The representation π ⊠ ρ∨ of Gz(F ) ×
π0(S

+
ϕ ) has an extension (π⊠ ρ∨)can to G̃z(F )π ×A[z]

π
π0(S̃

+,[z]
ϕ,ρ ) such that for a ∈ A,

f̃ ∈ C∞c ([G⋊ a]z(F )) and s̃ ∈ S̃ϕ mapping to a−1 we have

SΘϕz(f z) =
∑

π∈Πϕ(Gz)
π◦a∼=π

tr (π ⊠ ρ∨)can(f̃, s̃−1),

where e is the endoscopic datum corresponding to the pair (s̃, ϕ) by the spectral con-
struction of §4.8, z is a z-pair for it, and f z ∈ C∞c (Gz(F )) satisfies

SOγ(f
z) =

∑
δ̃∈[G⋊a]z(F )/Gz(F )−conj

∆KS [w, e, z](γ
z, δ̃)

∫
x∈Gz(F )/Gz(F )δ̃

f̃(xδ̃x−1).
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{rem:canext}
Remark 7.4. We note that the extension (π⊠ ρ∨)can is unique if it exists, due to
the character identities it is supposed to satisfy. Furthermore, these character
identities imply that for any b ∈ A the isomorphism

G̃z(F )π ×A[z]
π
π0(S̃

+,[z]
ϕ,ρ )→ G̃z(F )bπ ×A[z]

bπ

π0(S̃
+,[z]
bϕ,bρ)

(given up to an inner automorphism) of conjugation by b identifies the exten-
sion (π ⊠ ρ∨)can with (bπ ⊠ bρ∨)can.

{pro:slice}
Proposition 7.5. Conjecture 7.3 is equivalent to Conjectures 5.12 and 7.1.

As a preparation for the proof we need the following elementary discus-
sion. Consider an exact sequence of locally pro-finite groups

1→ H → H̃ → A→ 1

with A finite and an A-invariant subset X of the set of isomorphism classes of
irreducible smooth representations of H . The group

H̃ ×A H̃ = {(h̃1, h̃2) ∈ H̃ × H̃|h̃1 ∈ h̃2H}

fits into the exact sequence

1→ H ×H → H̃ ×A H̃ → A→ 1.
{lem:ex2}

Lemma 7.6. 1. If X = {x} there exists a projective representation x̃ of H̃ extend-
ing x and satisfying x̃(hh̃) = x(h) ◦ x̃(h̃) for h ∈ H and h̃ ∈ H̃ . The external
tensor product x̃⊠ x̃∨ is a linear representation of H̃ ×A H̃ depending only on
x, but not on x̃.

2. The isomorphism class of the representation

X̃ =
⊕
x

IndH̃×AH̃

H̃x×Ax H̃x
x̃⊠ x̃∨,

where x runs over a set of representatives for the A-orbits in X , is independent
of that set and is an extension of

⊕
x∈X x⊠ x∨.

3. We have
IndH̃×H̃

H̃×AH̃
X̃ =

⊕
(ξ ⊠ ξ∨),

where ξ runs over the set of irreducible representations of H̃ lying over X .

4. Given a diagram of extensions

1 // H // H̃1
//

��

A1
//

��

1

1 // H // H̃2
// A2

// 1
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and anA2-invariant setX2, letX1 be the setX2 with the action ofA1 restricted
from that of A2. The representation X̃1 of H̃1 ×A1

H̃1 is the pull-back of the
representation X̃2 of H̃2 ×A2

H̃2.
{lem:ex1}

Lemma 7.7. We are given two extensions 1 → Hi → H̃i → A → 1 of locally profi-
nite groups with A finite. Let X be an A-set equipped with A-equivariant injections
X → Irr(Hi). For x ∈ X we write xi for its image in Irr(Hi) and αxi

∈ H2(Ax,C×)
for the associated class. We assume αx1

= αx2
. Assume given an extension to

H̃1,x ×Ax H̃2,x of the representation x1 ⊠ x∨2 of H1 × H2, and call this extension
x̃. Assume that for a ∈ A and y = ax we have ỹ = x̃ ◦ Ad(a−1). Then

1. If X is a single A-orbit the isomorphism class of the representation

X̃ := IndH̃1×AH̃2

H̃1,x×Ax H̃2,x
x̃

is independent of the choice of x ∈ X . For general X set

X̃ :=
⊕

X′∈X/A

X̃ ′.

2. The representation X̃ is an extension to H̃1×AH̃2 of the representation
⊕

x∈X x1⊠
x∨2 .

3. Let
IndH̃1×H̃2

H̃1×AH̃2
X̃ =

⊕
(ξ1 ⊠ ξ∨2 )

m(ξ1,ξ2)

be the decomposition into irreducible pieces. Then m(ξ1, ξ2) ≤ 1 and the corre-
spondence Irr(H̃1) ↔ Irr(H̃2) afforded by m is a bijection between the sets of
irreducible representations of H̃i lying over the sets Xi.

4. Let A′ ⊂ A be a subgroup and write H̃ ′
i ⊂ H̃i for the preimage of A′. All

previous points can be applied to H̃ ′
i in place of H̃i. Let ξi ∈ Irr(H̃i) and ξ′i ∈

Irr(H̃ ′
i) be such that ξ1 ↔ ξ2 under the bijection of point 3, and ξ′1 ↔ ξ′2

under the analogous bijection. Then the multiplicity of ξ′1 in ξ1|H̃′
1

equals the
multiplicity of ξ′2 in ξ2|H̃′

2
.

Proof of Lemma 7.7. Since all statements break up according to the orbits ofA in
X we assume for the rest of the proof that X is a single A-orbit. The indepen-
dence of X̃ from x̃ follows from the assumption ỹ = x̃◦Ad(a−1) for y = ax and
the fact thatX is a transitiveA-set. The fact that X̃ is an extension of

⊕
x1⊠x∨2

follows from the induction-restriction formula.
For the third claim we perform induction in stages

IndH̃1×H̃2

H̃1,x×H̃2,x
IndH̃1,x×H̃2,x

H̃1,x×Ax H̃2,x
x̃

and consider first the inner induction. By assumption there exist projective
representations x̃i of H̃i,x such that we have an equality αx̃1

= αx̃2
of elements
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of Z2(Ax,C×) and such that the restriction of x̃1 ⊠ x̃∨2 from H̃1,x × H̃2,x to
H̃1,x ×Ax

H̃2,x is equal to x̃. Write αx̃ for the common value of αx̃i
. Then

IndH̃1,x×H̃2,x

H̃1,x×Ax H̃2,x
x̃ =

(
IndH̃1,x×H̃2,x

H̃1,x×Ax H̃2,x
1
)
⊗ (x̃1 ⊠ x̃∨2 ),

where on the right we are performing twisted induction with 2-cocycle (α−1
x̃ , αx̃)

in the left factor, and then tensoring with the (αx̃, α
−1
x̃ )-projective representa-

tion x̃1⊠ x̃∨2 to obtain a linear representation of H̃1,x× H̃2,x. The representation

IndH̃1,x×H̃2,x

H̃1,x×Ax H̃2,x
1 of H̃1,x× H̃2,x is the inflation of the representation IndAx×Ax

Ax
1,

where Ax is embedded diagonally into Ax×Ax. The latter is isomorphic to the
twisted group algebra C[Ax]αx̃

seen as a left-right-bimodule over itself, and as
such decomposes as the direct sum

⊕
τ τ ⊠ τ∨, where τ runs over the set of

isomorphism classes of irreducible αx̃-projective representations of Ax. This
shows that

IndH̃1,x×H̃2,x

H̃1,x×Ax H̃2,x
x̃ =

⊕
τ

(τ ⊗ x̃1)⊠ (τ ⊗ x̃2)∨.

As τ runs over the set of isomorphism classes of αx̃-projective representations
of Ax, τ ⊗ x̃i, runs over the set of irreducible linear representations of H̃i,x

whose restriction to Hi contains xi, and IndH̃i

H̃i,x
runs over the set of irreducible

linear representations of H̃i whose restriction to Hi contains xi.
For the fourth claim we write ξi = IndH̃i

H̃i,x
x̃i⊗τ , where x̃i is an extension of

xi to a projective representation of H̃i,x with 2-cocycle αx̃ ∈ Z2(Ax,C×) and τ
is a projective representation of Ax with 2-cocycle α−1

x̃ . Write correspondingly

ξ′i = IndH̃
′
i

H̃′
i,x

x̃i ⊗ τ ′, where we take the restriction of x̃i to H̃ ′
i,x and τ ′ is a

projective representation of A′
x with 2-cocycle given by the restriction of α−1

x̃ .
The Mackey formula shows that

ResH̃i

H̃′
i

IndH̃i

H̃i,x
x̃i ⊗ τ =

⊕
c∈A′\A/Ax

IndH̃
′
i

H̃′
i,cx

ResH̃i,cx

H̃′
i,cx

c(x̃i ⊗ τ).

The summation index parameterizes the A′-orbits in the A-orbit of x. Since ξ′i
lies over the A′-orbit of x, the multiplicity of ξ′i in the above restriction is zero
for all summands except possibly the one indexed by c = 1. This summand
decomposes into the irreducible representations as⊕

τ ′′

IndH̃
′
i

H̃′
i,x

(x̃i ⊗ τ ′′)m(τ,τ ′′),

where τ ′′ runs over the irreducible projective representations ofA′
x andm(τ, τ ′′)

is the multiplicity of τ ′′ in the restriction of τ . We conclude that m(ξi, ξ
′
i) =

m(τ, τ ′).

Proof of Lemma 7.6. For the first point we may fix a set Ȧ ⊂ H̃ of representatives
for A = H̃/H , an isomorphism x̃(ȧ) : Vx → Vx of complex vector spaces with
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the intertwining property x̃(ȧ)◦x(ȧ−1hȧ) = x(h)◦x̃(ȧ) for all h ∈ H , and define
x̃(hȧ) = x(h) ◦ x̃(ȧ) for all h ∈ H and a ∈ A. This has the required properties.
We define the automorphism x̃∨(h̃) := x̃(h̃)∗,−1 of V ∨

x . The linearity of x̃ ⊠ x̃∨

follows from the fact that the 2-cocycle of x̃ is inflated from A and the 2-cocycle
of x̃∨ is its inverse. Keeping Ȧ fixed, the independence from x̃ follows because
another choice is of the form c · x̃ for c ∈ C1(A,C×). The independence of the
choice of Ȧ now follows readily.

If y = x ◦ Ad(a) choose h̃a ∈ H̃ mapping to a and define ỹ := x̃ ◦ Ad(h̃a).
Then ỹ is a projective extension of y and satisfies the conditions of point 1. We
have ỹ⊠ ỹ∨ = (x̃⊠ x̃∨)◦Ad(h̃a) and the second point follows from Lemma 7.7.

The third point follows from the proof of the previous lemma, for we see
from the argument given there that the right hand side is⊕

τ

IndH̃×H̃
H̃x×H̃x

(x̃⊗ τ)⊠ (x̃⊗ τ)∨,

where τ runs over the irreducible αx̃-projective representations of Ax.
For the fourth point we note that the right square in the diagram is automat-

ically cartesian. Since pull-back is transitive it is enough to treat the extreme
cases when A1 → A2 is injective respectively surjective, a property that is then
inherited by the maps H̃1 → H̃2 and H̃1×A1 H̃1 → H̃2×A2 H̃2. We may assume
that X2 is a single A2-orbit. Choose x ∈ X2. In the injective case we apply
point 2 and the Mackey formula to see that

ResH̃2×A2
H̃2

H̃1×A1
H̃1

IndH̃2×A2
H̃2

H̃2,x×A2,x
H̃2,x

x̃⊠ x̃∨

is given by ⊕
a∈A1\A2/A2,x

IndH̃1×A1
H̃1

H̃1,ax×A1,ax
H̃1,ax

Res
H̃2,ax×A2,ax

H̃2,ax

H̃1,ax×A1,ax
H̃1,ax

a(x̃⊠ x̃∨).

We have already argued that ax̃ is a projective extension of ax to H̃2,ax with the
required property for point 1, and it is clear that its restriction to H̃1,ax is such
as well. Since A1 \A2/A2,x parameterizes the A1-orbits in X , the claim follows
again from point 2.

In the surjective case the kernel N of A1 → A2 is also the kernel of the
surjective maps H̃1 → H̃2, H̃1,x → H̃2,x, H̃1 ×A1 H̃1 → H̃2 ×A2 H̃2, and
H̃1,x ×A1,x

H̃1,x → H̃2,x ×A2,x
H̃2,x. The set X1 is a single A1-orbit. We apply

again point 2. If x̃ is a projective extension of x to H̃2,x satisfying the condition
of point 1, then its pull-back to H̃1,x is a projective extension of x that satisfies
the same condition. We have

InfH̃2×A2
H̃2

H̃1×A1
H̃1

IndH̃2×A2
H̃2

H̃2,x×A2,x
H̃2,x

x̃⊠ x̃∨ = IndH̃1×A1
H̃1

H̃1,x×A1,x
H̃1,x

Inf
H̃2,x×A2,x

H̃2,x

H̃1,x×A1,x
H̃1,x

x̃⊠ x̃∨,

where Inf stands for inflation, i.e. pull-back.
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Proof of Proposition 7.5. Assume conjecture 7.3. We consider the extensions 1→
Gz(F )→ G̃z(F )

[ϕ] → A[ϕ],[z] → 1 and 1→ π0(S
+
ϕ )→ π0(S̃

+,[z]
ϕ )→ A[ϕ],[z] → 1.

Let X1 = Πϕ(Gz) and X2 = Irr(π0(S+
ϕ ), [z]). By Conjecture A.1 these sets are

in an A[ϕ],[z]-equivariant bijection. Define Πϕ(G̃
[ϕ]
z ) to be the set of irreducible

representations of G̃z(F )[ϕ] whose restriction to Gz(F ) meets X1. Conjecture
7.3 fulfills the assumptions of Lemma 7.7, see also Remark 7.4. Point 3 of that
Lemma provides a bijection between Πϕ(G̃

[ϕ]
z ) and Irr(π0(S

+,[z]
ϕ , [z])), and point

4 asserts that this bijection preserves multiplicities upon restriction along a map
B → A. By Conjecture A.1 the stabilizer in G̃z(F ) of any element of Πϕ(G̃

[ϕ]
z )

is contained in G̃z(F )
[ϕ]. Therefore induction gives a bijection from Πϕ(G̃

[ϕ]
z )

to the set Πϕ(G̃z) of irreducible representations of G̃z(F ) whose restriction to
Gz(F ) meets Πϕ(Gz), hence the first point of Conjecture 5.12 holds. Multiplic-
ities are still preserved, hence Conjecture 7.1 holds.

Conversely, assume Conjecture 7.1 and the first point of Conjecture 5.12. Let
π ∈ Πϕ(Gz) correspond to ρ ∈ Irr(π0(S+

ϕ )). Consider the group G̃z(F )π ×A[z]
π

π0(S̃
+,[z]
ϕ,ρ ). We claim that this group arises by taking F -points of a disconnected

algebraic group that fits in the framework discussed in this paper. Indeed, let
G̃π denote the preimage in G̃ of A[z]

π . We have the isomorphism of algebraic
groups

G⋊A π0(S̃+,[z]
ϕ,ρ )→ G̃π ×A[z]

π
π0(S̃

+,[z]
ϕ,ρ ), (g ⋊ s̃) 7→ (g ⋊ as̃)× s̃,

where on the left the subscript A indicates that the semi-direct product is taken
for the action of π0(S̃

+,[z]
ϕ,ρ ) on G via the projection π0(S̃

+,[z]
ϕ ) → A

[z]
π , while on

the right the group π0(S̃
+,[z]
ϕ ) acts trivially on G̃. The above isomorphism is

equivariant for the natural embedding of G into both sides and hence induces
an isomorphism between the rational forms over F determined by the element
z ∈ Z1(u→W,Z → G).

According to Conjectures 5.12 and 7.1 the extensions of the representation
π ⊠ ρ∨ of Gz(F )× π0(S+

ϕ ) to a representation of G̃z(F )π ×A[z]
π
π0(S̃

+,[z]
ϕ,ρ ) are in

natural bijection with the extensions of the representation ρ⊠ ρ∨ of

π0(Cent(ϕ, Ĝ× π0(S+
ϕ ))

+) = π0(S
+
ϕ )× π0(S

+
ϕ )

to the group
π0(Cent(ϕ, Ĝ⋊A π0(S̃+,[z]

ϕ,ρ ))+,[z]).

To compute this group we use the isomorphism

̂̄G⋊A S̃+,[z]
ϕ,ρ →

̂̄G⋊c S̃+,[z]
ϕ,ρ , (g, s̃) 7→ (gs−1, s̃),

where the subcript c on the right indicates that we are taking the semi-direct
product with respect to the natural conjugation action of S̃+,[z]

ϕ,ρ ⊂ ̂̄G⋊ A on ̂̄G,

and s̃ = s⋊a. This isomorphism restricts to an isomorphism ̂̄G×S+
ϕ →

̂̄G⋊cS+
ϕ .
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We now apply Cent(ϕ,−)+,[z] to both sides of the inclusion ̂̄G ⋊c S+
ϕ →

̂̄G ⋊c
S̃
+,[z]
ϕ,ρ and obtain the natural inclusion

S+
ϕ ⋊c S+

ϕ → S+
ϕ ⋊c S̃+,[z]

ϕ,ρ ,

which under the isomorphism (s, s̃) 7→ (ss̃, s̃) becomes the natural inclusion

S+
ϕ × S

+
ϕ → S̃

+,[z]
ϕ,ρ ×A[ϕ],[z]

ρ
S̃
+,[z]
ϕ,ρ .

Tracing through all identifications we see that we are looking for a natural ex-
tension of the representation ρ ⊠ ρ∨ of the source of this inclusion to a repre-
sentation of the target. But Lemma 7.6 provides just such an extension.

We come now to the character identities. The right hand side of the charac-
ter identities in Conjecture 5.12 is∑

π̃∈Πϕ(G̃z)

tr π̃ ⊠ ρ̃∨π̃ (f̃ × s̃−1).

This is the character of the representation
⊕

π̃ π̃ ⊠ ρ̃∨π̃ evaluated at the function
f̃ ⊗ δs̃−1 . By the preceding discussion that representation is equal to⊕

π∈Πϕ(Gz)/A[ϕ],[z]

Ind
G̃z(F )×π0(S̃

+,[z]
ϕ )

G̃z(F )π×
A

[z]
π
π0(S̃

+,[z]
ϕ,ρ )

π̃can.

Let a ∈ A be the image of s̃. If a /∈ Aπ the character of the corresponding
induced representation is zero at f̃⊗δs̃−1 . Therefore we may restrict the sum by
the condition a ∈ A[z]

π , equivalently aπ ∼= π. Applying the Frobenius character
formula we obtain ∑

π∈Πϕ(Gz)/A
[ϕ],[z]

aπ∼=π

tr π̃can

(∑
x

(f̃ ⊗ δs̃−1)x

)
,

where x runs over the coset space

(G̃z(F )× π0(S̃+,[z]
ϕ ))/(G̃z(F )π ×A[z]

π
π0(S̃

+,[z]
ϕ,ρ )) ∼= A[z] ×A[z],[ϕ]/A[z]

ρ .

The compatibility of π̃can with conjugation under A implies that the above sum
becomes ∑

π∈Πϕ(Gz)
aπ∼=π

tr π̃can

 ∑
c∈A[z]

f̃ c ⊗ δs̃−1

 .

We conclude that∑
π̃∈Πϕ(G̃z)

tr π̃ ⊠ ρ̃∨(f̃ × s̃−1) =
∑

π∈Πϕ(Gz)
aπ∼=π

tr π̃can
(
f̃0 × s̃−1

)
,

where f̃0 =
∑
c∈A[z] f̃ c. Recalling from Lemma 4.6 that f̃ z = f̃ z,KS0 we see that

the character identites in Conjectures 5.12 and 7.3 are equivalent.
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Remark 7.8. Proposition 7.5 reduces the proof of the endoscopic character
identities to the case of a cyclic A. It does not completely reduce the inter-
nal structure of L-packets to the case of cyclic A, because in the case when Aπ
is not cyclic one still needs to show the existence of the extension π̃can.

7.3 The cyclic case
{sub:comp_cyc}

In this subsection we revisit the classical setting where we have a connected
reductive group equipped with an automorphism. We begin with a quasi-split
connected reductive group G equipped with an automorphism θ fixing an F -
pinning. We further assume θ is of finite order. Set A = ⟨θ⟩ and G̃ = G ⋊ ⟨θ⟩.
Let z ∈ Z1(u→W,Z(G)A → G). The map G̃z(F )→ A is surjective if and only
if the class [z] is fixed by θ, which we assume from now on, for otherwise we
can pass to a power of θ without changing G̃z(F ). Fix an arbitrary δ̃z ∈ G̃z(F )
mapping to θ and set θz = Ad(δ̃z). The twisted group we are interested in is
Gz with automorphism θz .

Let ϕ : LF → LG be such that its Ĝ-conjugacy class is fixed by θ. Then we
have

1→ π0(Sϕ)→ π0(S̃ϕ)→ A→ 1 (7.1) {eq:sphicyc}{eq:sphicyc}

and S̃
[z]
ϕ = S̃ϕ. This isomorphism class of a representation π ∈ Πϕ(Gz) is θz-

fixed if and only if the isomorphism class of the corresponding ρ ∈ Irr(S+
ϕ , [z])

is θ-fixed. Assuming that this is the case, there is a natural extension of the
representation π⊠ρ∨ ofGz(F )×π0(S+

ϕ ) to a representation of G̃z(F )×Aπ0(S̃+
ϕ )

given as follows: Since A is cyclic ρ extends to a representation ρ̃ of π0(S̃+
ϕ ). By

Conjecture 5.12 there is a corresponding extension π̃ of π to G̃z(F ). Another
extension of ρ is of the form ρ̃⊗χ for some character χ ofA. The representation
of G̃z(F ) corresponding to ρ̃ ⊗ χ is then π̃ ⊗ χ. Therefore the representation
π̃⊠ρ̃∨ of G̃z(F )×π0(S̃+

ϕ ), when pulled back to G̃z(F )×Aπ0(S̃+
ϕ ), is independent

of the choice of ρ̃. This is (π ⊠ ρ∨)can of Conjecture 7.3.

7.4 Passing from A to A[z],[ϕ]

{sub:comp_rest1}
Proposition 7.5 shows that, once [ϕ] and [z] have been fixed and Conjecture A.1
has been assumed, Conjecture 5.12 for the group G ⋊ A reduces to the same
conjecture for the group G ⋊ A[z],[ϕ]. More explicitly, let B = A[z],[ϕ] and write

GA = G⋊A and GB = G⋊B. Let πB ∈ Πϕ(G
B
z ). All members of ResG

B
z (F )

Gz(F ) π
B

belong to the packet Πϕ(Gz). An element ofGAz (F ) that normalizesGBz (F ) and

intertwines πB must therefore lie in GBz (F ). Thus πA := IndG
A
z (F )

GB
z (F )

πB is irre-
ducible, and in this way one obtains a bijection Πϕ(G

B
z )→ Πϕ(G

A
z ). In the same

way one obtain a bijection Irr(π0(S̃ϕ(GB)+,[z]), [z])→ Irr(π0(S̃ϕ(GA)+,[z]), [z]).
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7.5 Induction
{sub:ind}

Let G̃ = G ⋊ A be a quasi-split disconnected reductive group and A → B an
embedding. Set H = IndBAG and H̃ = H⋊B. The purpose of this subsection is
to show that Conjecture 7.3 for G⋊A implies this same conjecture for H ⋊B.

Let a ∈ A. An element zG ∈ Z1(u → W,Z(G)A → G) has a-invariant
cohomology class if and only if there exists ga ∈ G such that

azG(w) = g−1
a zG(w)σw(ga). (7.2) {eq:ind1a}{eq:ind1a}

This is equivalent to ga ⋊ a ∈ G̃zG(F ). Assuming that, a representation πG of
GzG(F ) has an a-invariant isomorphism class if and only if there exists a vector
space isomorphism π̃A(ga ⋊ a) : VπG

→ VπG
satisfying

πG(ga · a(g) · g−1
a ) ◦ π̃G(ga ⋊ a) = π̃G(ga ⋊ a) ◦ πG(g). (7.3) {eq:ind1b}{eq:ind1b}

Note that ga ·a(g) ·g−1
a = (ga⋊a) ·g ·(ga⋊a)−1, and further that the existence of

π̃G(ga⋊a) is independent of the choice of ga, for any other choice will be of the
form g′aga with g′a ∈ GzG(F ) and we can take π̃G(g′aga⋊a) = πG(g

′
a)◦π̃G(ga⋊a).

We have H = {h : B → G|h(ab) = ah(b)} with pointwise multiplication.
Let zH ∈ Z1(u→W,Z(H)B → H). Thus zH(w1w2, b) = zH(w1, b) ·w1zH(w2, b)
and zH(w, ab) = azH(w, b). Let b ∈ B. The cohomology class of zH is b-
invariant if and only if there exists hb ∈ H satisfying the analog of Equation
(7.2). Again this is equivalent to h̃ = h ⋊ b ∈ H̃ lying in H̃zH (F ) and in terms
of the function h : B → G means

zH(w, b′b) = h−1
b (b′)zH(w, b′)σw(hb(b

′)), ∀b′ ∈ B. (7.4) {eq:ind1c}{eq:ind1c}

A representation (πH , VπH
) of HzH (F ) can be represented as a collection

of vector spaces {Vc|c ∈ A \ B} and on each Vc a family of representations
πċH : GzH(−,ċ)(F ) → AutC(Vc) indexed by ċ ∈ c satisfying the compatibility
relation

πaċH (ag) = πċH(g)

for all a ∈ A and g ∈ GzH(−,ċ)(F ). Then VπH
= ⊗cVc and πH(h) = ⊗c∈A\Bπ

c
H(h(c))

and each factor is well-defined. We shall write πH = ⊠cπcH .
Assuming the existence of hb⋊ b ∈ HzH (F ), a representation πH of HzH (F )

has a b-invariant isomorphism class if and only if there exists a vector space
isomorphism π̃H(hb ⋊ b) : VπH

→ VπH
satisfying the analog of Equation (7.3),

which in terms of the data {Vc} and {πċH} can be expressed as

π̃H(hb ⋊ b)(⊗cvc) = ⊗cπ̃H(hb ⋊ b)c(vcb),

where
π̃H(hb ⋊ b)c : Vcb → Vc

is an isomorphism of vector spaces satisfying

πċH(g) ◦ π̃H(hb ⋊ b)c = π̃H(hb ⋊ b)c ◦ πċbH (hb(ċ)
−1ghb(ċ)) (7.5) {eq:ind1d}{eq:ind1d}

56



for one, hence any, lift ċ ∈ B of c ∈ A \B.
For g ∈ G and b ∈ B we define gδb ∈ H to be the element supported on

Ab and sending ab ∈ Ab to a(g) ∈ G. Given a section s : A \ B → B of the
natural projection (which we may view as a map B → B invariant under left
multiplication by A) we define a map r : B → A by b = r(b)s(b). We have
r(ab) = ar(b).

{lem:ind1}
Lemma 7.9. 1. Given zH ∈ Z1(u→W,Z(H)B → H) define zG(w) = zH(w, 1).

Then [zH ] 7→ [zG] establishes a bijection between H1(u→ W,Z(H)B → H)B

and H1(u→W,Z(G)A → G)A.

2. Assume zG(w) = zH(w, 1). Given a representation πH of HzH (F ) define
πG(g) = π1

H(gδ1). Then [πH ] 7→ [πG] establishes a bijection between the set
of B-fixed isomorphism classes of irreducible representations of HzH (F ) and the
set of A-fixed isomorphism classes of irreducible representations of GzG(F ).

3. Fix a section s : A \ B → B. Given zG ∈ Z1(u → W,Z(G)A → G) define
zH ∈ Z1(u → W,Z(H)B → H) by zH(w, as(c)) = azG(w). Given a rep-
resentation πG of GzG(F ) define a representation of HzH (F ) by ⊠cπcH , where
π
s(c)
H = πG. These assignments are inverses of the above bijections.

Proof. Let zH ∈ Z1(u → W,Z(H)B → H) and πH ∈ Irr(HzH (F )) have B-fixed
classes. Then Equation (7.4) for b′ = 1 and b = a ∈ A shows that the class of
zG(w) = zH(w, 1) is a-fixed, while Equation (7.5) with ċ = 1 and b = a ∈ A
shows that the class of πG(g) = π1

H(gδ1) is a-fixed. It is clear that the classes of
zG and πG depend only on those of zH and πH .

Consider conversely zG ∈ Z1(u → W,Z(G)A → G) and πG ∈ Irr(GzG(F ))
whose classes are A-fixed and let ga and π̃G(ga ⋊ a) be chosen to satisfy Equa-
tions (7.2) and (7.3). Fix a section s : A\B → B and let r : B → A be defined by
b = r(b)s(b) for all b ∈ B. Set hb(as(c)) = a(gr(s(c)b)). Then hb ∈ H and an easy
calculation shows that Equation (7.2) implies Equation (7.4) for zH(w, as(c)) :=
azG(w), and further that if h ∈ HzH (F ) then h(s(c)) ∈ GzG(F ) for all c ∈ A \B.
This allows us to define a representation πH of HzH (F ) acting on the vector
space V ⊗c

πG
by πH(h) = ⊗cπG(h(s(c))). In other words, the representation πH is

given by the constant collection of vector spaces {Vc = VπG
|c ∈ A \ B} and for

each c ∈ A \ B we have πas(c)H (g) = πG(a
−1(g)). Define π̃H(hb ⋊ b)c : Vcb → Vc

to be given by π̃G(ga⋊ a) : VπG
→ VπG

for a = r(s(c)b). Then Equation (7.5) for
ċ = s(c) follows from Equation (7.3). It is clear that the classes of zH and πH
depend only on those of zG and πG.

We have thus established the desired maps in both directions and must now
check that they are mutually inverse. Starting with zG and πG and construct-
ing zH and πH it is immediate that zH(w, 1) = zG(w) and π1

H(gδ1) = πG(g).
Conversely start with zH and πH and define zG(w) = zH(w, 1) and πG(g) =
π1
H(gδ1). Let now z0H(w, as(c)) = azG(w) and π0

H(h) = ⊗cπG(h(s(c))). We need
to show that the classes of zH and z0H are equal, and the classes of πH and π0

H

are equal.
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For zH and z0H we need to show the existence of h ∈ H such that for all
a ∈ A and c ∈ A \B we have

z0H(w, as(c)) = h(as(c))−1zH(w, as(c))σ(h(as(c))),

which due to the A-equivariance of all terms and the definition of z0H reduces
to

zH(w, 1) = h(s(c))−1zH(w, s(c))σw(h(s(c))),

which follows from Equation (7.4) with h = hb, b = s(c)−1 and b′ = s(c). Thus
the element h we are looking for is given by h(as(c)) := ahs(c)−1(s(c)).

Before we can compare the classes of πH and π0
H we note that the former

is a representation of HzH (F ), while the latter is a representation of Hz0H
(F ).

We must therefore precompose πH with the isomorphism Ad(h) : Hz0H
(F ) →

HzH (F ). Thus we need to show the existence of a (πH ◦Ad(h), π0
H)-equivariant

vector space isomorphism VπH
→ Vπ0

H
. This reduces to finding for each c ∈

A \ B a vector space isomorphism Vc → V1 translating the action of GzG(F )
on Vc given by π

s(c)
H ◦ Ad(hs(c)−1(s(c))) to the action of on V1 given by π1

H .
According to Equation (7.5) such an isomorphism is given by π̃H(hb ⋊ b)−1

c for
b = s(c)−1.

{lem:ind2}
Lemma 7.10. Under the bijection πG ↔ πH of Lemma 7.9 the element of H2(B,C×)
corresponding to πH is the corestriction of the element of H2(A,C×) corresponding to
πG.

More precisely, let zG ∈ Z1(u → W,Z(G)A → G) and πG ∈ Irr(GzG(F )) have
A-fixed classes. For each a ∈ A fix ga ∈ G and π̃G(ga ⋊ a) satisfying Equations (7.2)
and (7.3), so that we have the element

α(a1, a2) = π̃G(ga1 ⋊ a1) ◦ π̃G(ga2 ⋊ a2) ◦ π̃G(ga1 ⋊ a1 · ga2 ⋊ a2)
−1

of Z2(A,C×) representing the class associated to πG, where the third term is defined
via the rule π̃G(gga⋊a) = πG(g)π̃G(ga⋊a) for g ∈ GzG(F ). Define zH(w, as(c)) =

azG(w). Define the representation πH of HzH (F ) as πH = ⊠cπcH , πs(c)H = πG.
For each b ∈ B define the element hb ∈ H by hb(as(c)) = a(gr(s(c)b)) and the
isomorphism π̃H(hb⋊b) : ⊗cVπG

→ ⊗cVπG
by π̃H(hb⋊b)(⊗cvc) = ⊗cπ̃G(gr(s(c)b)⋊

r(s(c)b))(vcb). Then hb and π̃H(hb ⋊ b) satisfy Equations (7.4) and (7.5) and the
associated element

β(b1, b2) = π̃H(hb1 ⋊ b1) ◦ π̃H(hb2 ⋊ b2) ◦ π̃H(hb1 ⋊ b1 · hb2 ⋊ b2)
−1

ofZ2(B,C×) is obtained from α by applying the cochain formula for corestriction with
respect to the section s.

Proof. That Equations (7.4) and (7.5) are satisfied was already discussed in the
proof of Lemma 7.9. It remains to prove the corestriction claim, which is the
following identity:

β(b1, b2) =
∏
c

α(r(s(c)b1), r(s(cb1)b2)).
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The (scalar) endomorphism

π̃H(hb1 ⋊ b1) ◦ π̃H(gb2 ⋊ b2) ◦ π̃H(hb1 ⋊ b1 · hb2 ⋊ b2)
−1

of the vector space ⊗cVπG
is by definition a tensor product of endomorphisms

of VπG
and it is enough to show that the endomorphism of the tensor factor

indexed by c is given by multiplication by the scalar α(r(s(c)b1), r(s(cb1)b2)).
By definition this endomorphism is given by

π̃H(hb1 ⋊ b1)c ◦ π̃H(hb2 ⋊ b2)cb1 ◦ π̃H(hb1 ⋊ b1 · hb2 ⋊ b2)
−1
c ,

where the subscript notation is as in the proof of Lemma 7.9. We compute

π̃H(hb1 ⋊ b1 · hb2 ⋊ b2)c

= πH(hb1 · b1hb2 · h−1
b1b2

) ◦ π̃H(hb1b2 ⋊ b1b2)c

= πG(hb1(s(c)) · hb2(s(c)b1)hb1b2(s(c))−1) ◦ π̃G(gr(s(c)b1b2) ⋊ r(s(c)b1b2))

= π̃G(gr(s(c)b1) · r(s(c)b1)gr(s(cb1)b2) · g
−1
r(s(c)b1b2)

· gr(s(c)b1b2) ⋊ r(s(c)b1b2))

= π̃G(gr(s(c)b1) ⋊ r(s(c)b1) · gr(s(cb1)b2) ⋊ r(s(cb1)b2)).

With this we see that the endomorphism of the tensor factor indexed by c is
given by

π̃G(gr(s(c)b1) ⋊ r(s(c)b1)) ◦ π̃G(gr(s(cb1)b2) ⋊ r(s(cb1)b2))

◦ π̃G(gr(s(c)b1) ⋊ r(s(c)b1) · gr(s(cb1)b2) ⋊ r(s(cb1)b2)),

which is precisely α(r(s(c)b1), r(s(cb1)b2)).

We consider the group homomorphism

ev1 : H → G, h 7→ h(1).

It is A-equivariant, hence extends to a group homomorphism

ev1 : H ⋊A→ G⋊A, h⋊ a 7→ ev1(h)⋊ a.

It also respects rational structures under the convention zG(w) = zH(w, 1) that
has been used so far.

More generally we consider b ∈ B and a section l : A\B/⟨b⟩ → B. For every
d ∈ A \B/⟨b⟩ let nd be the size of the orbit of the element Al(d) of A \B for the
action of b onA\B by right multiplication. Equivalently, nd is the smallest non-
negative number n satisfying bn ∈ l(d)−1Al(d). Write Ad := l(d)−1Al(d) ⊂ B
so that bnd ∈ Ad, and write ad = l(d)bnd l(d)−1 ∈ A. We obtain a section
s : A \B → B by

s(Al(d)bi) = l(d)bi, i = 0, . . . , nd − 1. (7.6) {eq:sec1}{eq:sec1}

The group homomorphism

evl(d) : H → G, h 7→ h(l(d))
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satisfies evl(d)(l(d)−1al(d)h) = aevl(d)(h) for a ∈ A and h ∈ H and therefore
extends to a group homomorphism

evl(d) : H ⋊Ad → G⋊A, h⋊ l(d)−1al(d) 7→ h(l(d))⋊ a,

which is defined over F under the assumption zH(w, l(d)) = zG(w), which is
implied by the assumption zH(w, s(c)) = zG(w) for all c ∈ A \B.

{lem:indprod0}
Lemma 7.11. Let zdG ∈ Z1(u → W,Z(G)A → G). Define zH ∈ Z1(u →
W,Z(H)B → B) by zH(w, al(d)bi) = azdG(w). The map

H →
∏
d

nd−1∏
i=0

G, h 7→
∏
d

nd−1∏
i=0

h(l(d)bi)

is an isomorphism of algebraic groups. It respects the quasi-split rational structures on
both sides, as well as their twists by zH and (zdG)d respectively. It translates the action
by b to the action by (Θd)d, where Θd(gd,0, . . . , gd,nd−1) = (gd,1, . . . , gnd−1, ad(g0)).

Proof. This is an immediate computation.

Note that h(l(d)bi) = evl(d)(bih) = evl(d)(Ad(1⋊ b)ih). Since the action of b
on H , as well as the action of ad on G, need not respect the rational structures
given by zH and zdG, respectively, the following slight variation of the above
isomorphism will also be useful.

{lem:indprod}
Lemma 7.12. Let h̃ ∈ [H ⋊ b]zH (F ). The map

H →
∏
d

nd−1∏
i=0

G, h 7→
∏
d

nd−1∏
i=0

evl(d)(Ad(h̃)ih)

is an isomorphism of algebraic groups that respects the twists of the quasi-split rational
structures by zH and (zdG)d, respectively. It translates the action of conjugation by
h̃ to the action sending (gd,0, . . . , gd,nd−1)d to (gd,1, . . . , gd,nd−1,Ad(g̃d)g0)d, where
g̃d = evl(d)(h̃nd) ∈ [G⋊ ad]zG(F ).

Proof. This is an immediate computation.

For a moment we consider the following situation that encapsulates each
factor in the first product of above lemma.

{lem:basictwist}
Lemma 7.13. Let J be a locally profinite group with an automorphism θ and consider
the locally profinite group I = J×J×· · ·×J with the automorphism Θ(j0, . . . , jn−1) =
(j1, . . . , jn−1, θ(j0)). Consider the maps

m, p0 : I → J, m(j0, . . . , jn−1) = j0 . . . jn−1, p0(j0, . . . , jn−1) = j0

as well as

∆, i0 : J → I, ∆(j) = (j, . . . , j), i0(j) = (j, 1, . . . , 1).
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1. We have m(g−1
I · δI ·Θ(gI)) = p0(gI)

−1 ·m(δI) · θ(p0(gI)) for gI , δI ∈ I .

2. The map m induces a bijection from the set of Θ-twisted conjugacy classes in I
to the set of θ-twisted conjugacy classes in J with inverse given by i0.

3. The map p0 induces an isomorphism of groups CentΘ(δI , I)→ Centθ(m(δI), J)
whose inverse sends s to Ad(gI)∆(s), where gI = (g0, . . . , gn−1) and gi =
(δ0 . . . δi−1)

−1.

4. If f0, . . . , fn−1 ∈ C∞c (J), fI = f0 ⊗ · · · ⊗ fn−1, and δI ∈ I , then

TOI,ΘδI (fI) = TOJ,θm(δI)
(f0 ∗ f1 ∗ · · · ∗ fn−1),

where the convolution f0∗· · ·∗fn−1 ∈ C∞c (J) is defined by f0∗· · ·∗fn−1(x) =∫
f0(h1)f1(h

−1
1 h2) . . . fn−2(h

−1
n−2hn−1)fn−1(h

−1
n−1x)dh1 . . . dhn−1.

5. Let π be an admissible representation of J and let π̃ : π ◦ θ−1 → π be an
isomorphism. Then πI = π ⊠ · · · ⊠ π is an admissible representation of I and
π̃I(v0⊗· · ·⊗vn−1) = v1⊗· · ·⊗vn−1⊗π̃(v0) is an isomorphism πI◦Θ−1 → πI .
We have

tr(πI(fI) ◦ π̃I) = tr(π(f0 ∗ · · · ∗ fn−1) ◦ π̃).

Proof. The first point is an immediate computation. It follows that m induces
a map between the sets of twisted conjugacy classes, and p0 induces a map
between the twisted centralizers. The fact that i0 respects twisted conjugacy
follows from i0(g

−1δθ(g)) = g−1
I i0(δ)Θ(gI) for gI = (g, θ(g), . . . , θ(g)). The fact

that i0 is inverse to m as maps between twisted conjugacy classes follows from
the trivial relation m(i0(δ)) = δ and the relation i0(m(δI)) = g−1

I δIΘ(gI) for
δI = (δ0, . . . , δn−1) and gI = (g0, . . . , gn−1) with g0 = 1 and gi = δi . . . δn−1

for i > 0. The fact that p0 has the given inverse as maps between twisted
centralizers is immediate.

For the equality of twisted orbital integrals we take δI = (δ0, . . . , δn−1) and
write out the left-hand side as∫

CentΘ(δI ,I)\I
f0(g

−1
0 δ0g1)f1(g

−1
1 δ1g2) . . . fn−1(g

−1
n−1δn−1θ(g0))dg0 . . . dgn−1,

where the integration variable is gI = (g0, . . . , gn−1), and use the substitution
h0 = g0, hi = g−1

0 δ0 . . . δi−1gi for i > 0.
The fact that π̃I is an isomorphism πI ◦ Θ−1 → πI is immediate. To verify

the equality of traces write ϕi = π(fi) ∈ EndC(Vπ). Then πI(fI) is the operator
ϕ0 ⊗ · · · ⊗ ϕn−1 of VπI

= Vπ ⊗ · · · ⊗ Vπ , while π(f0 ∗ · · · ∗ fn−1) is the operator
ϕ0 ◦ · · · ◦ ϕn−1 of Vπ . Therefore the claimed equality is

tr(ϕ0 ⊗ · · · ⊗ ϕn−1 ◦ π̃I |VπI
) = tr(ϕ0 ◦ · · · ◦ ϕn−1 ◦ π̃|Vπ).

Both sides are continuous and n-linear in the ϕi, which allows us to reduce the
proof first to the case that ϕi has finite rank, and then to the case that it has
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rank 1, i.e. ϕi = λi ⊗ wi for λi ∈ V ∗
π and wi ∈ Vπ . The operator on the left has

rank 1 and is given by ((λ0 ⊗ · · · ⊗ λn−1) ◦ π̃I) ⊗ (w0 ⊗ · · · ⊗ wn−1). Its trace
is therefore λ0(w1)λ1(w2) . . . λn−1(π̃(w0)). The operator on the right also has
rank 1 and is given by (λ0(w1)λ1(w2) . . . λn−2(wn−1)) ·w0⊗λn−1 ◦ π̃. Its trace is
therefore given by λ0(w1) . . . λn−2(wn−1)λn−1(π̃(w0)). Thus the two traces are
equal.

We now return the group H ⋊ B. We fix h̃ ∈ [H ⋊ b]zH (F ) and let g̃d =

evl(d)(h̃nd) ∈ [G ⋊ ad]zG(F ). Consider given functions fd,i ∈ C∞c (GzG(F )) for
d ∈ A \ B/⟨b⟩ and i = 0, . . . , nd − 1. The tensor product ⊗d,ifd,i becomes, via
the isomorphism of Lemma 7.12, a function fH ∈ C∞c (HzH (F )). Write f̃H =

R−1

h̃
fH ∈ C∞c ([H ⋊ b]zH (F )) for the function f̃H(h · h̃) = fH(h). Analogously

we obtain for each d the function R−1
g̃d

(fd,0 ∗ · · · ∗ fd,nd−1) ∈ [G⋊ ad]zG(F ).
Fix a collection (πd)d∈A\B/⟨b⟩ of representations ofGzG(F ) and isomorphisms

π̃d : πd ◦Ad(g̃d)−1 → πd. Via the isomorphism of Lemma 7.12 we can transport
⊠dπ

⊠nd

d to a representation πH of HzH (F ) and π̃H(⊗d(vd,0 ⊗ · · · ⊗ vd,nd−1)) =

⊗d(vd,1 ⊗ · · · ⊗ vd,nd−1 ⊗ π̃d(vd,0)) to an isomorphism πH ◦Ad(h̃)−1 → πH .
{cor:indorb}

Corollary 7.14. 1. The map [H ⋊ b]zH (F ) →
∏
d[G ⋊ ad]zG(F ) sending h̃′

to (g̃′d)d defined as g̃′d = evl(d)(h̃′nd), induces a bijection between the set of
HzH (F )-conjugacy classes in [H ⋊ b]zH (F ) and the set of GzG(F )d-conjugacy
classes in

∏
d[G⋊ ad]zG(F ).

2. If h̃′ ∈ [H ⋊ b]zH (F ) maps to (g̃′d)d ∈
∏
d[G⋊ ad]zG(F ) then

OH
h̃′(R

−1

h̃
fH) =

∏
d

OG
d

g̃′d
(R−1

g̃d
(fd,0 ∗ · · · ∗ fd,nd−1)).

3. We have

tr(πH(fH) ◦ π̃H) =
∏
d

tr(πd(fd,0 ∗ · · · ∗ fd,nd−1) ◦ π̃d).

Proof. We have the bijection HzH (F ) → [H ⋊ b]zH (F ) sending h to h · h̃. It
translates the conjugation action ofHzH (F ) on [H⋊ b]zH (F ) to the twisted con-
jugation action of HzH (F ) on itself, with respect to the automorphism Ad(h̃).
The isomorphism of Lemma 7.12 identifies the group HzH (F ) with the group∏
d

∏
iGzG(F ) and the automorphism Ad(h̃) with the automorphism sending

(gd,0, . . . , gd,nd−1) to (gd,1, . . . , gd,nd−1,Ad(g̃d)gd,0). According to Lemma 7.13,
the map sending h̃′ = h′ · h̃ ∈ [H ⋊ b]zH (F ) to

(evl(d)(h′ · (h̃h′h̃−1) . . . (h̃nd−1h′h̃1−nd)))d = (evl(d)(h̃′nd) · evl(d)(h̃nd)−1

is a bijection from the set of HzH (F )-conjugacy classes in [H ⋊ b]zH (F ) to the
set of GzG(F )

d-twisted conjugacy classes in GzG(F )
d with respect to the auto-

morphism (Ad(g̃d))d. Composing this bijection with the bijection GzG(F ) →
[G⋊ ad]zG(F ) sending g′ to g′g̃d we obtain the first claim. With this translation
set up, the other two claims follow readily from Lemma 7.13.
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We now turn to the dual side. We can take Ĥ = IndBAĜ. More precisely, if T
is a torus with A-action, we have the identification IndBAX∗(T ) = X∗(IndBAT )
sending an element λB : B × Gm → T of IndBAX∗(T ) to the element x 7→
λB(−, x) of X∗(IndBAT ). The pairing

⟨χB , λB⟩ =
∏

c∈A\B

⟨χB(c), λb(c)⟩ (7.7) {eq:ind_duality}{eq:ind_duality}

between IndBAX∗(T ) and IndBAX∗(T ) is perfect and equivariant for Γ and B

and identifies IndBAX∗(T ) with X∗(IndBAT ) as Γ-modules with B-action. If
(T,C) and (T̂ , Ĉ) are Γ-invariant Borel pairs for G and Ĝ respectively, then
(IndBAT, IndBAC) and (IndBAT, IndBAC) are such pairs for IndBAG and IndBAĜ, re-
spectively. The duality between X∗(T ) and X∗(T̂ ) that realizes the duality be-
tweenG and Ĝ induces, via the above pairing, a duality between IndBAX∗(T ) =

X∗(IndBAT ) and IndBAX∗(T̂ ) = X∗(IndBAX∗(T̂ )), and therefore realizes the du-
ality between IndBAG and IndBAĜ.

Let a ∈ A. A Langlands parameter ϕG : LF → LG, which we represent as
ϕG(x) = ϕG,0(x) ⋊ x with ϕG,0 : LG → Ĝ, has a-invariant Ĝ-conjugacy class if
and only if there exists an element ǧa ∈ Ĝ satisfying

aϕG,0(x) = ǧ−1
a ϕG,0(x)σx(ǧa). (7.8) {eq:ind1ad}{eq:ind1ad}

This is equivalent to ǧa ⋊ a ∈ S̃ϕG
. Assuming this, a representation (ρG, VG) of

SϕG
has an a-invariant isomorphism class if and only if there is a vector space

isomorphism ρ̃G(ǧa ⋊ a) : VρG → VρG satisfying

ρG(ǧa · a(ǧ) · ǧ−1
a ) ◦ ρ̃G(ǧa ⋊ a) = ρ̃G(ǧa ⋊ a) ◦ ρG(ǧ). (7.9) {eq:ind1bd}{eq:ind1bd}

Let b ∈ B. A Langlands parameter ϕH : LF → LH , which we again repre-
sent as ϕH(x) = ϕH,0(x)⋊xwith ϕH,0 : LF → Ĥ , has a b-invariant Ĥ-conjugacy
class if and only if there exists an element ȟb ∈ Ĥ satisfying

ϕH,0(x, b
′b) = ȟ−1

b (b′)ϕH,0(x, b
′)σx(ȟb(b

′)), ∀b′ ∈ B. (7.10) {eq:ind1cd}{eq:ind1cd}

Again this means ȟb ⋊ b ∈ S̃ϕH
. Assuming this, a representation (ρH , VρH ) of

SϕH
, represented again by the collection {Vc|c ∈ A\B} of vector spaces and the

collection ρċH of representations ρċH : SϕH(−,ċ) → Aut(Vc) for all ċ ∈ c, subject to
ρaċH (as) = ρċH(s), has a b-invariant isomorphism class if and only if there exists
a vector space isomorphism ρ̃H(ȟb ⋊ b) : VρH → VρH satisfying

ρ̃H(ȟb ⋊ b)(⊗cvc) = ⊗cρ̃H(ȟb ⋊ b)c(vcb),

where
ρ̃H(ȟb ⋊ b)c : Vcb → Vc

is an isomorphism of vector spaces satisfying

ρċH(ǧ) ◦ ρ̃H(ȟb ⋊ b)c = ρ̃H(ȟb ⋊ b)c ◦ ρċbH(ȟb(ċ)
−1ǧȟb(ċ)) (7.11) {eq:ind1dd}{eq:ind1dd}

for one, hence any, lift ċ ∈ B of c ∈ A \B.
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{lem:ind1d}
Lemma 7.15. 1. The assignment ϕG,0(x) = ϕH,0(x, 1) establishes a bijection be-

tween the A-invariant Ĝ-conjugacy classes of parameters ϕG(x) = ϕG,0(x)⋊x
and the B-invariant Ĥ-conjugacy classes of parameter ϕH(x) = ϕH,0(x)⋊ x.

2. Assume ϕG,0(x) = ϕH,0(x, 1). The assignment ρG(ǧ) = ρ1H(ǧδ1) establishes
a bijection between the set of B-fixed isomorphism classes of irreducible rep-
resentations of SϕH

and the set of A-fixed isomorphism classes of irreducible
representations of SϕG

.

3. Fix a section s : A \B → B. The assignments ϕH,0(x, as(c)) = aϕG,0(x) and
ρH(ȟ) = ⊗cρG(ȟ(s(c))) ∈ EndC(V

⊗c
ρG ) are inverses of the above bijections.

Proof. The proof is the same as for Lemma 7.9 so we will not repeat it.
{lem:ind2d}

Lemma 7.16. Under the bijection ρG ↔ ρH of Lemma 7.15 the element ofH2(B,C×)
corresponding to ρH is the corestriction of the element of H2(A,C×) corresponding to
ρG.

More precisely, let ϕG and ρG ∈ Irr(SϕG
) have A-fixed classes. For each a ∈ A

fix ǧa ∈ Ĝ and ρ̃G(ǧa ⋊ a) satisfying Equations (7.8) and (7.9), so that we have the
element

α(a1, a2) = ρ̃G(ǧa1 ⋊ a1) ◦ ρ̃G(ǧa2 ⋊ a2) ◦ ρ̃G(ǧa1 ⋊ a1 · ǧa2 ⋊ a2)
−1

ofZ2(A,C×) representing the class associated to πG. Define ϕH,0(x, as(c)) = aϕG,0(x)
and the representation ρH of SϕH

on ⊗cVρG by ρH(ȟ) = ⊗cρG(ȟ(s(c))). For each
b ∈ B define the element ȟb ∈ Ĥ by ȟb(as(c)) = a(ǧr(s(c)b)) and the isomor-
phism ρ̃H(ȟb ⋊ b) : ⊗cVρG → ⊗cVρG by ρ̃H(ȟb ⋊ b)(⊗cvc) = ⊗cρ̃G(ǧr(s(c)b) ⋊
r(s(c)b))(vcb). Then ȟb and ρ̃H(ȟb ⋊ b) satisfy Equations (7.10) and (7.11) and the
associated element

β(b1, b2) = ρ̃H(ȟb1 ⋊ b1) ◦ ρ̃H(ȟb2 ⋊ b2) ◦ ρ̃H(ȟb1 ⋊ b1 · ȟb2 ⋊ b2)
−1

of Z2(B,C×) is obtained from α by applying the cochain formula for the corestriction
with respect to the section s.

Proof. The proof is the same as for Lemma 7.10, so we will not repeat it.

Consider again b ∈ B and a section l : A\B/⟨b⟩ → B. Let nd and s : A\B →
B be as in (7.6). Recall ad = l(d)bnd l(d)−1 ∈ A.

{lem:indprodd0}
Lemma 7.17. Let ϕdG,0 : LF → Ĝ. Define ϕH,0 : LF → Ĥ by ϕH,0(x, al(d)bi) =

aϕdG(x). The map

Ĥ →
∏
d

nd−1∏
i=0

Ĝ, ȟ 7→
∏
d

nd−1∏
i=0

ȟ(l(d)bi)

is a Γ-equivariant isomorphism of algebraic groups. It translates conjugation by ϕH(x)
to conjugation by (ϕdG(x))d. It translates the action by b to the action by (Θd)d, where
Θd(ǧd,0, . . . , ǧd,nd−1) = (ǧd,1, . . . , ǧnd−1, ad(ǧ0)).

64



Proof. This is an immediate computation.
{lem:indprodd}

Lemma 7.18. Let ȟb ⋊ b ∈ S̃ϕH
. The map

Ĥ →
∏
d

nd−1∏
i=0

Ĝ, ȟ 7→
∏
d

∏
i

evl(d)(Ad(ȟb ⋊ b)ih)

is an isomorphism of algebraic groups. It translates the action of Ad(ϕH(w)) to the
diagonal action of (Ad(ϕdG(w)))d. It translates the action of conjugation by ȟb ⋊ b
to the action sending (ǧd,0, . . . , ǧd,nd−1)d to (gd,1, . . . , gd,nd−1,Ad(ǧd ⋊ ad)ǧd,0)d,
where ǧd ⋊ ad = evl(d)((ȟb ⋊ b)nd).

Proof. Direct computation.
{lem:basictwistd}

Lemma 7.19. Let J be a quasi-split connected reductive group with a pinned auto-
morphism θ. Consider I = J × · · · × J with the pinned automorphism Θ defined by
Θ(g0, . . . , gn−1) = (g1, . . . , gnd−1, θ(g0)). Let θ̂ and Θ̂ denote the duals of θ and Θ.
We have Î = Ĵ × · · · × Ĵ and Θ̂(ǧ0, . . . , ǧn−1) = (θ̂(ǧn−1), ǧ0, . . . , ǧn−2).

1. If (Je,J e, s̃eJ , ξ
e
J) is an endoscopic datum for J ⋊ θ and we write s̃eJ = šeJ ⋊ θ̂

and ξeJ(ȷ) = ξeJ,0(ȷ) ⋊ wȷ, and define Ie = Je, Ie = J e, s̃eI = šeI ⋊ Θ,
šeI = (šeJ , 1, . . . , 1), ξ

e
I(ȷ) = (ξeJ,0(ȷ), . . . , ξ

e
J,0(ȷ))⋊ wȷ. Then (Ie, Ie, s̃eI , ξeI) is

an endoscopic datum for I ⋊Θ.

2. If (Ie, Ie, s̃eI , ξeI) is an endoscopic datum for I ⋊ Θ and we write s̃eI = šeI ⋊
Θ̂, šeI = (š0, . . . , šn−1), ξeI(ı) = (ξe0(ı), . . . , ξ

e
n−1(ı)) ⋊ wı, and define Je =

Ie, J e = Ie, s̃eJ = šeJ ⋊ θ̂, šeJ = šn−1 . . . š0, ξeJ(ı) = ξen−1(ı) ⋊ wı, then
(Je,J e, s̃eJ , ξ

e
J) is an endoscopic datum for J ⋊ θ.

3. The above constructions given mutually inverse bijections between the sets of
isomorphism classes of endoscopic data for J ⋊ θ and I ⋊Θ.

4. Let ϕJ,0 : LF → Ĵ and define ϕI,0 = (ϕJ,0, . . . , ϕJ,0). In the above construc-
tions we have s̃I ∈ S̃ϕI

if and only if s̃J ∈ S̃ϕJ
and the isomorphism classes of

the resulting endoscopic data correspond under the above bijections.

5. Let zJ ∈ Z1(u → W,Z(J)θ → J) and define zI = (zJ , . . . , zJ) ∈ Z1(u →
W,Z(I)Θ → I). If e is an endoscopic datum, both for I ⋊ Θ and for J ⋊ θ via
the above bijections, z is a z-pair for e, w is a θ-special Whittaker datum for J
and hence a Θ-special Whittaker datum for I , δI = (δ0, . . . , δn−1) ∈ IzI (F ),
and δJ = δ0 . . . δn−1 we have

∆KS [w, e, z](γ
z, δI ⋊Θ) = ∆KS[w, e, z](γ

z, δJ ⋊ θ).

Proof. For the first two points we only need to check parts (4.7.6) and (4.7.7) of
the definition of endscopic datum in §4.7. These verifications are immediate
and left to the reader. For the third point, the assignment (Je,J e, s̃eJ , ξ

e
J) 7→
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(Ie, Ie, s̃eI , ξeI) 7→ (Je,J e, s̃eJ , ξ
e
J) is the identity on data, even before taking iso-

morphism classes. On the other hand, the element (ǧ0, . . . , ǧn−1) ∈ Î with
ǧi = šn−1 . . . ši+1 gives an isomorphism between the soruce and target of the
assignment (Ie, Ie, s̃eI , ξeI) 7→ (Je,J e, s̃eJ , ξ

e
J) 7→ (Ie, Ie, s̃eI , ξeI). For the fourth

point it is enough to start with (s̃J , ϕJ), let s̃I be as in the first point, produce
from (s̃J , ϕJ) respectively (s̃I , ϕI) endoscopic data (Je,J e, s̃eJ , ξ

e
J) respectively

(Ie, Ie, s̃eI , ξeI) via the spectral construction of §4.8, and then verify that these
two data are related by the construction of the first point. This is immediate
and left to the reader.

The remainder of the proof will be concerned with the equality of transfer
factors. We consider each individual term in the product (4.3)

∆KS = e([I ⋊Θ]z̄I )ϵL(V, ψ)(∆
new
I )−1∆II(∆

new
III )

−1∆IV .

These terms were recalled in §4.9, except ∆new
III , for which we follow the con-

struction given in §5.5. These terms depend on various auxiliary data recalled
in §4.9 and their comparison requires that we compare this auxiliary data for
the group I and the group J .

We fix a θ-invariant F -pinning (TJ , BJ , {Xα}) of J and a non-trivial char-
acter ψ : F → C×. Thaking the product of this pinning gives a Θ-invariant
F -pinning of I and all Θ-invariant pinnings of I arise this way. In this way
θ-special Whittaker data for J correspond to Θ-special Whittaker data for I .
We fix a norm (SI , γ) for δI ⋊ Θ. Here SI ⊂ IzI is a maximal torus defined
over F , invariant under Θ, and contained in a Borel subgroup CI ⊂ I de-
fined over F̄ and invariant under Θ. Moreover γ ∈ [SI ]Θ(F ) and there exists
gI ∈ I such that g−1

I (δI ⋊ Θ)gI = δ∗I ⋊ Θ with δ∗I ∈ SI whose image in [SI ]Θ
is γ. It is immediate that SI = SnJ and CI = CnJ for a θ-invariant Borel pair
SJ ⊂ CJ ⊂ J , with SJ defined over F . Moreover, the product map SI → SJ
induces an isomorphism [SI ]Θ → [SJ ]θ. If we write gI = (g0, . . . , gn−1) then
δ∗I = (g−1

0 δ0g1, . . . , g
−1
n−2δn−2gn−1, g

−1
n−1δn−1θ(g0)) and its image in SJ is given

by δ∗J = g−1
0 δ0 . . . δn−1θ(g0). Therefore (SJ , γ) is a norm for δJ ⋊ θ.

The set of Θ-orbits in R(SI , I) is in natural bijection with the set of θ-orbits
in R(SJ , J). In this way Rres(SI , I) = Rres(SJ , J). We fix a-data and χ-data for
this set.

We can now compare the individual terms of ∆KS for I and J . The term
ϵL(V, ψ) for I is the root number of the virtual Galois representationX∗(TI)

Θ
C −

X∗(T e)C. But X∗(TI)
Θ = X∗(TJ)

θ so this equals the term ϵL(V, ψ) for J . The
equality e([I ⋊Θ]z̄I ) = e([J ⋊ θ]z̄J ) is Lemma 3.11.

The term ∆II is a fraction. The denominator for I equals the denominator
for J by virtue of the identification Ie = Je. The numerator for I is a product
over the Γ-orbits in Rres(SI , I) and the factor corresponding to αres involves
the quantity NΘαI(δ

∗
I ), where αI ∈ R(SI , I) represents αres. Now R(SI , I) =

R(SJ , J)∪ · · · ∪R(SJ , J) and if αJ ∈ R(SJ , J) represents αres then NΘαI(δ
∗
I ) =

NθαJ(δ
∗
J). Therefore the numerators of ∆II for I matches the numerator of

∆II for J .
The term ∆IV is discussed in the same way as the term ∆II .
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The term ∆new
I for J is defined as the Tate-Nakayama pairing applied to

an element tJ ∈ H1(Γ, Sθ,◦) with an element šJ,θ ∈ π0([Ŝ]
Γ
θ ). The diagonal

inclusions J → I and SJ → SI become isomorphisms Jθ,◦ → IΘ,◦ and Sθ,◦J →
SΘ,◦
I . Tracing through the construction we see that under the isomorphism
H1(Γ, Sθ,◦J )→ H1(Γ, SΘ,◦

I ) the elements tJ and tI are identified.
The element šI,θ ∈ π0([ŜI ]ΓΘ) is obtained by recognizing that šI lies in the

image of a certain embedding ŜI → Î , so that it can be transported to ŜI under
that embedding and then mapped to [ŜI ]Θ. Dual to the isomorphism Sθ,◦J →
SΘ,◦
I is the isomorphism [ŜI ]Θ → [ŜJ ]θ induced by the product map ŜI =

ŜJ × · · · × ŜJ → ŜJ . Since the image of šI ∈ ŜI under the product map
produces the element šJ ∈ ŜJ , we see that the term ∆new

I for I equals the term
∆new
I for J .

We come to the term ∆new
III . We shall give the proof in the special case of

pure inner forms and no z-pair. The proof in the general case is the same,
but with more cumbersome notation that obscures the main point. This term
for J is given by the Tate-Nakayama pairing of the element inv(γ, (zJ , δJ)) ∈

H1(Γ, SJ
1−θ−→ SJ) with the element A0,J ∈ H1(WF , ŜJ

1−θ̂−→ ŜJ).
We consider the two dual commutative diagrams

SI
p0 //

1−Θ

��

SJ

1−θ
��

ŜI ŜJ
i0oo

SI m
// SJ ŜI

1−Θ̂

OO

ŜJ

1−θ̂

OO

∆
oo

Where m is the multiplication map, ∆ is the diagonal inclusion, i0 is the in-
clusion into the first coordinate, and p0 is the projection onto the first coor-
dinate. These diagrams can be seen as morphisms of complexes of tori of
length 2, the complexes being the vertical arrows and the morphisms being the
horizontal arrows. It is immediate to check that these morphisms are quasi-
isomorphisms. Therefore they induce isomorphisms H1(Γ, SI

1−Θ−→ SI) →

H1(Γ, SJ
1−θ−→ SJ) and H1(WF , ŜJ

1−θ̂−→ ŜJ) → H1(WF , ŜI
1−Θ̂−→ ŜI). The ele-

ment inv(γ, (zI , δI ⋊Θ)) is the pair ((g−1
I zI(σ)σ(gI))

−1, δ∗I ) ∈ Z1(Γ, SI
1−Θ−→ SI).

We had already noted that the image of δ∗I under the multiplication map is δ∗J .
At the same time, the image of g−1

I zI(σ)σ(gI) under p0 is g−1
0 zJ(σ)σ(g0). Thus

the image of inv(γ, (zI , δI⋊Θ)) under the first of these isomorphisms is indeed
inv(γ, (zJ , δJ ⋊Θ)).
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To compare A0,J and A0,I we consider the commutative diagram

LI

LJe

ξeI

==

ξeJ !!

LJ1

∆

aa

nat}}
LJ

∆

OO

LSe

ξeS

OO

LSθLφγe,γ

oo

ξ1S

OO

The elementA0,J is the class of (a−1
SJ
, šJ), where aSJ

:WF → ŜJ is the 1-cocycle
measuring the difference between ξeJ ◦ ξeS ◦ Lφγe,γ and nat ◦ ξ1S . The element
A0,I is the class of (a−1

SI
, šI), where aSI

: WF → ŜI is the 1-cocycle measuring
the difference between ξeI ◦ ξeS ◦ Lφγe,γ and ∆ ◦ ◦ξ1S . The commutativity of
the diagram shows that aSI

= ∆(aSJ
). On the other hand šI = i0(šJ) and we

conclude that the image ofA0,J under the isomorphismH1(WF , ŜJ
1−θ̂−→ ŜJ)→

H1(WF , ŜI
1−Θ̂−→ ŜI) equals A0,I .

{cor:indprodd}
Corollary 7.20. Let ϕH : LF → LH and s̃H ∈ S̃ϕH

. Write s̃H = šH ⋊ b. Fix a
section l : A \ B/⟨b⟩ → B. For each d ∈ A \ B/⟨b⟩ define s̃d = evl(d)(s̃

nd

H ) and
ϕd,0 = evl(d) ◦ ϕH,0. Then ϕd : LF → LG and s̃d ∈ S̃ϕd

.

1. Let eH and ed be the endoscopic data associated to (s̃H , ϕH) and (s̃d, ϕd). There
is a natural identification

eH =
∏
d

ed.

2. Fix a z-pair zH for eH and express it as
∏
d zd. If γzH corresponds to (γzd)d un-

der this identification, and the stable class of h̃′ ∈ [H ⋊ b−1]zH (F ) corresponds
to the stable class of (g̃′d)d under the bijection of Corollary 7.14, then

∆KS(γ
zH , h̃′) =

∏
d

∆KS(γ
zd , g̃′d).

3. The transfer of the function R−1

h̃
fH ∈ C∞c (H̃zH (F )) to zH equals the tensor

product over d of the transfers of the functions R−1
g̃d

(fd,0 ∗ · · · ∗ fd,nd−1) ∈
C∞c (G̃zG(F )) to zd.

Proof. We consider the isomorphism

H →
∏
d

nd−1∏
i=0

G, h 7→
∏
d

nd−1∏
i=0

h(l(d)b−i)
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of Lemma 7.11 and the isomorphism

Ĥ →
∏
d

nd−1∏
i=0

Ĝ, ȟ 7→
∏
d

nd−1∏
i=0

ȟ(l(d)b−i)

of Lemma 7.17, both applied to the element b−1. They are dual to each other
(cf. (7.7)). The first of them translates b−1 to (Θd)d and hence a−1

d to θd, while
the second translates b to (Θ̂d)d and ad to θ̂d.

Since the Ĥ-conjugacy class of ϕH is b-invariant, we may conjugate (ϕH , s̃H)

by Ĥ to arrange that the image of ϕ0H under the second isomorphism is of the
form (ϕ0d, . . . , ϕ

0
d)d for parameters ϕd : LF → LG. Let (šd,i) be the image of

šH . Then Lemma 7.19 gives the identification eH =
∏
d e

′
d, where e′d is the

endoscopic datum associated to (s̃d, ϕd) with s̃′d = š′d ⋊ ad and

š′d = šd,nd−1 . . . šd,0 = šH(l(d)b1−nd) · šH(l(d)b2−nd) . . . šH(l(d)).

The element (šd,nd−1 . . . šd,1)
−1 conjugates s̃′d to s̃d and hence provides an iso-

morphism e′d → ed.
Let h̃′ = h′ ⋊ b−1 and let (gd,i) be the image of h′. It is immediate that

gd,0 . . . gd,nd−1 ⋊ a−1
d = evl(d)(h̃′) = g̃′d, therefore Lemma 7.19 (and Fact 3.10)

implies
∆KS(γ

z, h̃′) =
∏
d

∆KS(γ
zd , g̃′d).

The identification of transfers of functions follows from the equation

SOγzH ((R−1

h̃
fH)eH ) =

∑
h̃′

∆KS(γ
zH , h̃′)OH

h̃′(R
−1

h̃
fH)

=
∏
d

∑
g̃′d

∆KS(γ
zd , g̃′d)O

G
g̃′d
(R−1

g̃d
(fd,0 ∗ · · · ∗ fd,nd−1))

=
∏
d

SOγzd ((R
−1
g̃d

(fd,0 ∗ · · · ∗ fd,nd−1))
ed).

Here h̃′ runs over the set of HzH (F ))-classes in [H ⋊ b−1]zH (F ). We have
used Corollary 7.14 for b−1 to identify this set with the set (g̃′d)d of GzG(F )

d-
conjugacy classes in

∏
d[G⋊a−1

d ]zG(F ), and to related the corresponding orbital
integrals.

We continue with zG and ϕG whose equivalence classes are A-fixed and
consider πG ∈ ΠϕG

corresponding to ρG ∈ Irr(π0(S+
ϕG

)) whose equivalence
classes are alsoA-fixed (provided these exist). Recall that zG and ϕG determine
B-fixed equivalence classes of zH and ϕH , and that πG and ρG determine B-
fixed isomorphism classes of representations πH ofHzH (F ) and ρH of π0(S̃+

ϕH
).

Assume given an extension of πG ⊠ ρ∨G from GzG(F ) × π0(S+
ϕG

) to G̃zG(F ) ×A
π0(S̃

+
ϕG

). We claim that it determines an extension of πH ⊠ ρ∨H from HzH (F )×
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π0(S
+
ϕH

) to H̃zH (F )×B π0(S̃+
ϕH

). To see this, fix ga ∈ G and π̃G(ga ⋊ a) : VπG
→

VπG
satisfying Equations (7.2) and (7.3), and fix analogously ǧa ∈ Ĝ and ρ̃G(ǧa⋊

a) : VρG → VρG satisfying Equations (7.8) and (7.9). We demand that these
choices are made in such a way that the restriction to G̃zG(F )×Aπ0(S̃+

ϕG
) of the

exterious tensor product π̃G ⊠ ρ̃∨G is the given extension of πG ⊠ ρ∨G. We fix a
section s : A \B → B and according to Lemma 7.9 we can take zH(w, as(c)) =
azG(w) and πH(h) = ⊗cπG(h(s(c))) acting on V ⊗c

πG
, and according to Lemma

7.16 we can take ϕH,0(x, as(c)) = aϕG,0(x) and ρH(ȟ) = ⊗cρG(ȟ(s(c))). We
then define for each b ∈ B the element hb ∈ H and the isomorphism π̃H(hb⋊ b)
as in Lemma 7.10 and the element ȟb ∈ Ĥ and the isomorphism ρ̃H(ȟb⋊b) as in
Lemma 7.16 and consider π̃H⊠ ρ̃∨H restricted to H̃zH (F )×Bπ0(S̃+

ϕH
). According

to Lemmas 7.10 and 7.16 this is a linear representation and extends πH ⊠ ρ∨H .
{lem:ind4}

Lemma 7.21. The restriction of π̃H ⊠ ρ̃∨H to H̃zH (F )×B π0(S̃+
ϕH

) is independent of
the choices of ga, π̃G(ga ⋊ a), ǧa, and ρ̃G(ǧa ⋊ a).

Proof. Keeping {ga} and {ǧa} fixed, for any a the isomorphism π̃G(ga ⋊ a) can
only be changed to zaπ̃G(ga ⋊ a) for some za ∈ C×. Since the restriction of
π̃G ⊠ ρ̃G to G̃zG(F ) ×A π0(S̃+

ϕG
) is fixed, this means that ρ̃G(ǧa ⋊ a) must be

changed to z−1
a ρ̃G(ǧa ⋊ a). Now π̃H(hb ⋊ b) is multiplied by za raised to the

power of the cardinality of {c|a = r(s(c)b)}, while ρ̃H(ȟb ⋊ b) is multiplied
by z−1

a raised to the same power, so we see that the restriction of π̃H ⊠ ρ∨H to
H̃zH (F )×B π0(S̃+

ϕH
) remains unchanged.

Replace now ga by g′a = g0aga and ǧa by ǧ′a = ǧ0aǧa for g0a ∈ GzG(F ) and
ǧ0a ∈ S+

ϕG
. By the previous argument the choices of π̃G(g′a ⋊ a) and ρ̃G(ǧ

′
a ⋊ a)

will not influence the construction. We choose them to be πG(g0a) ◦ π̃G(ga ⋊ a)
and ρG(ǧ

0
a) ◦ ρ̃G(ǧa ⋊ a) respectively. We claim that π̃H and ρ̃H are both un-

changed. Indeed, hb is now replaced by h′b defined by h′b(as(c)) = a(g′r(s(c)b)) =

a(g0r(s(c)b)) · a(gr(s(c)b)). Define h0 ∈ H by h0(as(c)) = a(g0r(s(c)b)). Then h0 ∈
HzH (F ) and h′b = h0hb. The new choices now stipulate

π̃H(h′b ⋊ b)c = π̃G(g
′
r(s(c)b) ⋊ r(s(c)b)) = πG(g

0
r(s(c)b)) ◦ π̃G(gr(s(c)b) ⋊ r(s(c)b)),

while according to the old choices we have

π̃H(h′b ⋊ b) = πH(h0) ◦ π̃H(hb ⋊ b)

and we see that both of these values for π̃H(h′b ⋊ b)c agree. The argument for
ρ̃H is analogous.

Thus far we have focused on the setting in which the objects zH , πH , ϕH ,
ρH have equivalence classes fixed by B. In general this will not be the case, but
one can reduce to that case by a simple application of Mackey theory, at the
expense of introducing rather cumbersome notation. This is what we turn to
next.

Let B′ ⊂ B be a subgroup. Fix a section l : A \ B/B′ → B of the natural
projection. For each d ∈ A \ B/B′ let Ad = l(d)−1Al(d), A′

d = Ad ∩ B′, and

70



write Gd for the group G with action of Ad defined by (l(d)−1al(d)) ·d g = ag.
Fix a section sd : A′

d \ B′ → B′ of the natural projection. Then each element of
B has a unique expression of the form b = al(d)sd(c

′
d) for d ∈ A \ B/B′ and

c′d ∈ A′
d \B′. This gives a section A \B → B.

{cor:ind6}
Corollary 7.22. 1. Let zH ∈ Z1(u → W,Z(H)B

′ → H) have a B′-fixed class.
For each d ∈ A \ B/B′ we obtain an element of Z1(u → W,Z(Gd)A

′
d → Gd)

by zGd(w) = zH(w, l(d)), and the map zH 7→ (zGd)d is a bijection between
H1(u→W,Z(H)B

′ → H)B
′

and
∏
dH

1(u→W,Z(Gd)A
′
d → Gd)A

′
d .

2. Let πH be an irreducible representation of HzH (F ) whose class is B′-fixed. For
each d ∈ A \ B/B′ we obtain an irreducible representation πGd of Gdz

Gd
(F )

on Vl(d) by πGd(g) = π
l(d)
H (g). The map πH 7→ (πGd)d is a bijection between

Irr(HzH (F ))B
′

and
∏
d Irr(Gdz

Gd
(F ))A

′
d .

3. Let ϕH(x) = ϕH,0(x) ⋊ x be a Langlands parameter for H whose class is B′-
fixed. For each d ∈ A \ B/B′ we obtain a Langlands parameter ϕGd,0 for Gd

by ϕGd,0(x) = ϕH,0(x, l(d)). The map ϕH 7→ (ϕGd)d is a bijection between
Φ(H)B

′
and

∏
d Φ(G

d)A
′
d .

4. Let ρH be an irreducible representation of π0(S+
ϕH

). For each d ∈ A \ B/B′

we obtain an irreducible representation of π0(S+
ϕ
Gd

) by ρGd(ǧ) = ρ
l(d)
H (ǧ).

The map ρH 7→ (ρGd)d is a bijection between the sets Irr(π0(S+
ϕH

))B
′

and∏
d Irr(π0(S+

ϕ
Gd

))A
′
d .

5. The inverse of the above bijections are given by zH(w, al(d)sd(c
′
d)) = azG,d(w),

ϕH(x, al(d)sd(c
′
d)) = aϕGd(x), πH(h) = ⊗d ⊗c′d πGd(h(l(d)sd(c

′
d))), and

ρH(ȟ) = ⊗d ⊗c′d ρGd(ȟ(l(d)sd(c
′
d))).

6. For each d ∈ A \ B/B′ and a′d ∈ A′
d choose ga′d ∈ Gd and π̃Gd(ga′d ⋊ a′d) :

Vπ
Gd
→ Vπ

Gd
satisfying Equations (7.2) and (7.3) forGd⋊A′

d. For each b′ ∈ B′

define hb′ ∈ H by hb′(al(d)sd(c′d)) = agrd(sd(c′d)b′) and

π̃H(hb′ ⋊ b′) : ⊗d ⊗c′d Vd,c′d → ⊗d ⊗c′d Vd,c′d

by

π̃H(hb′⋊b′)(⊗d⊗c′d vd,c′d) = ⊗d⊗c′d π̃Gd(grd(sd(c′d)b′)⋊rd(sd(c
′
d)b

′))(vd,c′d·b′).

Then these satisfy Equations (7.4) and (7.5). Moreover, the 2-cocycle β ∈
Z2(B′,C×) for π̃H is the product over d ∈ A \ B/B′ of the co-restrictions
(computed with respect to the sections sd) of the 2-cocycles αd ∈ Z2(A′

d,C×)
for π̃Gd .

7. For each d ∈ A \ B/B′ and a′d ∈ A′
d choose ǧa′d ∈ Ĝd and ρ̃Gd(ǧa′d ⋊ a′d) :

Vρ
Gd
→ Vρ

Gd
satisfying Equations (7.8) and (7.9) for Ĝd⋊A′

d. For each b′ ∈ B′
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define ȟb′ ∈ Ĥ by ȟb′(al(d)sd(c′d)) = aǧrd(sd(c′d)b′) and

ρ̃H(ȟb′ ⋊ b′) : ⊗d ⊗c′d Vd,c′d → ⊗d ⊗c′d Vd,c′d

by

ρ̃H(hb′⋊b′)(⊗d⊗c′d vd,c′d) = ⊗d⊗c′d ρ̃Gd(grd(sd(c′d)b′)⋊rd(sd(c
′
d)b

′))(vd,c′d·b′).

Then these satisfy Equations (7.10) and (7.11). Moreover, the 2-cocycle β ∈
Z2(B′,C×) for ρ̃H is the product over d ∈ A \ B/B′ of the co-restrictions
(computed with respect to the sections sd) of the 2-cocycles αd ∈ Z2(A′

d,C×)
for ρ̃Gd .

8. Let b1 ∈ B and set B′
1 = b1B

′b−1
1 . Define l1 : A \ B/B′

1 → B by l1(d1) =
l(d)b−1

1 for d1 ∈ A\B/B′
1 and d = d1b1 ∈ A\B/B′. Define sd1 : A′

d1
\B′

1 →
B′

1 by sd1(c′d1) = b1sd(c
′
d)b

−1
1 for c′d ∈ A′

d \B′ and c′d1 = b1c
′
db

−1
1 ∈ A′

d1
\B′

1.

If (zH , πH) corresponds to (zGd , πGd)d via the choices of l and (sd), then b(zH , πH)
corresponds to (zGd1 , πGd1 ) via the choices of l1 and (sd1), where zGd1 (w) =
zGd(w) and πGd1 = πGd .

Proof. We have the Mackey isomorphism

ResBB′H →
∏

d∈A\B/B′

IndB
′

A′
d
ResAd

A′
d
Gd.

It sends h ∈ H to the collection (hd)d given by hd(b′) = h(l(d)b′). Write Hd =

IndB
′

A′
d
ResAd

A′
d
Gd, so that ResBB′H =

∏
Hd.

The element zH is mapped to the collection (zHd
)d, where zHd

∈ Z1(u →
W,Z(Hd)

B′ → Hd). The class of each zHd
is B′-invariant, as one checks by

sending (7.4) through the Mackey isomorphism. In turn, zHd
corresponds

by Lemma 7.9 to zG,d ∈ Z1(u → W,Z(Gd)A
′
d → Gd). Explicitly, we have

zH(w, al(d)sd(c
′
d)) = azHd

(w, sd(c
′
d)) = azGd(w).

According to the product H =
∏
dHd, the representation πH is given by

⊗πHd
, where πHd

is a representation of Hd,zHd
(F ) on a vector space Vd. Thus

πH acts on⊗dVd as πH(h) = ⊗dπHd
(hd). Therefore each πHd

acts on⊗c′dVd,c′d as

πHd
(hd) = ⊗c′dπ

c′d
Hd

(hd(c
′
d)). Thus we have πl(d)sd(c

′
d)

H = π
sd(c

′
d)

Hd
acting on Vd,c′d .

The class of each πHd
is B′-invariant, so πHd

corresponds to the representation
πGd of Gd on the vector space Vd,1 given by πGd(g) = π1

Hd
(g) = π

l(d)
H (g).

The statements concerning zH and πH now follow immediately from Lemma
7.9 by taking products over d. The statement about π̃H follows from Lemma
7.10. The argument for the dual side is analogous, using Lemmas 7.15 and 7.16
instead.

{pro:ind}
Proposition 7.23. Assume that Conjectures A.1 and 7.3 hold for G ⋊ A. Then they
also hold for H ⋊B.
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Proof. Let ϕH : LF → LH be a tempered Langlands parameter, zH ∈ Z1(u →
W,Z(H)B → B) and ρH ∈ Irr(S+

ϕH
, [zH ]). We are assuming the validity of

the refined local Langlands correspondence, so there is a corresponding πH ∈
ΠϕH

(HzH ).
Consider any subgroup B′ ⊂ B fixing the equivalence classes of zH , πH ,

ϕH , ρH . Choose a sections l : A \B/B′ → B, as well as a section sd : A′
d \B′ →

B′ for each d ∈ A \ B/B′, as in the discussion before the statement of Corol-
lary 7.22. That Corollary provides collections (zGd),(πGd),(ϕGd),(ρGd) indexed
by d ∈ A \ B/B′, where ϕGd ∈ Φ(Gd), ρGd ∈ Irr(π0(S+

ϕ
Gd

)), zGd ∈ Z1(u →
W,Z(Gd)A

′
d → Gd), and πGd ∈ Irr(Gdz

Gd
(F )). Since the refined local Langlands

correspondence is compatible with products of reductive groups we see that
for each d, (ϕGd , ρGd) corresponds to (zGd , πGd). The part of Corollary 7.22 that
describes the compatibility of forming these collections with the action of B,
applied to the case B′ = {1}, shows that for any b1 ∈ B the pair b1(ϕH , ρH)
corresponds to the pair b1(zH , πH). That is, Conjecture A.1 holds for H ⋊B.

In particular we see B
[ϕH ]
ρH = B

[zH ]
πH . Take B′ to be this group and ap-

ply the above discussion to obtain the collections (zGd),(πGd),(ϕGd),(ρGd). Let
π̃Gd

⊠ ρ̃∨Gd be the extension of πGd ⊠ ρ∨Gd to G̃dz
Gd

(F )π
Gd
×A′

d
π0(S̃

+,[z
Gd ]

ϕ
Gd ,ρGd

) that
Conjecture 7.3 forGd⋊A′

d provides. Taking the tensor product over d of the ex-
tensions provided by the construction prior to Lemma 7.21 gives an extension
π̃H ⊠ ρ̃∨H of πH ⊠ ρ∨H to H̃zH (F )πH

×B′ π0(S̃
+,[zH ]
ϕH ,ρH

).
We now come to the character identity. Thus we fix ȟb⋊ b ∈ S̃ϕH

, hb⋊ b−1 ∈
H̃zH (F ), a function fH ∈ C∞c (HzH (F )), and ť ∈ SϕH

, and consider∑
πH∈ΠϕH
πH◦b∼=πH

tr(π̃H ⊠ ρ̃∨H)(R−1
hb⋊b−1fH × (ťȟb ⋊ b)). (7.12) {eq:charidind1}{eq:charidind1}

We apply Lemmas 7.12 and 7.18 to represent πH as ⊠dπ
⊠nd

d and ρH as
⊠dρ

⊠nd

d where, for each d ∈ A \ B/⟨b⟩, πd is a representations of GzG(F ) in-
variant under gd ⋊ a−1

d = g̃d = evl(d)((hb ⋊ b−1)nd) and ρd is a representation
of SϕG

invariant under ǧd ⋊ ad = evl(d)((ȟb ⋊ b)nd). We fix isomorphisms
π̃d : πd ◦ Ad(g̃d)−1 → πd and ρ̃d : ρd ◦ Ad(ǧd ⋊ ad)

−1 → ρd. We are interested
in the canonical extension π̃H ⊠ ρ̃∨H of πH ⊠ ρ∨H to [H ⋊ ⟨b⟩]zH (F ) ×⟨b⟩ [Ĥ ⋊
⟨b⟩]ϕH

. Under Lemmas 7.12 and 7.18 this is the representation ⊠d(π̃d ⊠ ρ̃∨d )
⊠nd

of
∏
d

∏
i[G⋊⟨ad⟩]zG×⟨ad⟩ [Ĝ⋊⟨ad⟩]ϕG

, where π̃d⊠ρ̃∨d is the canonical extension
of πd ⊠ ρ∨d . We write fH = ⊗d ⊗nd−1

i=0 fd,i and ť =
∏
d

∏
i šd,i and then Lemma

7.13 implies that tr(π̃H ⊠ ρ̃∨H)(R−1
hb⋊b−1fH × (ťȟb ⋊ b)) equals∏

d

tr(π̃d ⊠ ρ̃∨d )(R
−1

gd⋊a−1
d

fd,0 ∗ · · · ∗ fd,nd−1, šd,0 . . . šd,nd−1ǧd ⋊ ad).

The set {πH ∈ ΠϕH
|πH ◦ b ∼= πH} is translated to the set {⊗dπd ∈ ⊗dΠϕd

|πd ◦
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ad ∼= πd}. Therefore (7.12) becomes∏
d

∑
πd∈Πϕd
πd◦ad∼=πd

tr(π̃d ⊠ ρ̃∨d )(R
−1
gd⋊adfd,0 ∗ · · · ∗ fd,nd−1, šd,0 . . . šd,nd−1ǧd ⋊ ad).

The parameter ϕd and the element šd,0 . . . šd,nd−1ǧd ⋊ ad ∈ Ĝ ⋊ A lead to an
endoscopic datum ed and parameter ϕed . The character identities for G̃ imply
that the above equals ∏

d

SΘϕed
(f edKS),

where f edKS is the transfer of R−1
gd⋊adfd,0 ∗ · · · ∗ fd,nd−1 with respect to ∆KS . By

Corollary 7.20 the endoscopic datum for H and ťȟb ⋊ b and ϕH is
∏
d ed, and

the function ⊗f edKS has KS-matching orbital integrals with fH .

8 THE CASE OF TORI
{sec:tori}

In this section we are going to sketch the proof of Conjecture 5.12 in the case
where the reductive group G is a torus. We will write T instead of G to empha-
size this. Note that, while a torus T is tautologically quasi-split, an inner form
of T ⋊ A need not be quasi-split. This is the main source of complications we
will have to deal with.

8.1 Initial considerations
{sub:init}

Let ϕ : WF → T̂ and let [ϕ] denote both the equivalence class of ϕ and the
corresponding character T (F ) → C×. Let Z ⊂ T be finite and defined over F ,
and z ∈ Z1(u→W,Z → T ). Then

T̃z(F ) = (T (F̄ )⋊A)
˜̄z(Γ) = {δ̃ ∈ T (F̄ )⋊A|Ad(˜̄z(σ))δ̃ = δ̃ ∀σ ∈ Γ}.

The group T̃z(F ) is an extension

1→ T (F )→ T̃z(F )→ A[z] → 1.

The set Π̃ϕ,z consists of those irreducible admissible representations of T̃z(F )
whose restriction to T (F ) contains the character [ϕ]. All these representations
are finite-dimensional. They can be described as follows. We have the pull-
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back and push-out diagram

1 // T (F ) // (T (F̄ )⋊A)˜̄z(Γ) // A[z] // 1

1 // T (F ) //

[ϕ]

��

(T (F̄ )⋊A[ϕ])˜̄z(Γ) //

OO

��

A[z],[ϕ] //
?�

OO

1

1 // C× // Ez[ϕ] // A[z],[ϕ] // 1

The bottom extension is central. If we let Irr(Ez[ϕ], id) denote the set of irre-
ducible representations of Ez[ϕ] whose central character restricts to the identity
on C×, then inflating an element of Irr(Ez[ϕ], id) to (T (F̄ ) ⋊ A[ϕ])˜̄z(Γ) and then
inducing it to (T (F̄ )⋊A)˜̄z(Γ) provides a canonical bijection

Irr(Ez[ϕ], id)→ Π̃ϕ,z.

Dually, we have S̃[z]
ϕ = (T̂ ⋊ A[z])ϕ(WF ). Its preimage S̃+,[z]

ϕ in ̂̄T ⋊ A fits in
the following push-out diagram

1 // π0([ ̂̄T ]+) //

[z]

��

π0(S̃
+,[z]
ϕ ) //

��

A[z],[ϕ] // 1

1 // C× // Eϕ[z] // A[z],[ϕ] // 1

and again there is a canonical bijection Irr(Eϕ[z], id) → Irr(S̃ϕ,[z], [z]) given sim-
ply by inflation.

While the extensions Eϕ[z] and Ez[ϕ] are constructed from essentially the same
data, their constructions are in some sense dual to each other. In Subsection 8.2
we will construct a natural isomorphism of extensions Ez[ϕ] ∼= E

ϕ
[z]. The resulting

bijections
Irr(S̃ϕ,[z], [z])→ Irr(Eϕ[z], id) ∼= Irr(Ez[ϕ], id)→ Π̃ϕ,z (8.1) {eq:cnj1tori}{eq:cnj1tori}

will imply Conjecture 4.2. We will then go on to verify the identity claimed in
Conjecture 4.7.

8.2 The isomorphism Ez[ϕ] ∼= E
ϕ
[z]

{sub:eiso}
We will first realize the extensions Ez[ϕ] and Eϕ[z] explicitly as twisted products of
C× with A[ϕ],[z].

For each element a ∈ A[ϕ],[z] we choose ta ∈ T (F̄ ) and sa ∈ T̂ such that

(z, ta) ∈ Z1
a(u→W,Z → T ⇒ T ) and (ϕ, sa ⋊ a) ∈ Z1

a(WF , T̂ ⇒ T̂ ).
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More explicitly, if we write ϕ(w) = ϕ0(w)⋊ w, then the above can be reformu-
lated as

z(w)−1 · a(z(w)) = t−1
a · σw(ta) and ϕ0(w)

−1 · a(ϕ0(w)) = s−1
a · σw(sa),

where σw ∈ Γ is the image of w ∈ W in the first case, and of w ∈ WF in the
second. The choices of t• and s• give us sections a 7→ ta ⋊ a and a 7→ sa ⋊ a of
the two extensions

1→ T (F )→ (T (F̄ )⋊A[ϕ])z → A[ϕ],[z] → 1

and
1→ T̂Γ → (T̂ ⋊A[z])ϕ → A[ϕ],[z] → 1.

Choose a lift ṡa ∈ ̂̄T for each sa. Then a 7→ ṡa ⋊ a is a section of the extension

1→ π0([
̂̄T ]+)→ S̃

+,[z]
ϕ → A[ϕ],[z] → 1.

The 2-cocycles corresponding to the sections a 7→ ta ⋊ a and a 7→ ṡa ⋊ a are

α(a, b) = ta · atb · t−1
ab and β(a, b) = ṡa · aṡb · ṡ−1

ab .

Let ᾱ = [ϕ] ◦ α and β̄ = [z] ◦ β. Then we have

Ez[ϕ] = C× ⊠ᾱ A
[ϕ],[z] and Eϕ[z] = C× ⊠β̄ A

[ϕ],[z].

By construction, for each a ∈ A[ϕ],[z], we have (z−1
0 , ta−1) ∈ Z1(u → W,Z →

T
1−a−1

−→ T ) and (ϕ−1
0 , ṡa) ∈ Z1(WF , Z → T̂

1−a←− T̂ ). We put

h(a) := ᾱ(a−1, a) ·
〈
(z−1, ta−1), (ϕ−1

0 , ṡa)
〉
,

where the pairing ⟨−,−⟩ is (5.3).
{pro:isoh}

Proposition 8.1. The map x ⊠ a 7→ xh(a) ⊠ a is an isomorphism Ez[ϕ] → E
ϕ
[z]. It is

independent of the choices of ta and ṡa.

Proof. It is obvious that the map is bijective, but we need to show that it is a
homomorphism. This amounts to the equation

h(a)h(b)h(ab)−1 = ᾱ(a, b)β̄(a, b)−1. (8.2) {eq:h}{eq:h}

We choose for each a ∈ A an element (λ̄a, µa) ∈ Z0(WK/F , X∗(T̄ )
1−a−→ X∗(T ))0

whose image in H1(u→W,Z → T
1−a−→ T ) under the isomorphism (5.5) equals

(z−1, ta). Here K/F is a suitably large Galois extension. Note that all λ̄a ∈
Z0(WK/F , X∗(T̄ ))0 = X∗(T̄ )

NK/F have the same image in X∗(T̄ )
N/IX∗(T ),

since their images under the isomorphismX∗(T̄ )
N/IX∗(T )→ H1(u→W,Z →
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T ) all equal z−1. Thus we may choose a single λ̄ ∈ Z0(WK/F , X∗(T ))0 and ar-
range, by modifying (λ̄a, µa) by a coboundary, that λ̄a = λ̄ for all a. Then the
pairing ⟨(z−1, ta−1), (ϕ−1

0 , ṡa)⟩ is equal to

⟨λ̄, ṡa⟩ ·
∏

w∈WK/F

⟨µa−1(w), ϕ0(w)⟩,

according to the definition of (5.3) as the composition of (5.4) and (5.5). Here
the angle brackets denote the canonical pairingX∗(T )⊗T̂ → C× and its analog
for T̄ .

With this, we can now compute h(a)h(b)h(ab)−1. For h(b) and h(ab) we
simply plug in this formula. For h(a), we shall replace (ϕ−1

0 , ṡa) by the element
(bϕ

−1
0 , ṡa ·aṡb · ṡ−1

b ), which is easily seen to be cohomologous using the fact that

(ϕ−1
0 , ṡb) ∈ Z1(WF , Ẑ → T̂

1−b←− T̂ ). All together we obtain

h(a)h(b)h(ab)−1 = ᾱ(a−1, a)ᾱ(b−1, b)ᾱ((ab)−1, ab)−1 ·
⟨λ̄, ṡa · aṡb · ṡ−1

ab ⟩ ·
∏
w

⟨b
−1

µa−1 + µb−1 − µ(ab)−1 , ϕ0(w)⟩.

Using (ϕ−1
0 , ṡa) ∈ Z1(WF , Ẑ → T̂

1−a←− Û) and (λ̄, µa) ∈ Z0(WK/F , X∗(T̄ )
1−a−1

−→
X∗(T )) one checks that ṡa · aṡb · ṡ−1

ab ∈ [ ̂̄T ]+ and b−1

µa−1 + µb−1 − µ(ab)−1 ∈
Z1(WK/F , X∗(T )). The functoriality of the maps ψ̇ and ϕ that make up the
isomorphism (5.5) implies that we have

h(a)h(b)h(ab)−1 = ᾱ(a−1, a)ᾱ(b−1, b)ᾱ((ab)−1, ab)−1 ·
⟨(z−1, ṡa · aṡb · ṡ−1

ab ), (ϕ
−1
0 , tb−1 · b

−1

ta−1 · t−1
(ab)−1)⟩.

where the pairing is now betweenH1(u→W,Z → T
0−→ T ) andH1(WF , Ẑ →

T̂
0←− T̂ ). Using Corollary 5.11 we see

h(a)h(b)h(ab)−1 = ᾱ(a−1, a)ᾱ(b−1, b)ᾱ((ab)−1, ab)−1ᾱ(b−1, a−1)−1 · β̄(a, b)−1.

Finally, an elementary computation using the fact that ᾱ is a cocycle shows that
all terms involving ᾱ combine to ᾱ(a, b).

It remains to show that the isomorphism Ez[ϕ] → Eϕ[z] we have just con-
structed is independent of the choices involved in its construction, that is of
the choices of elements ta ∈ T (F̄ ) and ṡa ∈ ̂̄T . For this we need to check that if
we replace ta by xata with xa ∈ T (F ), then h(a) is replaced by ⟨[ϕ], xa⟩h(a), and
if we replace ṡa by yaṡa with ya ∈ [ ̂̄T ]+, then h(a) is replaced by ⟨[z], ya⟩−1h(a).
Both of these verifications are immediate.

8.3 Remarks and generalizations

Before we continue with the proof of Conjecture 5.12 for tori, we would like to
point out a beautiful symmetry between T̃z(F ) and S̃[z]

ϕ that may have become
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covered under the debris of generality. To see it more clearly, let us consider
the special case where the Langlands parameter ϕ extends to the Galois group
(thus it corresponds to a character of T (F ) whose composition with the norm
map NK/F : T (K) → T (F ) is trivial for some finite extension K/F ) and the
inner form of T ⋊ A we are considering is pure. As above we shall write ϕ :

Γ→ T̂ ⋊ Γ for the Langlands parameter, and ϕ0 : Γ→ T̂ for the corresponding
cocycle, so that ϕ(σ) = ϕ0(σ) ⋊ σ. We shall use the analogous notation z :
Γ→ T ⋊ Γ and z0 : Γ→ T for the pure inner form, slightly deviating from the
notation of the rest of the paper, where we used z and z̃ instead. We are writing
T for T (F̄ ), in the same way we are writing T̂ for T̂ (C).

Now T̃z(F ) = (T⋊A)z(Γ) and Sϕ = (T̂⋊A)ϕ(Γ). These fit into the extensions

1→ T z(Γ) → (T ⋊A)z(Γ) → A[z] → 1

and
1→ T̂ϕ(Γ) → (T ⋊A)ϕ(Γ) → A[ϕ] → 1.

We have written T z(Γ) for TΓ = T (F ) and T̂ϕ(Γ) = T̂Γ to emphasize the sym-
metry. Now [ϕ] is a character of T z(Γ) and [z] is a character of Tϕ(Γ). We pull
back the above extensions along the inclusions of A[z],[ϕ] into A[z] and A[ϕ] and
obtain the push-out diagrams

1 // T z(Γ) //

[ϕ]

��

(T ⋊A)z(Γ),[ϕ] // A[z],[ϕ] // 1

C×

and
1 // T̂ϕ(Γ) //

[z]

��

(T̂ ⋊A)ϕ(Γ),[z] // A[z],[ϕ] // 1

C×

Which lead to the extensions Ez[ϕ] and Eϕ[z] of A[z],[ϕ] by C×. The symmetry of
the situation now makes it rather natural to expect that these two extensions
are closely related.

Moving towards the opposite end on the spectrum of clarity, we are now
going to formulate a situation a bit more general then the one considered in
Subsection 8.2. We will not need this generalization in the present paper, but
will need it in a forthcoming paper in a rather different set-up.

Let T be an algebraic torus T defined over F , and A a finite group acting
on T by F -automorphisms. Let Z ⊂ T be a finite subgroup defined over F and
fixed pointwise by A. Let ϕ : WF → T̂ ⋊WF and z ∈ Z1(u → W,Z → T ).
Write ̂̄T for the complex dual group of T̄ = T/Z.

Instead of considering the split extensions T⋊A and ̂̄T⋊A, we now assume
given extensions 1→ T → T̃ → A→ 1 and 1→ ̂̄T → T̄ → A→ 1 that may or
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may not be split. Dividing out by Ẑ we obtain an extension 1→ T̂ → T → A→
1. We emphasize that no relation is assumed between T̃ and T . We assume that
after taking F -points the sequence 1 → T (F ) → T̃ (F ) → AΓ → 1 is still exact,
and after taking Γ-invariants the sequence 1 → T̂Γ → T Γ → AΓ → 1 remains
exact. Let [T̄ ]+ be the preimage of T Γ in T̄ .

Let 1 → C× → E0[ϕ] → A[ϕ] → 1 be the push-out of 1 → T (F ) → T̃ (F )[ϕ] →
A[ϕ] → 1 along [ϕ] : T (F ) → C×. Let 1 → C× → E0[z] → A[z] → 1 be the

push-out of 1→ [ ̂̄T ]+ → [T̄ ]+,[z] → A[z] → 1 along [z] : [ ̂̄T ]+ → C×.
We now consider the inner form T̃z . We have T̃z(F ) = {t̃ ∈ T̃ (F̄ )|∀σ ∈

Γ : t̃ = Ad(z̄(σ))σ(t̃)}, where again z̄ ∈ Z1(Γ, T̄ ) is the image of z, and we
are using that the conjugation action of T on T̃ factors through T̄ because Z is
pointwise fixed by A. The assumption that T̃ (F ) → AΓ is surjective implies
that T̃z(F ) → A[z] is surjective, where again A[z] is the stabilizer in A of the
class [z] ∈ H1(u→W,Z → T ). Thus we have the extension

1→ T (F )→ T̃z(F )→ A[z] → 1.

We pull back along the inclusion A[z],[ϕ] → A[z] and push out along [ϕ] :
T (F )→ C× to obtain an extension 1→ C× → Ez[ϕ] → A[z],[ϕ] → 1.

Dually we consider the centralizer Sϕ = T ϕ(WF ) of ϕ in T . Again the as-
sumption that T Γ → AΓ is surjective implies that Sϕ → A[ϕ] is surjective. Let
S+
ϕ be the preimage of Sϕ in T̄ , so that we have the extension

1→ [ ̂̄T ]+ → S+
ϕ → A[ϕ] → 1.

We pull back along the inclusionA[z],[ϕ] → A[ϕ] and push out along [z] : [ ̂̄T ]+ →
C× to obtain an extension 1→ C× → Eϕ[z] → A[z],[ϕ] → 1.

Proposition 8.2. Let E0,[z][ϕ] and E0,[ϕ][z] be the pull-backs of E0[ϕ] and E0[z] along the

inclusions of A[z],[ϕ] into A[ϕ] and A[z]. An isomorphism of extensions ζ : E0,[z][ϕ] →
E0,[ϕ][z] determines an isomorphism of extensions ξ : Ez[ϕ] → E

ϕ
[z]. If ζ is multiplied by a

character A[z],[ϕ] → C×, then ξ is multiplied by the same character.

Proof. To lighten notation, we replaceA by its subgroupA[z],[ϕ]. For each a ∈ A
choose lifts θa ∈ T̃ (F ) and τa ∈ [T̄ ]+, as well as elements ta ∈ T (F̄ ) such that
taθa ∈ T̃z(F ) and ṡa ∈ ̂̄T such that ṡaτa ∈ S+

ϕ .
The section a 7→ taθa realizes the extension Ez[ϕ] as the twisted product

C× ⊠ᾱ′ A, where α′ ∈ Z2(A, T (F )) is defined as α′(a, b) = taθatbθb(tabθab)
−1

and ᾱ′ = [ϕ] ◦ α′ ∈ Z2(A,C×). The section a 7→ ṡaτa realizes the extension
Eϕ[z] as the twisted product C× ⊠β̄′ A, where β′ ∈ Z2(A, [ ̂̄T ]+) is defined as
β′(a, b) = ṡaτaṡbτb(ṡabτab)

−1 and β̄′ = [z] ◦ β′ ∈ Z2(A,C×).
We have α′(a, b) = α(a, b) ·α0(a, b) with α(a, b) = ta · atb · t−1

ab and α0(a, b) =
θaθbθ

−1
ab . The element α0 ∈ Z2(A, T (F )) is the 2-cocycle corresponding to the
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section a 7→ θa, which then identifies E0,[z][ϕ] with C× ⊠ᾱ0
A. Analogously we

have β′(a, b) = β(a, b)β0(a, b) with β(a, b) = ṡa
aṡbṡ

−1
ab and β0(a, b) = τaτbτ

−1
ab .

The element β0 ∈ Z2(A, ̂̄T ) is the 2-cocycle corresponding to the section a 7→ τa,
which then identifies E0,[ϕ][z] with C× ⊠β̄0

A.

Let ζ : E0,[z][ϕ] → E0,[ϕ][z] be an isomorphism of extensions. The composition

C× ⊠ᾱ0
A→ E0,[z][ϕ] → E

0,[ϕ]
[z] → C× ⊠β̄0

A is given by x⊠ a 7→ xζ0(a)⊠ a, where
ζ0 : A → C× is defined as ζ0(a) = ζ(θ̄a)τ̄

−1
a and satisfies ζ0(a)ζ0(b)ζ0(ab)−1 =

ᾱ0(a, b)
−1β̄0(a, b). Here θ̄a ∈ E0,[z][ϕ] and τ̄a ∈ E0,[ϕ][z] are the images of θa and τa

respectively.
Let h : A→ C× be defined as in Subsection 8.2. We claim that

C× ⊠ᾱᾱ0
A→ C× ⊠β̄β̄0

A, x⊠ a 7→ h(a)ζ0(a)⊠ a

is an isomorphism of extensions and the composition

ξ : Ez[ϕ] → C× ⊠ᾱᾱ0
A→ C× ⊠β̄β̄0

A→ Eϕ[z]

depends only on ζ, and not on the choices of θa, τa, ta, or ṡa.
The first part of the claim is equivalent to h(a)h(b)h(ab)−1 = ᾱ(a, b)−1β̄(a, b),

which was the content of the proof of Proposition 8.1. This proof remains valid
verbatim in the current situation. For the second claim, the independence of
the choices of ta and ṡa was already addressed in the proof of Proposition 8.1.
Now say we replace θa by xaθa and τa by ẏaτa, for xa ∈ T (F ) and ẏa ∈ [ ̂̄T ]+.
Since we already have independence of ta and ṡa, we are free to replace ta by
x−1
a ta and ṡa by ẏ−1

a ṡa. This has the effect of keeping ᾱᾱ0 and β̄β̄0, as well as
the first and third arrows in the last displayed sequence, unchanged. At the
same time, h(a) is replaced by h(a)⟨[ϕ], x−1

a ⟩⟨[z], ẏa⟩, while ζ0(a) is replaced by
ζ0(a)⟨[ϕ], xa⟩⟨[z], ẏ−1

a ⟩, so the middle arrow is unchanged as well.
Finally, if ζ is replaced by δζ, then ζ0 is replaced by (δζ)0 specified by

(δζ)0(a) = (δζ)(θ̄0)τ̄
−1
a = δ(a)ζ(θ̄0)τ̄

−1
a = δ(a)ζ0(a). If follows that the iso-

morphism C× ⊠ᾱᾱ0
A → C× ⊠β̄β̄0

A is multiplied by δ, and the same is then
true for ξ.

8.4 Computing the right-hand side of (4.4)

In this section we will compute the virtual character

Θs̃ϕ :=
∑
ρ

trρ(s̃) ·Θπρ
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where ρ runs over the set Irr(π0(S̃
[z]
ϕ ), [z]). We recall from Subsections 8.1 and

8.2 that we have the following diagram

1 // T (F ) // (T (F̄ )⋊A)˜̄z(Γ) // A[z] // 1

1 // T (F ) //

[ϕ]

��

(T (F̄ )⋊A[ϕ])˜̄z(Γ) //

OO

F

��

A[z],[ϕ] //
?�

OO

1

1 // C× // Ez[ϕ] //

H

��

A[z],[ϕ] // 1

1 // C× // Eϕ[z] // A[z],[ϕ] // 1

1 // π0([ ̂̄T ]+) //

[z]

OO

π0(S̃
+
ϕ )

//

G

OO

A[z],[ϕ] // 1

We can be more explicit about the maps F , G, and H . Recall from Subsection
8.2 that we have fixed elements ta ∈ T (F̄ ) and ṡa ∈ ̂̄T such that a 7→ ta ⋊ a and
a 7→ ṡa ⋊ a are sections of the top and bottom extensions. The corresponding
2-cocycles are

α(a, b) = ta · atb · t−1
ab and β(a, b) = ṡa · aṡb · ṡ−1

ab .

and setting ᾱ = [ϕ] ◦ α and β̄ = [z] ◦ β allows us to make the identifications

Ez[ϕ] = C× ⊠ᾱ A
[ϕ],[z] and Eϕ[z] = C× ⊠β̄ A

[ϕ],[z].

The maps F , G, and H are now explicitly given by

F (t · ta⋊a) = [ϕ](t)⊠a, G(ṡ · ṡb⋊ b) = [z](s)⊠ b, H(x⊠a) = xh(a)⊠a.

We now fix t · ta ⋊ a ∈ T̃z(F ) and ṡ · ṡb ⋊ b ∈ S̃[z]
ϕ and set out to compute

Θs·sb⋊bϕ (t · ta ⋊ a).

Since this is a virtual character of (T (F̄ )⋊A)z which is induced from a virtual
character of (T (F̄ )⋊A[ϕ])z , there is no loss of generality if we assume t ·ta⋊a ∈
(T (F̄ )⋊A[ϕ])z , which simply means a ∈ A[ϕ],[z]. Then, by construction, we have

Os·sb⋊bϕ (t · ta ⋊ a) =
∑

τ∈Irr(C×⊠β̄A
[ϕ],[z],id)

χτ (G(ṡ · ṡb ⋊ b)) (8.3) {eq:os1}

· |A[ϕ],[z]|−1
∑
c∈A[z]

cac−1∈A[ϕ],[z]

χτ (HF ((tc ⋊ c)(t · ta ⋊ a)(tc ⋊ c)−1))
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where χτ denotes the character of the finite dimensional representation τ and
the second line is the Frobenius formula for the character of the representation
on T̃z(F ) induced from τ ◦HF .

We compute

(tc ⋊ c)(t · ta ⋊ a)(tc ⋊ c)−1 = ct · ζ(c, a) · tcac−1 ⋊ cac−1,

where
ζ(c, a) := ctatc

(cac)−1

t−1
c t−1

cac−1 ∈ T (F ).

With this we have

Θṡ·ṡb⋊bϕ (t·ta⋊a) = [z](ṡ)
∑
c

[ϕ](ctζ(c, a))h(cac−1)|A[ϕ],[z]|−1
∑
τ

χτ̄ (b)χτ̄ (cac
−1).

We now apply Lemma C.1 to the sum over τ and conclude that if cac−1 is not
conjugate to b−1 then the corresponding summand is zero. It is more conve-
nient to apply this information not to the expression we just obtained, but to
the original expression we started with, namely (8.3). This allows us rewrite
that expression as

|A[ϕ],[z]|−1||ZA[ϕ],[z](b−1)|−1
∑
τ

χτ (G(ṡ · ṡb ⋊ b))∑
y∈A[ϕ],[z]

c∈A[z]

cac−1=yb−1y−1

χτ (HF ((tc ⋊ c)(t · ta ⋊ a)(tc ⋊ c)−1))

and making the substitution c 7→ yc this equals

|A[ϕ],[z]|−1||ZA[ϕ],[z](b−1)|−1
∑
τ

χτ (G(ṡ · ṡb ⋊ b))∑
y∈A[ϕ],[z]

c∈A[z]

cac−1=b−1

χτ (HF ((tyc ⋊ yc)(t · ta ⋊ a)(tyc ⋊ yc)−1))

Since the images of tc ⋊ c ∈ T̃z(F ) and tyc ⋊ yc ∈ T̃z(F ) in the quotient

(T (F̄ )⋊A[ϕ])z \ (T (F̄ )⋊A)z ∼= A[ϕ],[z] \A[z]

are equal, the character of τ ◦HF will remain unchanged if we replace yc by y.
Doing this leads to the expression

Θṡ·ṡb⋊bϕ (t · ta ⋊ a) = |ZA[ϕ],[z](b−1)|−1
∑
τ

χτ (G(ṡ · ṡb ⋊ b))∑
c∈A[z]

cac−1=b−1

χτ (HF ((tc ⋊ c)(t · ta ⋊ a)(tc ⋊ c)−1)).
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The same analysis as for (8.3) now leads to

Θṡ·ṡb⋊bϕ (t·ta⋊a) = [z](ṡ)
∑
c

[ϕ](ctζ(c, a))h(cac−1)|ZA[ϕ],[z](b−1)|−1
∑
τ

χτ̄ (b)χτ̄ (cac
−1).

Since now cac−1 = b−1 we can apply Lemma C.1 and, recalling the definition
of h(b) from Subsection 8.2, we obtain

Θṡ·ṡb⋊bϕ (t · ta ⋊ a) = [z](ṡ)h(b−1)β̄(b, b−1)
∑
c

[ϕ](ctζ(c, a))

= [z](ṡ)h(b)−1ᾱ(b, b−1)
∑
c

[ϕ](ctζ(c, a))

= [z](ṡ)
〈
(z−1, tb−1), (ϕ−1, ṡb)

〉−1∑
c

[ϕ](ctζ(c, a))

8.5 Computing the left-hand side of (4.4)

We will now compute the lift to T̃z(F ) of the virtual character SΘϕe . Recall
that we have fixed an element ˙̃s = ṡ · ṡb⋊ b ∈ S̃[z]

ϕ and e is the endoscopic triple
for the twisted group (G, b−1) corresponding to s̃ and ϕ and augmented by a
choice of an L-embedding ξe : LGe → LG whose image contains the image
of ϕ. In our special case of G = T , we have Ge = Tb−1 and we can choose
ξe : [T̂ ]b,◦ ⋊WF → T̂ ⋊WF to be given by (t, w) 7→ t · ϕ(w). With this choice,
ϕe(w) = 1⋊ w and hence SΘϕe is the trivial character of Tb−1(F ). On the other
hand, the function f ė from Lemma 4.6 is given by

f ė(γe) =
∑

δ̃∈T̃z(F )/T̃z(F )−conj

∆(γe, δ̃)

∫
x̃∈T̃z(F )/T̃z(F )δ̃

f(x̃δ̃x̃−1)dx̃

=
∑

δ̃∈T̃z(F )/Tz(F )−conj

∆(γe, δ̃)

∫
x∈Tz(F )/Tz(F )δ̃

f(x̃δ̃x̃−1)dx̃,

where ∆ is the transfer factor determined by ė and the fixed L-embedding
(there is no Whittaker datum since we are dealing with tori). Thus the lift
of SΘϕe evaluated at f is equal to∫

γ∈Tb−1 (F )

f ė(γ)dγ

=

∫
γ

∑
δ̃∈T̃z(F )/Tz(F )−conj

∆(γ, δ̃)

∫
x̃∈Tz(F )/Tz(F )δ

f(x̃δ̃x̃−1)dx̃

=

∫
γ

∑
δ̃∈T̃z(F )/Tz(F )−conj

∑
c∈T̃z(F )/Tz(F )

∆KS(γ, cδ̃c
−1)

∫
x̃∈Tz(F )/Tz(F )δ̃

f(x̃δ̃x̃−1)dx̃
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Recall that ∆KS is supported in the variable δ̃ on the coset (G ⋊ b−1)z(F ). We
obtain

=

∫
γ

∑
a∈A[z]

∑
δ̃∈[T⋊a]z(F )/Tz(F )−conj

∑
c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(γ, cδ̃c
−1)

∫
x̃∈Tz(F )/Tz(F )δ̃

f(x̃δ̃x̃−1)dx̃

We interchange the integral over γ with the sums over a and c. Moreover, as γ
runs over Tb−1(F ), c−1γc runs over Ta(F ). We make the substitution γ 7→ c−1γc
and arrive at

=
∑
a∈A[z]

∫
γ∈Ta(F )

∑
δ̃∈[T⋊a]z(F )/Tz(F )−conj

∑
c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(cγc
−1, cδ̃c−1)

∫
x̃∈Tz(F )/Tz(F )δ̃

f(x̃δ̃x̃−1)dx̃

Now ∆KS(γ, δ̃), in our special case of tori, is non-zero if and only if δ̃ = δ⋊ b−1

and the image of δ in Tb(F ) equals γ. Thus the function

Φ(δ̃) =
∑

c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(cγc
−1, cδ̃c−1)

depends only on δ̃, as γ can be recovered from δ̃. We arrive at the formula∑
a∈A[z]

∫
γ∈Ta(F )

∑
δ̃∈[T⋊a]z(F )/Tz(F )−conj

δ 7→γ

Φ(δ̃)

∫
x̃∈Tz(F )/Tz(F )δ

f(x̃δx̃−1)dx̃

Since Φ(δ̃) is conjugation-invariant under Tz(F ), we obtain∑
a∈A[z]

∫
γ∈Ta(F )

∑
δ̃∈[T⋊a]z(F )/Tz(F )−conj

δ 7→γ

∫
x̃∈Tz(F )/Tz(F )δ

Φ(x̃δ̃x̃−1)f(x̃δ̃x̃−1)dx̃

A simple integration formula now shows that this is equal to∫
δ̃∈T̃z(F )

Φ(δ̃)f(δ̃).
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We conclude that the lift of SΘϕe to T̃z(F ) is represented by the function Φ. We
have

Φ(t · ta ⋊ a) =
∑

c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(cγc
−1, c(t · ta ⋊ a)c−1)

=
∑

c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(cγc
−1, (tc ⋊ c)(t · ta ⋊ a)(tc ⋊ c)−1)

=
∑

c∈T̃z(F )/Tz(F )

cac−1=b−1

∆KS(cγc
−1, ctζ(c, a)tcac−1 ⋊ cac−1)

=
∑
c∈A[z]

cac−1=b−1

⟨(z−1, ctζ(c, a)tb−1), (ϕ−1
0 , ṡṡb)⟩−1

= ⟨(z−1, tb−1), (ϕ−1
0 , ṡṡb)⟩−1

∑
c∈A[z]

cac−1=b−1

[ϕ](ctζ(c, a)).

The final expression is equal to the formula for Θṡ·ṡb⋊bϕ (t · ta ⋊ a) obtained in
the previous section. The proof of Conjecture 4.7 in the case of tori is now
complete.

Appendix

A FUNCTORIALITY OF THE LOCAL CORRESPONDENCE FOR CONNECTED
GROUPS

{app:func}
Let ϕ : LF → LG be a tempered Langlands parameter. As in [Kal16b, §5.4] and
[Kal18, §4.1] we expect to have a compound L-packet Πϕ and a commutative
diagram

Πϕ //

��

Irr(S+
ϕ )

��

H1(u→W,Z(G)→ G) // π0(Z( ̂̄G)+)∗
Recall here that Πϕ is a subset of the set Πtemp of tempered representations of
rigid inner twists, that consists of tuples (Gz, ξ, z, π), where ξ : G → Gz is an
inner twist, z ∈ Z1(u→W,Z(G)→ G) is such that ξ−1σ(ξ) = Ad(z̄(σ)), where
z̄ ∈ Z1(Γ, Gad) is the image of z under the natural projection G → Gad, and π
is an irreducible tempered representation of Gz(F ).

The group A acts on Z1(u → W,Z(G) → G) by a(z)(w) = a(z(w)). Given
rigid inner twists (ξi, zi) : G → Gi for i = 1, 2 and a ∈ A such that z2 = a(z1)
one checks that the isomorphism b := ξ2 ◦ a ◦ ξ−1

1 : G1 → G2 is defined over

85



F . More generally, if a(z1) and z2 are cohomologous and one chooses h ∈ G
with z(w) = h−1a(z(w))σw(h), then b := ξ2 ◦Ad(h) ◦ a ◦ ξ−1 is defined over F .
A different choice of h will change b only by an inner automorphism coming
from G1(F ).

Seen from a slightly different perspective, this can be formulated as an ac-
tion of A on the category of rigid inner twists of G, namely a(ξ, z) = (ξ ◦
a−1, a(z)). This action can be upgraded to an action of A on the set Πtemp by
a(Gz, ξ, z, π) = (Gz, ξ ◦ a−1, a(z), π).

Consider now the dual side. Given a tempered Langlands parameter ϕ :
LF → LG and ρ ∈ Irr(S+

ϕ ) we obtain aϕ := a◦ϕ : LF → LG and aρ := ρ◦a−1 ∈
Irr(S+

aϕ). Thus A acts on the space of refined Langlands parameters.
It is reasonable to expect that the above commutative diagram is natural

with respect to this action. More precisely:
{cnj:func}

Conjecture A.1. If π̇ ∈ Πtemp corresponds to (ϕ, ρ), then aπ̇ corresponds to (aϕ, aρ).
Formulated equivalently, if (G1, ξ1, z1, π1) and (G2, ξ2, z2, π2) correspnd to (ϕ, ρ)
and (aϕ, aρ) respectively, then the isomorphism b : G1 → G2 constructed above
identifies π1 with π2.

In the special case of a rigid inner twist (Gz, ξ, z) for which the cohomology
class of z is fixed by a, in particular in the case z = 1 where Gz = G, this
amounts to a compatibility with automorphims of the refined local Langlands
correspondence for the group Gz . However, the above statement applies even
to inner forms of G which do not admit a as an automorphism defined over F .

B AUTOMORPHISMS OF WEIL-RESTRICTED GROUPS
{app:weil}

Let E/F be a finite extension, ∆ = Gal(F̄/E) ⊂ Γ = Gal(F̄/F ). Let G be an
absolutely simple connected reductive E-group. Let a be an automorphism of
H = ResE/FG. Recall the natural identification H(F̄ ) = IndΓ

∆G(F̄ ). For every
σ ∈ Γ let σE be the subfield σ(E) of F̄ and let Gσ be the σE-group obtained by
twisting the rational structure, i.e. Gσ = G ×Spec(E) Spec(σE), where we have
used the map σ : E → σE.

{lem:weilauto}
Lemma B.1. There exists σ0 ∈ NΓ(∆) and an isomorphism a′ : G→ Gσ0 such that

a(f)(σ) = a′(f(σ−1
0 σ)), ∀f ∈ H(F̄ ) = IndΓ∆G(F̄ ), ∀σ ∈ Γ.

The ∆-coset of σ0 is unique and a′ is uniquely determined by the choice of σ0 within
its ∆-coset. If σ0 is replaced by τσ0 with τ ∈ ∆ then a′ is replaced by τ ◦ a′.

Proof. Choose a set of representatives σ1, . . . , σn for ∆ \ Γ and arrange σ1 =
1. Then f 7→ (f(σ1), . . . , f(σn)) is an isomorphism H(F̄ ) →

∏n
i=1G(F̄ ) of

algebraic groups. It translates the automorphism a to an automorphism of∏n
i=1G(F̄ ). Such an automorphism must map each factor in the product to

another factor. In this way we obtain a permutation p of the set ∆ \ Γ which
has the property that if f ∈ H(F̄ ) is a function supported on the coset ∆σ, then
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a(f) is a function supported on the coset ∆p(σ). Since a is an F -automorphism,
the permutation p is Γ-equivariant, i.e. p(σγ) = p(σ)γ. It follows that there
exists σ0 ∈ NΓ(∆) such that p(γ) = σ0γ, and the ∆-coset of σ0 is unique.

Given g ∈ G(F̄ ) and σ ∈ Γ let gδσ ∈ H(F̄ ) be the unique function sup-
ported on ∆σ and with value g at σ. Define the F̄ -automorphism a′ of G
by a′(g) = a(gδ1)(σ0). One checks immediately that a′(τg) = σ0τσ

−1
0 a′(g),

so that a′ is in fact an isomorphism of E-groups G → Gσ0 . The equality
a(f)(σ) = a′(f(σ−1

0 σ)) can be checked on functions f of the form gδγ for ar-
bitrary g ∈ G(F̄ ) and γ ∈ Γ. We compute that a(gδγ )(σ) equals

a(γ−1(gδ1))(σ) = a(gδ1)(σγ−1) = σγ−1σ−1
0 a′(g) = a′(σ−1

0 γ−1σg) = a′(gδγ (σ−1
0 σ)),

provided σ−1
0 γ−1σ ∈ ∆, and that a(gδγ ) = 1 = a′(gδγ (σ−1

0 σ)) otherwise.

C ORTHOGONALITY RELATIONS FOR PROJECTIVE CHARACTERS

{app:projchar}
We have now constructed the bijection (8.1). Our next goal is to show that with
this bijection the character identities (4.4) hold. In this section we will prove a
lemma that will be needed for the evaluation of the right hand side of (4.4). It
is a refinement of the orthogonality relation

∑
τ∈Irr(A)

χτ (a)χτ (b) =

{
|ZA(a)|, b ∈ CA(a)
0, else

for the characters of the irreducible representations of a finite group A. Here
ZA(a) and CA(a) are the centralizer and the conjugacy class of a in A.

The refinement we need is the following. Consider a central extension

1→ Z → E → A→ 1.

We assume that A is finite. For e ∈ E we will write ē for its image in A. Let
ψ : Z → C× be a character, and let Irr(E,ψ) be the set of all irreducible rep-
resentations of E whose central character restricted to Z equals ψ. This is a
finite set and each element of it is finite dimensional. For each τ ∈ Irr(E,ψ)
its character χτ is a class function on E that satisfies χτ (ze) = ψ(z)χτ (e). This
implies that if the images of e, e′ ∈ E inA commute, so that ee′e−1e′−1 ∈ Z, but
ψ(ee′e−1e′−1) ̸= 1, then χτ (e′) = 0. We will say that e′ ∈ E is ψ-centralizing, if
for all e ∈ E such that ee′e−1e′−1 ∈ Z we have ψ(ee′e−1e′−1) = 1. Note that the
notion if being ψ-centralizing is invariant under conjugation as well as under
translation by Z. The refinement of the orthogonality relations we need is the
following.

{lem:orth}
Lemma C.1. Assume that e ∈ E is ψ-centralizing. Then

∑
τ∈Irr(E,ψ)

χτ (e)χτ (e
′) =

{
|ZA(e)|ψ(ee′), ee′ ∈ Z
0, ē−1 /∈ CA(ē′)
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Proof. We will make use of the character theory of projective representations of
finite groups, for an exposition of which we refer the reader to [Che]. We first
form the push-out

1 // Z //

ψ

��

E //

��

A // 1

1 // C× // Eψ // A // 1

Inflation provides a bijection Irr(Eψ, id) ∼= Irr(E,ψ) that preserves characters.
Moreover, e′ ∈ E is ψ-centralizing if and only if its image in Eψ is id-cen-
tralizing. This reduces the problem to Z = C× and ψ = id. Next we fix a
set-theoretic splitting s : A → E such that all values of the corresponding 2-
cocycle α(a, b) = s(a)s(b)s(ab)−1 are complex roots of unity, see [Che, Lemma
3.1]. For each τ ∈ Irr(Eψ, id) set τ̄ = τ ◦ s. Then τ̄ is a projective representation
of A with cocycle α and the map τ 7→ τ ◦ s is a bijection between Irr(Eψ, id)
and the isomorphism classes of projective representations of A with cocycle
α. Let f be the α-class function [Che, Definition 3.13] on A supported on the
A-conjugacy class of ē−1 and having the property with f(ē−1) = 1. This class
function exists because ē−1 is an α-element. According to [Che, Theorem 3.15],
we have

f =
∑
τ̄

⟨f, χτ̄ ⟩χτ̄ .

Since both f and χτ̄ are α-class functions and α is unitary, the product f · χτ̄ is
a 1-class function (i.e. an honest class function) and one sees

⟨f, χτ̄ ⟩ = |A|−1
∑
a∈A

f(a)χτ̄ (a) = |ZA(ē−1)|−1χτ̄ (ē−1).

We thus obtain
|ZA(ē)|f(ē′) =

∑
τ

χτ̄ (ē−1)χτ̄ (ē
′)

and then further∑
τ

χτ (e)χτ (e
′) =

∑
τ

tr(τ(e−1)−1)tr(τ(e′))

=
∑
τ

tr((ze−1 τ̄(ē−1))−1)tr(τ(e′))

= z−1
e−1ze′

∑
τ

χτ̄ (ē−1)χτ̄ (ē
′)

= ee′
∑
τ

χτ̄ (ē−1)χτ̄ (ē
′)

= ee′|ZA(ē)|f(ē′)

We have used in this computation that the projective representation τ̄ is unita-
rizable, which is a consequence of our choice of s. The lemma follows.
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