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Abstract

We extend the local Langlands conjectures to a certain class of discon-
nected groups, allowing non-abelian component groups, and recast in this
language some aspects of twisted endoscopy. We further introduce nor-
malized twisted transfer factors and a normalized correspondence between
an L-packet for a disconnected group and the set of representations of the
centralizer groups of its Langlands parameter.

1 INTRODUCTION

Let I be a local field of characteristic zero. The goal of this paper is to extend
the refined local Langlands conjecture to the case of disconnected groups. We
recall briefly the statement of this conjecture, referring to [Kall6a] for details.
Given a connected reductive F-group G’ there should be a bijection between
the set of (equivalence classes of) Langlands parameters ¢ : Lp — “G’ and the
set of L-packets II,(G’). An L-packet is a finite set of irreducible admissible
representations of G'(F). It is empty if and only if ¢ is non-relevant for G’. The
L-packets are disjoint and exhaust the set of isomorphism classes of irreducible
admissible representations of G'(F). To enumerate the constituents of II,(G")
one fixes an inner twisting £ : G — G’ with G quasi-split and enriches it to a
rigid inner form datum (&, z). One further fixes a Whittaker datum to for G.
The inner twisting provides an identification of dual groups G’ = G and of
L-groups “G’ = “G. Let Z C G be a finite central subgroup that is sufficiently
large to realize z. Let G = G/Z. The natural quotient map G' — G is an

1soger1y Let G — G be the dual isogeny and let Z(G )+ be the preimage of

Z(G)T. The element z provides a character [z] : 7o (Z (G) ) = C*. When Fis
p-adic the character [z] determines the equivalence class of the rigid inner twist
(G',&, z) uniquely. When F' = R multiple equivalence classes of rigid inner
twists may lead to the same character [z], and they are related by H'(R, G..).
Let S, C G be the centralizer of the image of ¢ and let S} be its preimage

in G. Let Irr(mo (S ), [2]) be the set of isomorphism classes of those irreducible

representations of the finite group (S} ) whose restriction to mo(Z(G) 1) is [2]-
isotypic. There should be a map IT,(G’) — Irr(mo(S7 ), [2]). In the p-adic case it
should be bijective. In the case F' = R the map should become bijective if one
replaces I, (G’) with the disjoint union over all rigid inner twists giving rise to
the same character [z]. In all cases, this map depends on the choice of tv and the
rigid inner twist data. That same data provides a normalization Al¢, 3, w, (, 2)]
of the Langlands—Shelstad transfer factor for each refined endoscopic datum ¢
for G and z-pair ; for it. The map I1,(G") — Irr(mo(S}), [2]) is expected to
satisfy the endoscopic character identites with respect to this normalization



of the transfer factor when the parameter ¢ is tempered. More precisely, if
T — pr is the above map, then a semi-simple element § € S} leads to the

virtual character ©F, = 37 (g trpr(5)Or of G'(F). At the same time the

connected centralizer H of the image s € G of § and the parameter ¢ lead to
a quasi-split group H and a parameter ¢* for its cover H? that is part of the
z-pair, hence to a similar virtual character S©,; = Zﬂjenw (#rs) diM Pz O s
on H3(F'). The transfer factor Afe, 3,w, (§, z)] gives rise to a correspondence of
functions f «+ f? between functions on G’(F) and functions of H?(F) and the
expected character identity is ©F,(f) = SO, (f?). A suitable generalization is
supposed to hold in the non-tempered case once ¢ has been replaced by an
Arthur parameter. We note here that we have absorbed the Kottwitz sign e(G’)
into the transfer factor, rather than into the virtual character @fo.

In this paper we extend these conjectures to certain disconnected algebraic
groups whose identity component is reductive. Motivation for this comes on
the one hand from the natural occurrence of disconnected groups in number
theoretic contexts, most notably the orthogonal groups, and on the other hand
from the natural occurrence of disconnected groups in representation theoretic
contexts, for example by taking centralizers of semi-simple elements. In fact,
disconnected groups appear in the classification of tempered representations
of connected reductive groups. If M’ is a Levi subgroup of the connected re-
ductive group G’ and o is a square-integrable representation of M’(F'), the
subgroup of G'(F) that normalizes M’ and stabilizes the isomorphism class
of o plays an important role in the decomposition into irreducible pieces of
the parabolic induction of ¢. In order to properly normalize the intertwining
operators needed to decompose this parabolic induction one is led to study
the representation theory of disconnected groups of this form. This leads to a
normalized version of Arthur’s local intertwining relation [Art89, §7], [Art13,
§2.4]. We will present this in a forthcoming paper as an application of the re-
sults of the current paper.

The class of disconnected groups we consider in this paper are those affine
algebraic F-groups G’ whose identity component G’ is reductive, and for which
there exists an isomorphism G’ = G’ x A over the algebraic closure F' of F,
where A is a finite (possibly non-abelian) group of automorphisms of G’ that
preserves a F-pinning. The second condition is automatically fulfilled if G’ is
adjoint, but in general it does restrict the class of disconnected groups we are
considering. The possible forms of such groups G’ can be classified cohomo-
logically in a manner similar to the connected case. In the connected case the
classification has two steps — one first classifies quasi-split groups by means of
based root data, and then inner forms in terms of Galois cohomology. In the
disconnected case the classification has three steps — one first classifies quasi-
split disconnected groups, then inner forms, and then (what we have called)
“translation forms”. A quasi-split disconnected group is of the form G x A,
where G is a quasi-split connected reductive F-group, and A is a subgroup of
its automorphism group that fixes an F-pinning. One sees easily that we may
assume without loss of generality that A is a constant group scheme. Then we



have [G x A|(F) = G(F) x A. An inner form of G x A is obtained by twisting
via elements of Z!(F, G/Z(G)#). A translation form is obtained by twisting via
elements of Z!(F, Z1(A, Z(G))). These two twisting steps can be performed in
either order. While in the quasi-split case the split exact sequence

1-G—-GxA—-A—1

remains exact on F-points and retains a canonical splitting, after inner twisting
or translational twisting neither of these statements is true in general. More
precisely, given z € Z'(F,G/Z(G)*) there is a natural subgroup A¥l C A so
that if G is the corresponding inner form of the quasi-split group G' = G x 4,
then the sequence

1= G:(F) = Gz(F) —» AF =1

is exact, but it is not equipped with a natural splitting even if it is split. A sim-
ilar remark applies to translation forms. In this paper we extend the formula-
tion of the refined local Langlands correspondence to inner forms of quasi-split
disconnected groups, leaving the treatment of translation forms, as well as the
removal of the condition (G") 7 = (G’ x A) 5, to a future paper.

There are multiple questions one must answer when attempting to extend
the Langlands conjectures to the disconnected setting: What will be the dual
group, or the L-group, of a disconnected group? What will be the concept of
a Langlands parameter and of its centralizer? What are endoscopic groups?
What are transfer factors and how does one normalize them?

We hasten to say that we do not perform any non-trivial harmonic analysis
in this paper. Instead, we use the already established framework of twisted en-
doscopy and the fundamental results of Langlands, Shelstad, Kottwitz, Arthur,
Waldspurger, and Ngo. Part of this paper consists of introducing a slightly
different language for this theory. We hope that this language will be benefi-
cial for some applications. One advantage it provides is that the statements of
the conjectures for disconnected groups become formally very similar to the
statements for connected groups. Another advantage it provides is in organiz-
ing multiple automorphisms of a connected reductive group. We note further
that our language does not encompass the full generality of twisted endoscopy,
even if we restirct attention to a cyclic component group. Indeed, we do not
consider a character w : G(F') — C*, and the automorphisms of G> we obtain
from elements of G>(F) are not as general as the theory of twisted endoscopy
allows.

With this in mind, the answers we give to the above questions are the fol-
lowing. Consider a quasi-split disconnected reductive group G = G x A and an
inner form G'; corresponding to an element z € Z'(F,G/Z(G)"). The groups
G and G will have the same set of Langlands parameters, and this is the set
of Langlands parameters for the connected group G (and its inner form G3x).
Thus, the notion of Langlands parameters remains unchanged when we pass
from the connected group G to the disconnected group G. What changes is
the notion of equivalence. Two parameters for G5 are considered equivalent if



they are conjugate under G. We declare two parameters for Gi; to be equivalent
if they are conjugate under G x APFl. Note that the notion of equivalence de-
pends on the inner form Z being considered, in contrast to the case of connected
groups.

The new notion of equivalence leads to a new notion of the centralizer
group S, of a Langlands parameter ¢ : Ly — “G. Indeed, S, can be viewed
as the group of self-equivalences of . In the disconnected case we now obtain

55 I'as the group of self-equivalences of ¢ in the new sense of equivalence. In

other words, S‘f Vis the centralizer of ¢ in the group G x APFl. We obtain the
exact sequence
1 8, — SE — AlLE

where Al#LE] = AlPl 0 AlF] s the stabilizer in A of the G-conjugacy class of .

Let I1,(G) denote the set of irreducible admissible representations of G- (F)
whose restriction to G (F) intersects IT,,(G). We think of IT,(G>) as the L-
packet for the disconnected group G(F) associated to the parameter ¢. To
enumerate its members, choose a lift z € Z'(u — W,Z — G) of z, where
Z C Z(G)4 is a sufficiently large finite subgroup, thereby realizing G as a
rigid inner form of G. The stabilizer Al*l of the cohomology class of z for the
action of A equals AFl. Choose an A-invariant Whittaker datum for G. As

above we obtain from z a character [2] : mo(Z(G)t) — C*. Let S = be the

preimage of S‘S[f Vin G x Al%). This group surjects onto Al¥l*] and we have the
exact sequence
1 8F — Sl — AlellEl

Then there should be a map
Iy (Gz) — Irr(mo (SF1), [2]),

which is again bijective in the p-adic case, and becomes bijective in the real case
once its target has been replaced by a suitable disjoint union. As in the con-
nected case, this map should lead to character identities with respect to a nor-
malized transfer factor Af¢, 3, v, (£, z)]. More precisely, a semi-simple element
§ € S} leads to the virtual character ©3, = D rer, (Gs) trps(5)0z of G+ (F).

The connected centralizer H of the image 5 € G’ x A of 5 and the parameter ¢
lead to a quasi-split connected reductive group H and a parameter ¢? for its
cover H?, hence to a similar virtual character S©,; =) _, e, (#rs) AiMPzs O
on H3(F'). The transfer factor Af¢, 3,w, (£, z)] gives rise to a correspondence of
functions f « f3 between functions on G (F) and functions of H?(F) and the
expected character identity is ©F(f) = SO, (f?). Note the strong similarity
with the connected case.

The normalization of the transfer factor is one of the main tasks of this
paper. The relative transfer factor for twisted endoscopy was introduced in
[KS99] and some adjustments were later made in [KS]. It is a function that



assigns a complex number to two pairs of elements (v, d), where + is a suffi-
ciently regular semi-simple element of H3(F), and 4 is a strongly regular semi-
simple element of Gz (F) that lies in a fixed coset determined by the image of
5in A. If one fixes arbitrarily a pair (7,4), then one obtains from this a func-
tion of just one such pair, called an absolute transfer factor. But the arbitrary
choice means that this function is well-defined only up to multiplication by a
non-zero complex scalar. A specific normalization useful for applications was
given in [KS99, §5.3] for quasi-split twisted groups. In this paper we provide
a normalization for all (rigid) inner forms of quasi-split twisted groups. We
call this factor Axgs. By a simple averaging procedure we obtain from it the
transfer factor Af¢, 3, w, (£, z)] used in the above paragraph, which may now be
supported on multiple cosets of G (F) in G (F).

The normalization of A i g involves two ingredients. The first is a definition
of an absolute term A%SY that replaces the relative term Aj;; constructed in
[KS99, §4.4]. The construction we offer here is shorter and simpler than the one
of loc. cit. for two reasons. First, our setting ensures that the class z of [KS99,
Lemma 3.1.A(3)] is trivial. This implies that the transfer of twisted classes be-
tween the twisted group and its quasi-split form is defined over F, and that
the rational structure of the endoscopic group H does not need a shift. Second,
we define an absolute invariant inv (43, §) that measures the relative position of
a related pair (43, 4), thus avoiding the complications caused by dealing with
two related pairs simultaneously. The construction of the invariant involves
a blend of the techniques from [KS99] and [Kall6b], and an interpretation of
conjugacy classes in inner form of disconnected groups in terms of a certain
non-abelian cohomology set H' (F, G = G). The second ingredient of Ay g isa
generalization of the Kottwitz sign e¢(G’) defined in [Kot83] to the case of inner
forms of twisted groups, or equivalently to cosets of inner forms of quasi-split
disconnected reductive groups.

Besides stating the conjectures, we prove a number of reduction results in
this paper. We show how the conjectures for disconnected groups can be re-
duced to the conjectures for connected groups, a conjecture on the compati-
bility of the conjectures for connected groups with automorphisms, and a cer-
tain amplification of the endoscopic character identity conjecture in twisted en-
doscopy. We also discuss various functorial constructions, such as restriction
and induction of component groups.

Finally, we prove our conjectures in the special case when the identity com-
ponent is a torus. In this case, the representation theory of the identity compo-
nent essentially disappears and one can clearly see the additional information
present in the consideration of disconnectedness. The core of the proof consists
of showing that two group extensions, produced from the same data but on in
terms of G and the other in terms of G, are canonically isomorphic. To illustrate
the point let us discuss the case of pure inner forms. Consider a torus 7" and a
finite group of F-automorphisms A. Then T = T x A is a quasi-split discon-
nected group in our sense. Let z € Z'(F,T) and let T, be the corresponding
pure inner form. Of course the identity components of T and 7, are canoni-



cally identified, but the disconnected groups T'(F) = T(F) x A and T, (F) are
not. Let ¢ : Wrp — LT be a Langlands parameter and let § : T(F) — C* be
the corresponding character. Let Al¥l::] be the subgroup of A that fixes both
the f—conjugacy class of ¢ and the cohomology class of z. Simple arguments
reduce the problem to the case A = Al¥}[2l. The L-packet I1,,(7}) consists of
the irreducible representations of (the usually non-abelian) group 7', (F') whose
restriction to T'(F) is f-isotypic. The set Irr(S,,, [2]) consists of the irreducible
representations of 5@ whose restriction to 7T is [z]-isotypic (note we do not
need the covers 5‘:; and [IAf“]Jr since we are using a pure inner form). Therefore
we are led to consider the following two push-out diagrams

1 T(F) T,.(F) A 1
ie
(CX
and
1 " S, A 1
l[Z]
(CX

Both push-outs are central extensions of A by C*. The id-isotypic irreducible

representations of the first extension are in canonical bijection with II,(T}),
while those of the second extension are in canonical bijection with Trr(S,, [2]).
The conjecture about the internal structure of L-packets requires us to show
that these two extensions are canonically isomorphic. There appears to be no a-
priori reason why these extensions should even be isomorphic, let alone canon-
ically. But we are able to produce a canonical isomorphism. We then continue
to show that this isomorphism satisfies the endoscopic character identities with
respect to the normalized transfer factor.

We now describe the contents of the paper. In §3 we discuss basic results
about disconnected groups, such as the classification of their forms in §3.1,
focusing on inner forms in §3.2. In §3.3 we recall facts about twisted conjugacy
classes and norms from [KS99] and adapt them to our present language. In §3.4
we discuss Whittaker data invariant under A. In §3.5 we extend the definition
of the Kottwitz sign e(G’) of a connected reductive group to inner forms of
quasi-split twisted groups.

The next two sections — §4 and §5 — contain the statments of the refined local
Langlands conjecture in the settings of pure respectively rigid inner forms. We
have decided to present these cases separately, rather than only dealing with
the general case of rigid inner forms, because we feel that the setting of pure
inner forms illustrates more clearly the ideas behind conjugacy classes, rela-
tive positions, and invaraints, as well as the structure of the conjecture. The
more general case of rigid inner forms follows the same structure and ideas,



but combines them with a technical cohomological discussion. In §4 we first
discuss the concept of rational conjugacy classes across pure inner forms, their
norms, and the associated invariants. These are based on the non-abelian co-
homology set H'(F,G = G). The constructions are ultimately the same as
those of [KS99], but our language is slightly different and our situation is more
specialized, which makes the arguments simpler and shorter. For this reason
we have given them in full detail in the hope that this would be helpful to the
reader. In §4.6 we state the first part of the refined local Langlands conjecture —
the correspondence between parameters and packets and the internal structure
of packets. We then recall the notion of twisted endoscopic data from [KS99].
Our definitions are in fact slightly different, both for data and for their isomor-
phisms. This difference is very mild; it ensures that absolute transfer factors
are invariant under isomorphisms. We then turn to the normalization of trans-
fer factors in the setting of pure inner forms. In §4.9 we explain how the factor
Alé, 3,10, (£, 2)] is related to the twisted factor Ak g. The normalization of Ak g
is done in §4.10 and §4.11. We have again split the exposition in the hope that
this will make the construction most transparent, by first treating the less tech-
nical set-up when a z-pair is not needed, and then the more general case when
it is. In §4.12 we summarize the fundamental results of Langlands, Shelstad,
Kottwitz, Arthur, Waldspurger, and Ngo, on endoscopic transfer of functions.
These results allow us to state the second part of the refined local Langlands
conjecture — the character identities — in §4.13.

The treatment of rigid inner forms in §5 requires the blending of the hyper-
cohomology techniques of [KS99, A.3] and the Galois gerbes of [Kal16b]. This
is done in the first two subsections. We the rest of the section consists of slight
generalizations of material of §4, and we allow ourselves to be more brief. The
refined local Langlands conjecture for rigid inner forms is stated in §5.6.

In §6 we discuss how the parameterization of the internal structure of L-
packets depends on the choice of Whittaker datum. This is the disconnected
analog of the corresponding results from [Kall3].

In §4.4 we discuss how the conjectures change when we change the compo-
nent group of the disconnected group. The simplest possible change is passing
to a subgroup of the component group. It is discussed in §7.1. In §7.2 we dis-
cuss how the conjectures for disconnected groups can be related to those for
connected groups and twisted endoscopy. This clarifies the information that
the disconnected case caries beyond the connected case and the twisted case.
There is an operation dual to restriction, which may be called induction. If G
is a connected reductive group on which a finite group of automorphisms A
operates, and B is a group containing A, one can form the connected reduc-
tive group H = Ind’G, on which B operates. We discuss in §7.5 how the
conjectures for inner forms of G' x A imply those for inner forms of H x B.
The discussion here is elementary, but unfortunately rather long and technical.
We have included it because the process of induction appears quite often in
applications.

In §8 we prove the conjectures made here in the special case of tori. We close



the paper is three short appendices. In §A we formulate a conjecture about
the compatibility of the refined local Langlands correspondence for connected
groups with automorphisms. This conjecture is undoubtedly well-known to
experts, but we have not been able to locate a reference. In §B we discuss au-
tomorphisms of reductive groups that arise via Weil-restriction. In §C we re-
view orthogonality relations for irreducible projective representations of finite
groups.
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2 NOTATION

Throughout the paper, F' will denote a local field of characteristic zero, I' the
absolute Galois group with respect to a fixed algebraic closure F' of F', and Wr
the Weil group. We will write Z(T", G) for the set of continuous 1-cocycles of I
valued in the discrete group G(F), H*(T, G) for the set of cohomology classes
of such cocycles, Z!(I', G) for the set of continuous sections 7 : I' — G(F) x T
of the natural projection, and H'(T, G) for the set of G(F)-conjugacy classes of
such sections. The assignment z — Z defined by Z(0) = z(o) x o is a bijection
ZNT',G) — ZXT',G) that descends to a bijection H'(T',G) — H'(T,G). We
will switch freely in the notation between Z and 2.

Given an automorphism a of G'and § € G we have the element § = § x a €
G % a C G x (a). The assignment § — § translates the action of G on G x a
by conjugation to the action of G on itself by a-twisted conjugation. When a is
understood from the context, we will switch freely between § and 4.



3 DISCONNECTED GROUPS

3.1 Split disconnected groups and their forms

Let F be a local field of characteristic zero. We denote by Wy the Weil group
of F and by I' the absolute Galois Gal(F/F). In this paper we will study affine
algebraic groups defined over F' whose connected component is reductive. We
will call such groups “disconnected reductive” for short. We will however
restrict our attention to those disconnected reductive groups G that satisfy the
following condition:

Condition 3.1. There exists an isomorphism defined over F'
G—GxA

where G is a connected reductive group, A is a finite group, and A acts on G by
automorphisms which preserve a fixed F-pinning.

Not all disconnected reductive groups satisfy this condition. The most ba-
sic counterexample is the normalizer of the torus in SL;. On the other hand,
this condition is satisfied by many naturally occurring disconnected reductive
groups, including the orthogonal groups as well as the groups involved in the
classification of tempered representations of connected reductive groups. The
latter are among the main motivations for our study.

Just as in the connected case, one can classify the possible G that satisfy
the above condition in terms of root data and Galois cohomology. First, one
can consider a split connected reductive group G defined over F and a finite
group A, interpreted as a constant groups scheme over F, and let A act on G
and preserve a fixed F-pinning. Then G x A is a special case of a disconnected
reductive group defined over F' and we will call it “split”. This adjective carries
for us a double meaning — not only is the connected component G split, but the
extension G' x A is also split. It is clear that the split disconnected reductive
group G x A is classified by the root datum of G and the action of A on this
root datum.

Now fix an isomorphism ¢ : G — G'x A as in Condition 3.1. We may assume
without loss of generality that G is split and that A preserves an F-pinning.
Then

I = Aut(G x A), o—1to(1)

is a 1-cocycle and the isomorphism class of G is determined by the split form
G x A and the cohomology class of this 1-cocycle.

In order to understand this cohomology better, we look more closely at
Aut(G x A). The action of G on G x A by conjugation factors through G/Z(G)4,
where Z(G)# is the group of fixed points for the action of A on the center of
G. Thus G/Z(G)* is a subgroup of Aut(G x A), and in fact this subgroup
is normal, because G is a characteristic subgroup of G x A (being the neutral
connected component).
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Consider now the group Z(4, Z(G)) of 1-cocycles of A valued in Z(G).
The map sending 2 € Z'(4,Z(G)) to the automorphism g x a — gz(a) x
a of G x A embeds Z'(A, Z(G)) as a normal subgroup of Aut(G x A). The
two normal subgroups G/Z(G)# and Z'(A, Z(G)) of Aut(G x A) commute.
Their intersection can be described as the subgroup Z(G)/Z(G)* of G/Z(G)4,
or equivalently its isomorphic image B'(4, Z(G)) C Z'(A, Z(G)) under the
differential z +— z - a(z) .

We thus have the normal subgroup G/Z(G)* - Z1(A, Z(G)) of Aut(G x A).
It has a complement. In order to specify it, we use the pinning of G defined
over I' and preserved by the action of A and let Auty,(G x A) be those auto-
morphisms of G x A whose restriction to G preserves the pinning and which
preserve the subgroup 1 x A of G x A. We conclude

Aut(G x A) = (G/Z(G)* - Z'(A, Z(G))) % Autyin(G x A).

This means that any form of G x A can be obtained by a 3-step process: First,
using an element of Z'(I", Autyin (G x A)) one twists the rational structure of
G x A. The result is again a group of the form G x A, where now G is a
quasi-split connected reductive group, A is a (not necessarily constant) finite
group scheme over F', and A acts on G again by automorphisms that preserve
a fixed F-pinning. We shall call such disconnected reductive groups “quasi-
split”. Second, using an element z € Z*(T',G/Z(G)*) we twist the quasi-split
group G = G x A and obtain an “inner form” G, of it. Finally, we twist G, by
an element of Z'(I", Z'(A, Z(G))) to obtain a “translation form” of G..

3.2 Inner forms

Let G be a connected reductive group, defined and quasi-split over F. Let
(T, B,{Xa}) be an F-pinning of G and let A be a finite group that acts on G by
pinned automorphisms. Assume given an action of I' on A so that for o € I’
we have o(a(g)) = o(a)(o(g)). Thus G = G x A is a quasi-split disconnected
group in the sense of the previous subsection.

We have an exact sequence of algebraic groups

1-G—-G—- A1
which leads to an exact sequence of topological groups
1 GF) = GF)— A > 1.

Both of these extensions are split and come equipped with a splitting.

The group G acts on G by conjugation and this action preserves the decom-
position G = | |, ca G xaof G into left G-cosets. In addition, the group G acts
on itself by conjugation, and this action preserves the group G.

Writing G = G/Z(G)4, the group G x T acts on the group G, with § x ¢
acting as the automorphism Ad(7) o 0. Given z € Z(T', ), we denote by G/
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the algebraic group defined over F which satisfies G- (F) = G(F) and where
T acts on G (F) via the homomorphism Z : ' — G x T and the action of G x T
on G(F). We call G the inner form of G corresponding to z.

We still have the exact sequence of algebraic groups

155G =G> A1
but the sequence of F-points
1 — G:(F) — Gz(F) — A,

need not be exact. The image of the last map lies in A and we denote it by
AFl ¢ AT, We obtain an extension

Unlike the case of the quasi-split group G, this extension, even when it is split,
does not come equipped with a distinguished splitting.

The action of G;(F) on G; preserves the subset G (F). The action of G+ (F)
on G is realized by automorphisms defined over F' and in particular preserves
the subset G;(F).

If we replace A by A" the group G;(F) remains unchanged. Since we shall
ultimately be interested in the topological group G (F) and its representations,
we will assume from now on that the action of I" on A is trivial. In other words,
we will treat the group A as a constant group scheme.

3.3 Strongly regular semi-simple elements and norms

We recall some material from [KS99]. An automorphism 6 of G is called quasi-
semi-simple if it preserves a Borel pair. A maximal torus that is part of a 6-
stable Borel pair is called #-admissible. The automorphism 6 is furthermore
called strongly regular if Cent(6, G) is abelian. For such an automorphism 6,
there is a unique #-admissible maximal torus of G, namely Cent(Cent(0, G), G).
If S C G is a f-invariant maximal torus we will write Sy = S/(1 — 0)S for the
quotient of §-coinvariants.

We shall call an element of G x A (strongly regular) semi-simple, if the
automorphism of G it induces by conjugation is (strongly regular) quasi-semi-
simple. Clearly these notions are invariant under conjugacy by G x A.

Lemma3.2. 1. Letd = § xa € G(F) be semi-simple. Given an a-admissible
maximal torus S C G there exists g € G(F) such that 6* = g~10g belongs to

S(F) % a.

2. Write §* = 6* x a, so that 6* € S(F). Write y € S,(F) for the image of 5* in
the torus S, = S/(1 — a)S of a-coinvariants. The set of pairs (S,y) obtained in
this way for a fixed 6 and varying g forms a single G*°(F)-conjugacy class.
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3. If (S1,71) and (Sa,72) are two such pairs, then all g € G*°(F) such that
Ad(g)(S1,71) = (S2,v2) induce the same isomorphism Ad(g) : S1 — Sa.

4. Given v € S,(F), the set of 5 € G(F) corresponding to the G*°(F)-conjugacy
class of (S, ~) is a single G(F')-conjugacy class.

Proof. This is essentially [KS99, Lemma 3.2.A]. Let (75, B;) be a Borel pair nor-
malized by ¢ and let C be a Borel subgroup containing S and normalized by a.
Let g € G(F) be such that Ad(g)(S,C) = (T3, Bs). Set 6* = g~'dg. Then (S, C)
is normalized by both §* and a, so also by §*, hence * € S(F).

For the second point, we fix for i = 1,2 elements g; € G(F) such that §; =
g; '0g; € Si(F) x a and the image of 7 is ;. Choose a-stable Borel subgroups
C; of G defined over F' and containing .S;. Since any two a-stable Borel pairs
are conjugate under G*°(F’), we may modify g, to assume S; = S = S and
C) = Cy = C. Thus §; and 43 belong to S xa and are conjugate by g := g5 *g;. It
follows that $%° and Ad(g~!)S%° are maximal tori of Cent(}, G)°. Modifying
g1 on the right we may assume Ad(g~!) normalizes S?. Then it normalizes S
and its image in Q(S, G) is a-fixed. It is thus representable by an element of
G*°(F).

F(or)the third point, let 67 € S1(F) and 65 € S2(F) be elements map-
ping to 7, and v, and such that 67 and 5 are G(F)-conjugate to 5. A given
g € G»°(F) with Ad(¢)(S1,71) = (S2,72) can only be modified to hg for
h € G*°(F) normalizing S, and fixing . Thus there exists s € S3(F’) such that
Ad(sh) € Cent(0%,G) = Sg. It follows that the isomorphism Ad(g) : S; — Sa
carrying v to 2 does not depend on the choice of g.

The final point follows immediately from the fact that the set of 6* = §* x a

such that §* maps to v forms a single S(F')-conjugacy class. O

Definition 3.3. Let § = § x a € G;(F) be strongly regular semi-simple. A norm
of 4 is a pair (S, 7) consisting of a maximal torus S C G defined over F and
a-admissible, and an element v € S,(F), such that there exists g € G(F) the
property that 6* = g~'dg € S(F) x a and the image of 6* € S(F) in S,(F)
equals .

Lemma 3.4. Let § = & x a € G(F) be strongly reqular semi-simple.
1. There exists a norm (S, ~) of d.

2. For any two norms (S1,71) and (S2,v2) of & the canonical isomorphism Ad(g) :
S1 — Sa, g € GY°(F), carrying 1 to o is defined over F'.

Proof. The arguments for the first point are contained in the proofs of [KS99,
Lemmas 3.3.B,3.3.C]. By Lemma 3.2 we may find » € G(F) such that ° :=
Ad(h)~'6 € T(F) x A, where we recall that T is the maximal torus that is
part of the A-invariant F-pinning of G. Since ¢ is fixed by Ad(z,) x ¢ for all
o € T, its G-conjugacy class is fixed by o, and part (4) of Lemma 3.2 implies
that the Q(7, G)%-orbit of the image 1° € T,(F) of §° is I-invariant. Thus for
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every o € T there exists w, € Q(T,G)* such that w,o(7°) = ~°. Since § is
strongly regular, no element of Q(7, G)* fixes 7°, and hence w, is determined
by o. The map o — w, is a 1-cocycle. Since Q(T', G)* = Q(TE, GL), Steinberg’s
theorem implies the existence of g € G2 such that g~ 'o(g) normalizes T and
induces w,. Set &* = Ad(gh~')d. Then S = Ad(g)T is the unique *-admissible
maximal torus and we have §* € S(F). The image v € S,(F) of §* under the
projection S — S, coincides with the image of 4° under Ad(g) : 7, — S, and
is I'-fixed.

The second point follows from part (3) of Lemma 3.2, since both Ad(g) and
Ad(o(g)) map (S1,71) to (S2,72). O

3.4 A-special Whittaker data

We continue with a connected reductive group G defined and quasi-split over
F, and A a finite group of automorphisms that leaves invariant an F-pinning
of G.

Let (T, B,{X,}) be an F-pinning and let ¢ : F — C* be a non-trivial
character. Recall from [KS99, §5.3] that one obtains a generic character ¢ :
U(F) — C*, where U C B is the unipotent radical, via the following pro-
cedure: The fixed pinning induces an isomorphism from the abelianization
U* = U/[U,U] to [T,ea Ga- This isomorphism is defined over F if we let I act
on the product in a way compatible with the action of I on A. The summation
map [[,ca Ga — G, is then defined over F'. The generic character 1) is given
by the composition

U(F) — U™(F) - ( I1 Gu)(F) S F s CX.
aEA

Definition 3.5. An A-special Whittaker datum is a Whittaker datum obtained
from an A-invariant F-pinning and a non-trivial character of F' via the above
procedure.

It is clear that an A-special Whittaker datum is A-invariant.
Fact 3.6. Any two A-special Whittaker data are conjugate by Gaq(F)4.

Proof. We may realize the two A-special Whittaker data using two A-invariant
F-pinnings and the same character ¢ : F' — C*. The result follows from the
fact that the set of F-pinnings is a torsor for G,q(F). O

Fact 3.7. The map G* — G2 is surjective.

Proof. Let (T, B, {X,}) be an A-invariant F-pinning of G. Applying the Bruhat
decomposition it is enough to consider a single cell B,qwB,q for w € Q(T, a)A.
Let n € N(T,G) be the Tits lift of w with respect to the pinning. Then n €
N(T,G)A. The cell for G is then the set-wise direct product T x U x {n} x (U N
w~1Uw), where U is the unipotent radical of the Borel subgroup T-opposite to
B. The restriction to U of the map G — (aq is an isomorphism, and the cell for
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G4 is the set-wise direct product Tg x U x {n} x (UNw~1Uw). By directness of
the product and the fact that n is A-fixed it is enough to prove that 74 — T4 is
surjective. But since A fixes a basis of X*(T,q) the group T4 is connected and
the result follows. O

Corollary 3.8. Let to be an A-special Whittaker datum. The set of G(F)“-conjugacy
classes of A-special Whittaker data is in 1-1 correspondence with

im(G;;,(F) ~ HY(F, Z(G)A)).

3.5 The twisted Kottwitz sign

Let G be a quasi-split connected reductive F-group G, let a be an automor-
phism preserving an F-pinning, and let z € Z'(I',G/Z(G)*). We have the
inner form [G X a]z of the coset G x a. We assume that [G x a]; has F-point.
Under this assumption we are going to define a sign e([G % a]z) € {£1} gen-
eralizing the definition of the sign e(Gz) due to Kottwitz [Kot83] in the sense
that e([G x id]z) = e(Gz).

By definition we will have e([G % a]s) = e([Gaq % a]z). Therefore, to lighten
the notation, we may assume that G is adjoint. We then have z € Z!(I',G),
where we have dropped the bar from the notation. The existence of an F-point
in [G % al, is equivalent to the class of z being fixed by a. Let Z be the center of
Gsc and let £ € H?(T, Z)® be the image of the class of z under the connecting
homomorphism for the exact sequence 1 = 7 — Ggc -+ G — 1.

We will now construct an element A € H(T', X*(Z)),, whose cup-product
with ¢ will be an element of order 2 in H?(TI',G,,). Its invariant will be the
desired sign e([G % a],) € {£1}. Let (T, B) be a Borel pair in G invariant
under I" and a. Let Q@ C X*(T) be the set of fundamental weights. This set
receives an action of I" x (a). Let

where O runs over a set of representatives for the action of (a) on the set of
[-orbits in Q. It is clear that A € H(I', X*(T')) and that its image in the group
HO(T', X*(T)), of a-coinvariants is independent of the choice of representa-
tives. Via restriction we obtain the desired element A € H*(T', X*(Z)),. Since
any two Borel pairs of G that are invariant under both I" and a are conjugate un-
der G (F'), we see that A does not depend on the choice of a Borel pair (T, B).
The definition of e([G x a],) € F* is thus complete. We will see momentarily
(Corollary 3.13) that 2\ = 0 and hence e([G x a],) € {£1}.

Fact 3.9. If a = 1 then Ay is one half the sum of the positive roots and hence e([G x
al,) = e(G,).

Fact 3.10. The sign e([|G x a],) is multiplicative: given (G, a;, z;) for i = 1,2 we
have 6([(G1 X G2) X (al,ag)](zhn)) = 6([G1 bell al]zl) . 6([G2 X a2]22).
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Lemma 3.11. Let H = G x G --- x G and let b be the automorphism of H given by
b(goy---s9n—1) = (g1, -+, 9n-1,a(g0)). Then

e([H x b)) = e([G % a].),
where we have used the obvious identification H*(T', H)® = HY(T, G)“.

Proof. 1If (T, B) is a Borel pair of G invariant under I" and a, then Ty = T X

-xTand By = B x --- x B is a Borel pair of H invariant under I' and b.
The element Ar,, € X*(Ty) = X*(T) @ --- & X*(T) is equal to (Ar,0,...,0),
while the diagonal embedding G — H realizes the identification H*(T, H)® =
HY(T, G)%. The claim follows. O

These observations reduce the study of e([G X a].) to quasi-split adjoint
groups of the form G = Resp,rH, where H is an absolutely simple quasi-split
adjoint group defined over a finite extension E/F. Via the Shapiro isomor-
phism H'(F,G) = H'(E, H), which on the level of cocycles is given by restric-
tion followed by evaluation at 1, we obtain from z an element 2’ € Z'(E, H).
On the other hand, Lemma B.1 shows that the pinned automorphism a of G
is related to a pinned isomorphism o' : H — H°°, for some oy € I' that nor-
malizes E. What we mean by a’ being a pinned isomorphism is this. We have
by construction H x g E = H° xg E. The F-pinning of G arises from an E-
pinning of H, which via this identification gives a pinning of H°° x iy E which
is immediately seen to be Galois-invariant, i.e. an E-pinning.

We would like to relate the sign e([G xa],) to a sign e([H xa’] /), but for this
we need to generalize the definition to allow for the more general situation that
now a’ is not an automorphism of the E-group H, but rather an isomorphism
H — H°°. This is however very easy. Indeed, fixing a Borel pair (T, B) of
H that is preserved by «’ in the sense just explained, the set @ C X*(T') of
fundamental weights receives an action of 'z x (a’), where 'y = Gal(F/E)
and a’ acts on I'y via conjugation by oy. We still have an action of (a) on the
set of I' g-orbits in ) and the formula for \r still makes sense. At the same time,
for any I'g-module M with isomorphism o’ : M — M?° we have an action of
a’ on H(I'g, M), given by conjugation by o on I'z, and the action of a’ on
M. One checks that [2/] € H2(I'p, Z(Hy.))* and A € HY(g, X*(Z(Hqe)))ar-
Pairing these gives the sign e([H x a'],/).

Lemma 3.12. We have e([G x a),) = e([H % a'],/).
Corollary 3.13. We have (|G x a],)? = 1.

Proof. By the previous reduction steps it is enough to consider the case when
G is absolutely simple and adjoint and « is a pinned isomorphism G — G?°
for some finite order automorphism o of F. If a is trivial then e([G X a],) is
the Kottwitz sign e(G.), so assume that a is non-trivial. Then G is of type A,
D,,, or Eg. Consider the action of a on X*(Z(Gy)). In type A,, this is the action
of negation on Z/nZ, whose group of coinvariants is of order 1 or 2. In type
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D,, the automorphism « has non-trivial coinvariants in X*(Z(Gs.)) only if it is
of order 2, in which case these coinvariants are again of order 2. In type Eg
the automorphism a acts by negation on X*(Z(Gs.)) = Z/3Z and hence has a
trivial group of coinvariants. In all cases we see that H%(T', X*(Z(Gs.)))® is of
order at most 2, hence the claim. O

Consider a parabolic pair (M., P,) of G, whose G(F)-conjugacy class is a-
invariant. For example, this is the case for any minimal parabolic pair. Choose
an a-invariant Borel pair (T, By) of G. There exists ¢ € G(F) and a unique
standard parabolic pair (M, P) such that Ad(g)(M, P) = (M, P,). Since Ad(z,)o
o preserves (M, P,) for each o € T, the standard pair (M, P) is I'-invariant.
Replacing 2, by g~ 'z,0(g) we may assume that (M, P) = (M., P,),i.e. (M, P)
is I'-invariant both as a parabolic pair of G as well as of G.. This implies
2o € ZY(,M) forallo €T.

Consider now g, xa € [Gxal,(F). By assumption Ad(g, xa)(M, P) is G(F)-
conjugate to (M, P), hence also G, (F')-conjugate. Thus, upon multiplying g.
a by an element of G, (F) on the left we may achive that it preserves (M, P).
This means again that the G(F)-conjugacy class of (M, P) is a-invariant, hence
(M, P) is itself a-invariant, which in turn implies g, € M(F). We conclude
9. X a € [M x a](F). These preparations allow us to state the following.

Lemma 3.14. e([G % al,) = e([M % al,).

Proof. We maintain the notation of the preceding two paragraphs. We have
[2] € HY(I', M) and its image under H'(I', M)* — H'(I',G)* — H*(T, Zg,. )"
is used in the construction of e([G x al,); let us call this image hg. On the
other hand the image under H*(T', M)* — HY(T, M,q)* — H?(T, Zp )" is
used in the construction of e([M x al.); let us call this image hy. Let M be the
preimage of M in Gy.. This is a Levi subgroup of G and its derived subgroup
is the simply connected group M. Therefore Zg, C Zy+ O Zn,.. A look at
the following commutative diagram

1 Zc. G G 1
1 Za, Mt M 1
1 Z M, M, sc M, ad 1

shows that the images of hy and hs in H?(I', Z,;:)* agree. On the other hand
we may consider the element Az, € H(I', X*(Tg, ) computed in terms of
the Borel pair (T¢,., Ba,.) of G that is the preimage of (Ty, By). Let Byt =
Bg,. N MT, Ty = Tg,. N M., By, = Bg, N M. Then (Tg,., Byt) is a Borel
pair for MT and (T, Bar,,) is a Borel pair for Ms.. The set AY, of simple co-
roots for (T¢,., Bg, ) is a basis for X, (¢, ). It contains the set AY, of simple

sc?
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coroots for (T, Bu,. ), which in turn is a basis for X, (Th,.) C X.(Tq,.)- Let
Qar C Q be the set of those fundamental weights that pair non-trivially with
an element of A},. The image of Q,; under X*(T¢, ) — X*(Th,.) is a basis for
X*(Tm,. ), while the image of 2\ Q) is zero. The map X* (T, ) — X* (T ) is
equivariant both under I and a and the subset Q2 of €2 is stable under both I"
and a. Therefore the image of under X* (7, ) — X*(Th,.) under Az, equals
the element A7, computed in terms of (T, Ba, ). This shows that the im-
age of Ar,_ under X*(Ar,_ ) — X*(Z(MT)) has the property of having the
same restriction to X*(Z¢, ) as A1, and the same restriction to X*(Zy, ) as
ATy, -

We will now give alternative expressions for the sign e([G x al,) in the two
cases when F is assumed real or p-adic, beginning with the p-adic case. For a
moment consider a connected reductive F-group J and an automorphism b of
it. We are not assuming that J is quasi-split and we make no assumptions on
b. Let (Mo, Py) be a minimal F-parabolic pair for J. There exists g € J(F') such
that Ad(g)ob preserves (Mg, Py) and g is unique up to multiplication on the left
by elements of M (F). Therefore Ad(g) o b induces an action on the maximal
split central torus A7 of My and this action depends only on the image of b in
the group Out(G)(F). We will write (A7)® for the group of fixed points for the
action of Ad(g) o b on AJ. We can apply this construction to the quasi-split
adjoint p-adic group G and its inner form G, both of which have an F-rational
automorphism a. In the case of G, that automorphism is well-defined only up
to multiplication by an inner automorphism, but this is enough. Let Ag and A,
be maximal split tori in G and G..

Lemma 3.15. ¢([G x a],) = (—1)dim(45)—dim(AZ),

a

Proof. Define ¢/ ([G'xal,) = (—1)4m(Ac)=dim(42) g0 that we want to show e([G
al,) = €'([G x a],). The sign ¢'([G % a],) does not change if we replace G by its
adjoint group, because dim(A4§) = dim((Ao/Ag)*) + dim(A%) and analogously
dim(A?) = dim((A,/Ag)®) + dim(A%). Note that (Ag/Ag)® and (A,/Ag)* are
tori, since in the notation of the group J above the action of Ad(g) o b on A
preserves the set of simple relative roots, and those form a basis of X*(A7 /A).

One checks that ¢’ satisfies the analogs of Fact 3.10 and Lemmas 3.11 and
3.12, and 3.14. This reduces to the case that G is adjoint and absolutely simple
and G, is anisotropic. Thus G = PGL,, and G’ corresponds to a division alge-
bra of degree n and invariant r/n for some r coprime to n. The class of G’ in
H'(T',G) = Z/nZ must be fixed by a, which acts by multiplication by —1. This
forces a = 1 and the claim follows from Fact 3.9 and [Kot83]. O

4 THE CONJECTURE FOR PURE INNER FORMS

4.1 Pure inner forms

Letz € Z'(I',G) and let Z : I' — G x I be the corresponding section. We have
the inner form G as in Subsection 3.2. We will call such inner forms pure, in
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analogy with the case of connected groups. In the exact sequence
1= G.(F) = G, (F) —» AFl & 1,

the group Al is the stabilizer in A" of the cohomology class [z] € H(T', G).

4.2 Rational conjugacy classes

For a given a € A we want to describe those § = § x a € G x A that are rational
for G.,i.e. § € G.(F). This is by definition equivalent to the commutativity of
(o) = z(0) x o and ¢ for all & € T. Following Vogan’s suggestion [Vog93] in
the case of connected reductive groups, we shall consider all pure inner forms
together, and are thus lead to consider the set of pairs (%, ), where z € Z*(T, G)
and § € G(F)» A commute. This is the set of rational elements of all pure inner
forms of G. The group G(F) acts on this set by conjugation. Two elements
(2,61) and (Z, 65) with the same first component lie in the same conjugacy class
if and only if 51 and 4, are conjugate under G, (F'). Thus the set of G (F)-orbits
of commuting pairs (%, §) can be seen as the set of rational conjugacy classes of
rational elements of pure inner forms of G.

The set of rational elements, and its quotient under rational conjugacy, have
the following cohomological interpretation. Given a pair (2,4), with 2(¢) =
2(6) x o and § = & x a, the commutativity of Z and ¢ is equivalent to the
equation a(z(0)) = §712(c)o(d) for all ¢ € I'. This equation says that § is a
coboundary between the 1-cocycles z and a(z). This leads us to consider the

set N
71T, G =0)

consisting of pairs (z,0), where z € Z!(I',G) and § € G satisfy the above
equation. Slightly more generally one could consider for two group homomor-
phisms (b,a) : G = G the set of pairs (z, §) consisting of z € Z}(T',G) and 6 € G
such that a(z(0)) = 67 'b(2(0))o (). For our purposes the case b = id will be
sufficient. In order to ease typesetting, we shall use the notation Z}(I', G = G)
instead. As just discussed, the set Z}(I', G = G) is identified with the disjoint
union | |, 71 (r ¢)[G % al.(F). Taking the union over a € A we obtain an iden-
tification between the disjoint union | |, 711 ) G.(F) and the disjoint union
Uaca Za(T,G = G).

Fix a € A. The action of G(F) by conjugation on the set of pairs (Z,0)
is translated to the action of G(F) on (z,6) € Z}(T,G = G) by g(z,6) =
(gz(0)o(g™1), gda(g)~t). Welet H(I', G = G) be the set of orbits of that action
and thus obtain an identification of

| | HyT.G=G)

acA

with the set of rational conjugacy classes of rational elements of pure inner
forms of G.
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Keeping in line with our notation, we shall write Z}(I',G = G) for the
set of commuting Z € Z'(T',G) and § € G x a, and H(I', G = @) for their G-
conjugacy classes, and will freely use the bijections Z}(T',G = G) — Z1(T',G =
G)and H/(T',G = G) — HX(T,G = G) given by (z,48) — (%, 4).

4.3 The invariant

We are particularly interested in the G-conjugacy classes of pairs (Z,9) for
which § is semi-simple and strongly regular. According to Lemma 3.4 such
a conjugacy class has a norm (9, v), well-defined up to G*°(F')-conjugacy. We
shall now define an element inv(v, (z,6)) € HX(I', S = 9).

Lemma4.1. 1. If (z*,6%) is a representative of the equivalence class of (z,J) such
that 6* € S and the image of 6™ in Sy, is vy, then z*(o) € S and hence (z*,0*) €
ZYT, S = S). The class inv(v, (2,6)) € HL(T, S = S) is independent of the
choice of (z*,6*).

2. If (8',') is another norm of the same equivalence class, and (z',0") the corre-
sponding representative, the unique isomorphism Ad(g) : S — S’ mapping ~y
to v induces an isomorphism HX(I',S = S) — HX(T',S" = S') identifying
the class inv(~y, (z,9)) of (z*, 6*) with the class inv(~', (z,9)) of (2, ).

Proof. Since the element + is T-fixed, the S(F')-conjugacy class of §* is I'-fixed
(in fact the two statements are equivalent). For o € T' let s(0) € S be such that
0(6*) = Ad(s(0))0*. Since z*(0) = 2*(0) X 0 commutes with §* we see that
2*(0)s(0) commutes with 6*, thus z*(0)s(0) € S%, thus 2* (o) € S.

Let us show that the class of (3*,6*) in H}(T', S = S) is independent of the
choice of (*,6*). Another such choice is of the form Ad(h)(z*,5*) for some
h € G(F). By assumption hd*a(h~!) maps to v, so there exists s € S(F') such
that shd*a(sh)~! = §*,i.e. sh € Cent(d,G) = S¢, thus h € S, as claimed.

Now let (S7,7") be another norm and choose by Lemma 3.2 an element
g € G*°(F) such that Ad(g) : S — S’ carries v to /. Then Ad(g)(z*,0*) is a
representative of the conjugacy class of (,4) and lies in Z'(I", S" = §"). O

4.4 Comparison with [KS99]

It would be informative to compare the notions of norms and invariants given
here with those in [KS99]. In short, the notions of norms are the same apart
from cosmetics, while the notion of invariant introduced here is the twisted
analog of the untwisted absolute invariant introduced in [Kalll, §2.1], and
thus refines the relative invariant introduced in [KS99, §4.4], and generalizes
the absolute invariant introduced in the setting of quasi-split groups in [KS99,
§5.3].

More precisely, let (2,0) € Z}(I',G = G). Then # = Ad() is an automor-
phism of G, defined over F. The element ¢ is semi-simple and strongly-regular
if and only if 1 € G.(F) is §-semi-simple and #-strongly regular. Let 6* = a.
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The map m : Cl(G.,0) — CI(G,8*) of [KS99, §3.1] is given by i+ h - § and in
particular sends 1 to 4. The 1-cochain defined in [KS99, Lemma 3.1.A] and de-
note by z, there (beware that this is not the same as our z, here) is identically
equal to 1.

Now let (2*,6*) and v € S,(F) be be as in Lemma 4.1. Then v is a norm of 1
in the sense of [KS99, §3.3]. Moreover, if g € G is such that g~ (z*,6*)g = (%, 9),
then the 1-cocycle v(c) = gu(o)o(g)~' considered in [KS99, Lemma 4.4.A],
which takes values in S, when composed with the natural map S, — S,
becomes equal to z*.

We have the the isomorphism

ZN,8 = 8) —» 2V, 8 54 9),  (2,6) — (271,9) @.1)

and it allows us to view inv(v, (z,4)) as an element of H!(T, S 1= S). This

element is then an absolute version of the relative invariant inv(v, 4; 7, §) intro-
duced in [KS99, §4.4], and a generalization of the absolute invariant inv(~, ¢)
that was introduced in [KS99, §5.3].

4.5 The dual group

Let G be a complex dual group for G. We rigidify it by fixing a -invariant
pinning (T, B,{X,}) and requiring it to be dual to the fixed pinning of G.
That is, we assume given an identification X *(T) = X,(T) under which the
B-positive coroots are identified with the B-positive roots. We define the L-
group of G as L'G = G »x Wg, where W acts on G by fixing the pinning.
We also let the group A act on G by fixing the pinning. More precisely, given
a € A, we have the automorphism a, of X, (T) given by (a.\)(z) = a(A(x))
for z € G,,, and we let a act on T = Hom(X..(T), C*) by [at](A) = t(a;'\) for
t € T and A € X, (T). Note that the automorphism a of G obtained in this way
is related to the automorphism 9 of G obtained from 6* = a as in [KS99, §1.2]
by a = 6. This will later have the effect of H(T', S =% S) being paired with

al—-a_

Hl(WF,S —>1 §)

4.6 The local correspondence

Given an irreducible admissible representation of the locally profinite group
G.(F), its restriction to G (F) is a finite length semi-simple admissible repre-
sentation. We shall say that a representation of G, (F) is G-tempered respec-
tively G-discrete, if its restriction to G,(F') contains (equivalently, consists of)
a tempered respectively discrete representations.

We will now begin formulating the refined local Langlands conjecture for
the disconnected groups G.. The irreducible admissible G-tempered represen-
tations of G, will again be parameterized by pairs (¢, p). The first part of the
pair, the Langlands parameter ¢, will remain unchanged. That is, we will use
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the same tempered Langlands parameters ¢ : Ly — “G as for the connected
group G. However, we will change what we mean by equivalence of param-
eters. Two parameter will be seen as G-equivalent if they are conjugate under
the group G x A. Givena parameter ¢, its group of G-self-equivalences is then
Sy = Cent(¢, G x A). This group contains the group S, = Cent(¢, G) of G-self-
equivalences of ¢. We have the exact sequence

1= 8y — S5 — Al 51,

where Al?! is the stabilizer in A of the G-equivalence class of ¢. This exact
sequence leads to the exact sequence

1 — mo(Sy) — mo(Sy) — Al — 1.

Recall from [Kot86] that the cohomology class [z] gives a character 7 (Z (@ ) —
C*, which we will also denote by [z]. The stabilizer of this character in A is
equal to the stabilizer of the cohomology class of z — this is immediate if F' is
p-adic, and can be checked if F = R. Let AL = A9l 0 Al If we pull back
the above extension to Al?}[*] we obtain the extension

1 — m0(Sp) = mo(S5)) — ALLEN 1,

where 5‘([;] = Cent(¢, G x AlF]). The pull-back of an irreducible representation
of 7y (55]) to mo(Z(G)T) is either [z]-isotypic, or it does not contain [z]. We write
Irr(mo (5‘([;] ), [2]) for the set of irreducible representations of WO(SLZ]) whose pull-
back to mo(Z(G)") is [2]-isotypic.

Let us remark at this point that we could alternatively consider the set
Trr(mo(Sg), [2]) of those irreducible representations whose restriction to 7o (Z(G)T)
contains the character [2]. Since Z(G)" is not central in Sy, this restriction will
contain other characters as well. According to Clifford theory induction from

55] to S, gives a bijection between Irr(wo(gg]), [2]) and Trr (7o (Sy), [2]). Indeed,

]

any element of S, that normalizes S(Ef and stabilizes p € Irr(wo(ggf]), [2]) also

stabilizes [z] and thus belongs to 5’5], so Indp is irreducible. However, working
with Irr(ﬂo(g([;] ), [2]) will be more convenient for us.

Consider for a moment the special case z = 1. Choose an A-special Whit-
taker datum w for G. Any w-generic representation 7 of G(F') has a canonical
extension 7 to G(F) = G(F) x A", obtained by setting 7(a) to be the unique
G(F)-map moa~! — 7 that preserves one (hence any) ro-Whittaker functional.
We shall say that these 7 are ro-generic representations of G(F). We can now
state the first part of the local Langlands conjecture for the groups G.. In the

case F = Rset G, to be the associated K-group, i.e. the disjoint union of G,
for all 2’ in the image of H}(R, G, «) - HY(R,G,) - H' (R, G).
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Conjecture 4.2. The choice of an A-special Whittaker datum to on G determines a bi-
jection between the set of irreducible admissible G-tempered representations of G,(F)

when F/Q,, or any member of G . (F) when F = R, and the set of G x A-conjugacy
classes of pairs (¢, p), where ¢ : Ly — LG is a tempered Langlands parameter, and

p € IT’T’(?T()(S([;]), [2]). When z = 1 the representation corresponding to (¢, p) is vo-
generic if and only if p = 1.

Let us write IT,_, for the finite set of representations of G (F)) corresponding
to pairs (¢, p) for a fixed ¢ and varying p. These can be called L-packets for
the disconnected group G (F). In the §4.13 we will add another piece of the

conjecture, which will in particular determine uniquely the sets I14 . in terms

of the L-packets of the connected group G . The new information in Conjecture

4.2 is thus contained in the bijection between Il . and Irr(mg (S’([;]), [2]).

4.7 Endoscopic data
{sub:endo}
We shall use essentially the same notion of endoscopic data as in [KS99, §2.1],

with one minor but important difference that affects both the definition of da-
tum as well as of an isomorphism of data. More precisely, an endoscopic datum
will be a tuple e = (G*, G*, 5%, £°) consisting of

(4.7.1) a quasi-split connected reductive group G* defined over F;
(4.7.2) asplit extension G of Wr by G* (but without the choice of splitting);
(4.7.3) a semi-simple element 5¢ G x A;
(4.7.4) ahomomorphism £° : G¢ — LG of extensions;
and satsfying

(4.7.5) the homomorphism Wr — Out(@e) arising from the extension G° is
transported under the canonical identification Out(G*) = Out(G*) to the
one given by the rational structure of G*¢;

(4.7.6) ¢° induces an isomorphism G¢ — Cent(5%, G)°; {item:e0}
(4.7.7) 5° commutes with the image of £°. {item:el}

This completes the description of the tuple e¢. An isomorphism ¢ — ¢’ is an
element g € G satisfying

(47.8) & = Ad(g) 0 &*;

(4.7.9) 5 = Ad(g)5* modulo Z(G)°. {item:e2}
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The difference between these definitions and those in [KS99] is the following.
First, we are only considering here the case w = 1 and hence a = 1. Second, our
requirement (4.7.7) is stricter than [KS99, (2.1.4a)]. The definition [KS99, (2.1.6)]
of isomorphism however implies that every isomorphism class of endoscopic
data in the sense of [KS99] contains a representative that satisfies (4.7.7). Third,
our requirement (4.7.9) is stricter than [KS99, (2.1.6)]. This implies that a single
isomorphism class in the sense of [KS99] can consist of multiple isomorphism
classes in the sense of our definition.

4.8 Two constructions of endoscopic data

We now review two constructions of endoscopic data, one geometric and one
spectral. In the case of connected groups, they are summarized in [She83, §4.2].
In the twisted case the geometric appears in the proof of [KS99, Lemma 7.2] and
the spectral one appears at the end of [K599, §2].

We begin with the spectral construction, which is a little easier to describe.
Let ¢ : Ly — LG be an L-parameter and 5 € S a semi-simple element. The
pair (¢, §) leads to an endoscopic datum as follows. Set G = Cent(3, @)O, Gt =
Ge - »(Wp), and let £° be the natural inclusion. Let G*¢ be the quasi-split group
defined over F that is dual to G* and whose rational structure is determined
by I — Out(G*®) = Out(G*), the first map coming from the extension G°. Then
(G*, G, 5,£°) is an endoscopic datum. Note that ¢ factors through £° and thus
becomes a parameter for G¢ (in order to relate it to G°, one needs to further
choose a z-pair).

For the geometric construction, let G be an inner form of G and let 5 €
G:(F) be strongly regular semi-simple. Let S’ C G be the maximal torus
Cent(Cent(d, G), G). As a maximal torus of G it is defined over F, and Ad(9) :
S’ — §'is an automorphism defined over F. Let k € H' (W, (1-4) : 5 = 8.
The pair (5, k) leads to an endoscopic datum (G*, G¢, 5¢,£¢) and a stable conju-
gacy class of elements v* € G*(F') as follows.

Choose a norm (S,7) of § and g € G(F) such that g~'dg = 6* = §* xa €
S(F) x a with §* + ~. Then Ad(g) provides an isomorphism H*(Wg, (1 — ) :
S - §) > H' (Wg,(1 —a) : § — §). Choose an a-invariant Borel pair
(T, B) of G and an a-invariant Borel subgroup C containing S. These lead to an
equivariant isomorphism S — T under which a 1-hypercocycle representing
K is transported to a pair (¢,', s) satisfying, for every w € W, the relation
s~ log(s) = tyta(ty), where o € T is the image of w and o is the transport
of the action of o on S to T'. This transport is given by w, x o, for a uniquely
determined w, € Q(f, @)a The map o + w, belongs to Z1(T', Q(f, @)“) In the
long exact sequence of I'-cohomology associated to the short exact sequence

1—T%° = N(T%°,G*°) = Q(T,G)* — 1
the image of the class of w, is an element of H?(T, §), whose restriction to

H2(Wpg, S) vanishes according to [Lan79, Lemma 4]. It follows that there exist
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lifts n, € N(f‘“’, @avo) of wy so that w — n,, x w is a homomorphism Wr —
N(T%°,G%°) x Wg. Then 1 : w — tyn, X w is a group homomorphism
Wr — N(T,G) whose image commutes with s x a. Define §° = s x a, G* =
Cent(5*,G)°, G° = G* - (W), and let £° be the natural inclusion. Let G* be
the quasi-split group defined over F, dual to G*, and with rational structure
determined by I' — Out(G*) = Out(G*), where the first map comes from the
extension G°. It is immediately checked that (G*,G¢, 5%, &%) is an endoscopic
datum. L R R

The a-equivariant isomorphism S — T and the inclusion 7%° — G* give
a caonical G*(F)-conjugacy class of embeddings S, — G°. Thus the element
7 gives a canonical G*(F)-conjugacy class of strongly regular semi-simple ele-
ments of G*(F). This class is I-invariant, so by [Kot82, Corollary 2.2] gives a
stable class of elements v¢ € G*(F'). This completes the geometric construction.

4.9 Normalized transfer factor invariant under G (F)

Fix an A-special Whittaker datum as in §3.4. Let ¢ = (G*,G¢,5%,&%) be an en-
doscopic datum. There may or may not exist an isomorphism G¢ — “G* of
extensions of Wy by G*. If it does we choose one such, denote it by & and
write G¥ = G°. If it does not, we can choose a z-extension G* — G° and ap-
ply [KS99, Lemma 2.2.A] which guarantees that the inclusion G — G# always
extends to an L-embedding &3 : G¢ — “G’. We denote by 3 the pair (G2, £3).

We will define a normalized absolute transfer factor Aft, ¢, 3] as a function
that assigns complex values to pairs (v?,0) of G¥(F) x G,(F'), where both ~?
and ¢ are strongly regular semi-simple. As a function of § the transfer factor
Alv, ¢, 3] will be conjugation-invariant under the full group G (F). The defini-
tion is by the formula

A[maeaﬁ](7578) = Z AKS[m7275](’Yavcgcil)v (42)
c€G,(F)/G,(F)

which in turn uses a normalized absolute Kottwitz-Shelstad transfer factor
Agglo, e, 3] that we will define below. The latter is a function that assigns
complex values to pairs (v3,8) of G3(F) x [G x b~'],(F), where b € A is the
image of ¢ and both % and ¢ are strongly regular semi-simple. In the variable
§ this function is only G (F)-conjugation invariant.

Following [KS, §5.5], the factor Ak g[w, ¢, 3] is defined by

Agslo,e5] = e([G X b7 )er (Vo) (AF™) T A (AN Ay, (43)

The terms e, (V, ), AY, A, and Ajy have already been defined, in [KS99,
§5.3], [KS, §3.4], [KS99, §4.3], and [KS99, §4.5], respectively, but we will recall
them for the convenience of the reader below. They are absolute, i.e. they
depend on a single pair of elements (73,4). The term A" will be defined in
this paper. It is also absolute. A relative version of it, i.e. one depending on
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two pairs of related elements, was defined in [KS99, §4.4]; in the quasi-split case
z = 1 an absolute version was defined in [KS99, §5.3]; in the untwisted case an
absolute version was defined in [Kall1] for pure inner forms of p-adic groups,
and generalized in [Kal16b] to arbitrary inner forms of connected groups over
local fields. In this paper we will define an absolute version for arbitrary z in
the twisted setting. The term e([G x b~1];) was defined in §3.5. When z = 1itis
equal to 1, while the term A%Y coincides with the absolute term A;;; defined
in [KS99, §5.3]. The factor Akg is an absolute transfer factor whose relative
version is the factor A’ of [KS, §5.4]. When z = 1 then A kg coincides with the
absolute factor [KS, (5.5.2)]. When b = 1 the factor Ak g differs from the factor
[Kalléb, (5.10)] by the term e(G ), which in the notation of loc. cit. would be
e(G"). This change is made for convenience of exposition and will be reflected
in the absence of the term e(G,) in the character identities (4.4) as compared to
[Kall6b, (5.9),(5.11)].

Before we come to A}$Y we briefly recall the definition of the other factors.
These factors depend on auxiliary data that we describe first. Let (7, B, {X,})
be an F-pinning of G invariant under b. Let ¢ : F — C* be a non-trivial
character. It is assumed that the Whittaker datum arising from the pinning
and the character is the given datum tv. Let R,e5(.S, G) be the set of restrictions
to St of the absolute roots of S in G. Fix a-data and y-data for Ryes(S, G).

Let v € G° be the image of 7% under the natural map G4 — G°. The
complex number A [t ¢, 3](7?,0) is zero unless 4¢ transfers to a norm of 4.
More precisely, let (S,~) be a norm of 4 in the sense of Definition 3.3. It exists
and is unique up to G’(F')-conjugacy according to Lemma 3.4. In order for
Ags[, e, 3](7?,0) to not be zero, there must exists an admissible isomorphism
S¢ — Sy carrying ¢ to vy, where S*¢ is the centralizer of v¢. We now assume such
an isomorphism exists. It is then uniquely determined by the pair (v¢,~) and
we call it ¢« ,. Via this isomorphism we obtain an embedding R(S¢,G¢) —
Ryes(S, G). We can transport the chosen a-data and y-data to R(S¢, G*). Recall
that S is a b-admissible maximal torus of G, v € S,(F), and there exists g €
G(F) such that g~16g = 6* = 6* x b~ with 6* € S(F) mapping to .

The term €1, (V, v) is the root number of the virtual I'-representation V' =
X*(T)% — X*(T¢)c, where T* is the (unique up to conjugation) minimal Levi
subgroup of G*.

The term Ay is a fraction. Its numerator is a product over I'-orbits of ayes €
Ryes(S, G), where the factor corresponding to ces 1S Xy, (Na(6*) — 1)/aq,.)
when ayes is of type R1 or R2, and xaq,,, (N (6*) + 1) if ayes is of type R3. Here
a € R(S,G) is any preimage of ayes and Na is the sum of the members of the
b-orbit of o, which we recall is uniquely determined by oyes. The denominator
is a product over I'-orbits of o, € R(S%, G*) C Ryes(S, G), where the factor
corresponding to a. is xa, (e (7%) — 1)/ a0, ).

The term Ay is again a fraction. Its numerator is a product over ases €
Ryes(S, G), where the factor corresponding to cues is [N (6*) — 1|% when oy is
of type R1 or R2, and |[Na(6*) + 1]2 if (res is Of type R3. The denominator is a
product over a, € R(S%,G%) C Rpes(S,G), where the factor corresponding to
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e is |ae (7)) — 1)2.

The term A; is obtained by taking the Tate-Nakayama pairing of an ele-
ment ¢ € HY(T,S%) with an element sg € 7o ([Saa]l), or equivalently of the
image of ¢t in H!(T", $*°) with an element sg € wo([§}£) The element ¢ is
the twisted splitting invariant of S, obtained as follows. Let C C G be a
Borel subgroup defined over F' containing S and invariant under b; its ex-
istence is the definition of b-admissibility of S. Choose h € GY such that
h(T,B)h~1 = (S,C). Let w(o) € N(T2,GL)/TL be the image of h~1o(h) and
let n(o) € N(T%, G.) be the Tits lift of w(o) with respect to the chosen pinning
of G. Thus n(c)(h~to(h))™! € Tb. Let y(o) = [[a"(aa,.) € S°, where the
product runs over those a € R(S, () that satisfy —o(«) € R(S,C). Then t is
the class of y(o) - hn(o)o(h)~!. To obtain the element sg € wo([§]£), choose
a member of the canonical @e-conjugacy class of embeddings 5¢ — G* and
compose it with £¢ and @« , to obtain an embedding §b° — G. The image of
this embedding commutes with 5°. It extends uniquely to an admissible em-
bedding S — @G, see Lemma 4.3 below. Replacing ¢ by an isomorphic datum if
necessary we may arrange that the image of S is b-invariant. Writing 5¢ = s® xb
we see that s* commutes with the image of 5, hence also with the image of
S, and hence lies in that image. We transport s° to S and project to [S], and
obtain sg.

410 Normalized factor Ay g without z-pair

We turn to the construction of A}7}. For simplicity we shall first assume that
there exists an L-isomorphism & : G¢ — LG, so that G* = G® and 3 = ~°.

In Lemma 4.1 we defined an element inv (v, (z,4)) € H}, (T, S = S) which
we transport via the isomorphism (4.1) to H'(I',(1 —b7') : § — S). On
the other hand, the constructions of [KS99, §4.4] provide an element A, of
H'(Wpg,(1=1b): 8 = 5). We recall them here, as they take a particularly sim-
ple form in our set-up. Namely, transport the choosen y-data for Rees(Sy, G) via
the admissible isomorphism S¢ — Sp t0 Ryes(S¢, G¢). From these y-data one
obtains L-embeddings &5 : ©S° — LG® and €L : 1S, — FG', where G is the
principal endoscopic group of G x b~ !, i.e. the quasi-split connected reductive
group with L-group G' x Wg, where G! = G"°. We have the natural embed-
ding LG' — LG and the L-isomorphism Lo . . : £'S, — LS corresponding
to ©+c 5. The two L-embeddings ©S, — “G given by £§ and &3 o £ 0 P«
are defined up to (A?—conjugacy and we arrange them so that their restrictions
to Sy are equal. Let & : ©S — LG be the unique extension of £} of Lemma 4.3.
By Corollary 4.5 there exists a (uniquely determined) 1-cocycle ag : Wr — 5
such that £* 0 £& 0 P (t ¥ w) = Es(tas(w) x w) for all t x w € St % Wp.
The property Ad(5¢)¢¢ = £° and the above equation immediately imply that 5°¢
commutes both with 5};(@,) and with w — &g(ag(w) x w). Commuting with
fg(gb) implies 5° = s xbwith s € ¢5(S). Let sg € S be the preimage of s under
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&s. The commuting of § with £s(ag(w) xw) is then equivalent to (1 —b)ag(w) =
ss - (os(w)ss) ™!, which says that (ag', ss) € ZH(Wg, (1 —b) : S — 5). We let
Ag be the class of (agl, 58)-

In [KS99, SA.3 3] a pairing was defmed between the cohomology groups
HY(Wg,(1—=b): § — S)and H(I', (1—b"1) : S — S). We define ADEW(~3 §) =
<inV(77 (Z, 5))7 A(]>'

Lemma 4.3. There exists a unique L-embedding &g : ©S — LG extending £L.

Proof. If &5 were given, for s x w € S x Wp = LS the equality £5(s x w) =
¢s(s) - €& (w) would hold. Two different extensions of ¢} would thus differ
by an element of (S, G)(F') that induces a trivial action on S5, equivalently
on S but this only holds for 1 € Q(S,G)(F). This shows uniqueness. For
existence we fix I'-invariant Borel pairs (T, E) of G and (T, B) of G. Then
(T®, BY) is a I-invariant Borel pair of G*°. Fix a b-invariant Borel subgroup
C of G defined over F and containing S, and let g € G*° conjugate (7, B) to
(S,C). Composing the dual of Ad(g) : T — S with the natural identification
of the dual of T with T given by B and B gives an admissible isomorphism
€s: 5 — T. Its restriction §%° — T"° is also an admissible isomorphism, and
after conjugating ¢% within G"° we can arrange that this latter isomorphism
coincides with ¢L. Let w, € QT,G)? = T, G)" be the image of g~'o(g) €
N (5%, G*°). Then the transport via £g of the action of w € Wr on Sis given by
we, ¥w on T. The same is true for £} and we see that ¢4 (1xw) € N(T"°, G*°)x
W lifts wy,, x w. It follows that Ad(¢4(1 x w))és(s) = Es(wsw™!), hence
s X w > Es(s) - £L(1 x w) is an L-embedding extending &L. O

Fact 4.4. Let G be an extension of Wp by G and let € : 'S — G be an L-embedding.
1. The image of £ is the subgroup of G defined by
S={zeGVseS:a&(s x Da~" =¢(o,(s) x1),}
where o, € I is the image of x.
2. In particular, the image of £ depends only on the restriction of § to S.
3. & is a homeomorphism onto its image.

Proof. Certainly the image of £ is contained in S. Given x € S let w be its image
in Wy and consider #' = £(1 x w) € S. Then 2/z~! € G commutes with £(5)
and thus belong to £ (), i.e. z = £(s x w). The second point is immediate from
the first, and the third follows from the open mapping theorem and the fact
that LS is locally compact, Hausdorff, and o-compact. O

Corollary 4.5. There exists a 1-cocycle as : Wrp — S such that the L-embeddings
§fo&go L‘P«,w and &g o ag are G-conjugate.
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Proof. Let&s : 1S — LG and & : 'S — LG be the unique extensions of ¢} and
£ oty ol . given by Lemma 4.3. Their restrictions to S are (A?—conjugate,
so we assume they are equal. It follows from Fact 4.4 that {5 and {5 have the
same image and are homeomorphisms onto it, so we may form &% o £5'. This
is an automorphism of the topological group SxWp restricting to the identity
on both S and W. Thus it is given by multiplication by ag € Z! (W, 5). O

411 Normalized factor A i g with z-pair

We now drop the assumption that there exists an L-isomorphism “G*® = G¢
and instead choose a z-pair 3 = (G?,£%). We denote by S? the centralizer of
73, Let S} be the fiber product of S — S, = S°® « S3. The automorphism
b x id of S x S% preserves S} and we denote the automorphism it induces
by by. It fixes the kernel of S} — S pointwise. Hence the endomorphism
(1 —b;h) of S3 induces a homomorphism (1 — b7!) : S — S3. We are going
to refine the invariant inv(y, (z,6)) € H., (IS = §) = H'(T,(1 -b71) :
S — S) constructed above to an element inv(+3, (2,6)) € HY (T, (1 —b;') :
S — S3). If (*,5*) is a representative of the G-conjugacy class of (Z,9) as in
Lemma 4.1, then 3 = (6*,7?) belongs to S(F) and satisfies (b; ' — 1)2*(0) =
(63) 1o (63), so (271, 8%) € ZYT, (1 —b7') : S — S%)) and its class is the
invariant inv(+?3, (2, 6)) we want.

This invariant will be paired with an element Ay € H*(Wp, (1 —b) : §{ —
5), whose construction is essentially the one given in [KS99, §4.4]. We have
as above the L-embeddings ¢} : *S, — “G' and & : “S° — LG®. They will
become part of a diagram as follows

Ls
\

LSb p LGl LG

5 X

LV”Y‘ ¥ U——- g‘

c e

Lse £s LGc LG;,
3

L53

All arrows are L-embeddings. The unnamed arrows “G! — LG, LG* — LG5,
LS, — LS, and £S® — LS3 are the canonical ones. The arrows &g and &
are the unique ones extending ¢ and & by Lemma 4.3. We would like to
apply Corollary 4.5, but unfortunately have no embedding “G* — L'G. Instead,
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following Fact 4.4 we define
U={zecGVse S :aei(sx)at = 5(0u(s) x 1)},

which would be the image of £¢ if we had an identification L@Ge >~ G, which we
do not. It is still an extension of W by 5¢ and Fact 4.4 implies &3 (U) C &&(LS3)
and £(U) C €s(ES). Applying again the open mapping theorem we obtain
L-embeddings ag : U — LS3and B : U — LS. Compose oy with the L-
automorphism of ©S? given by inversion on S5 to obtain a : U — 53, and
consider a x B : U — (S x S%). Its composition with (S x $%) — £57 kills
St c U, thus descends to an L-homomorphism ag : Wr — L5, i.e. a 1-cocycle
as : Wg — §{ As before one checks that 3 = £g(sg) x b and (ag',ss) €
ZYWp, (1 —by): §{ — §), and we define Ay to be the class of this element.

Asin Subsection 4.10 we define A (2, 9) to be the pairing of inv(+?, (z, J))
and Ay.

4.12 Transfer of functions

In §4.10 and §4.11 we defined a factor A%y, which leads to the factor A g[w, ¢, 3]
via (4.3), which in turn leads to the factor Afr, ¢, 3] via (4.2).

Let f € C°(G.(F)). For any 6 € G.(F) we can form the integral of f
over the G, (F)-conjugacy class of 4, after fixing an invariant measure on this
conjugacy class. We will call this integral Oj(f). Since the G.(F)-conjugacy
class of § decomposes as a disjoint union of finitely many G, (F')-conjugacy
classes, O;( f) is a sum of finitely many twisted orbital integrals.

Lemma 4.6. For any function f € C°(G,(F)) there exists a function f3 € H(G?)
such that for all strongly reqular v € G3(F') we have

SO () =D Alw,e,31(,6)05(f)
§

where the sum runs over the set of strongly regular G, (F)-conjugacy classes in G, (F).
More precisely, if f355 is the function that satisfies

SO’Y" (fa’KS) = ZAKS[m7 e?ﬁ](7375)05(f)’
5

where now § runs over the strongly reqular semi-simple elements in [G x a],(F)
modulo G (F)-conjugacy and ™' € A is the image of 3¢, then fi = f&**%, where

fo8) = e ryjc. () (e Ho0).

Proof. This follows immediately from the deep results on geometric transfer
in twisted endoscopy due to Shelstad [Shel2] in the archimedean case and
Ngo [Ng610] and Waldspurger [Wal97], [Wal08] in the non-archimedean case.

Indeed, in ) ;5 Afto, 2,5](73,5)05(f) we are summing over G (F)-conjugacy
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classes in G, (F), and then integrating over each such class. We may equally
well sum over G, (F)-conjugacy classes in G, (F)), and then integrate over each
such class. After this reparameterization, we plug in (4.2) and use the fact that
Akg is invariant under G, (F)-conjugation in the variable § to switch the sums
over ¢ and 4. This brings the right hand side to

Z Z AKS[m,e,z](vf’,cScfl)/ f(xbzY)de.

c€G.(F)/G.(F) 5€G.(F)/G.(F)—conj 2€G=(F)/G=(F)s

Changing variables to replace 6 and = by ¢~'dc and czc~! and moving the sum
over c to the right we obtain

A v 335 5
S Axslo. ey )LEG(F)/G(F) S e tadele)de

6€G.(F)/G.(F)—conj 5 ceG.(F)/G.(F)

Let a~! € A be the image of 5°. Then Agg = 0 unless § € [G x a].(F). Fix
do € [G xa].(F) and write = Ad(do). Let fo(d) = 2 ca.(rya. ) f(c™0000).
Then we obtain

Z Ags(w, e,g}(vﬁ,é&])/ fo(zs0(z™1)).

0€G,(F)/0—conj z€G(F)/G=(F)s6

By construction Ak 5[, ¢, 3](72, 00 ) is a normalization of the Kottwitz-Shelstad
transfer factor for the twisted group (G, ) and its twisted endoscopic datum
¢, evaluated at (7?2, 0). The results of Shelstad, Ngo, and Waldspurger now im-
ply the existence of a function f? so that the above formula becomes equal to
SO~ (f3). O

4.13 Character identities

Consider a parameter ¢ : Lr — “G and a semi-simple element 5 € S =1,
The pair (¢, §) leads to an endoscopic datum ¢ = (G*,G*, §,£°) by the spec-
tral construction described in Subsection 4.8. Choose a z-pair (G?, %) and let
@3 = & o ¢, a tempered parameter for G3. We assume the existence of an L-
packet IT4; on G3(F') and of its stable character S©4;. Let us write the bijection

II‘I‘(ﬂ'Q(S([;]), [2]) — M. from Conjecture 4.2 as j — 7.

Conjecture 4.7. For any pair of functions f and f? as in Lemma 4.6 we have

S04 (f?) Z trp(s (4.4)

where p runs over Irr(wo(grgf]), [z]).

As we have already remarked in §4.9, equation (4.4) applied to the con-
nected case G = G differs from equation [Kall6b, (5.9),(5.11)] because it is
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missing the factor e(G’). This factor has now been built into the definition of
the transfer factor (4.3), because in the disconnected case this is notationally
more convenient.

We will refer to Conjectures 4.2 and 4.7 together as the refined local Langlands
conjecture for pure inner forms of quasi-split disconnected groups.

Remark 4.8. Let a € A be the image of 5. If the function f is supported away
from the G (F)-cosets in G (F) which are A-conjugate to a~!, then f3 = 0.
Thus the conjecture contains the statement that the right hand side is also zero
in this case.

Remark 4.9. Let x : A — C* be a character. Then yg; = x ® 7. If a € A is
the image of 5 and f is a function on G, (F) supported on the G, (F)-coset of
b € A, then tr(x ® p)(5) = x(a)tr(p)(5), while Oygz,(f) = x(b)Oz,(f). From
this it follows that the right hand side above is zero if f is supported only on
cosets for b € A such that ab # 1 in A%,

5 THE CONJECTURE FOR RIGID INNER FORMS

In the preceding section, we introduced a refined local Langlands conjecture
for pure inner forms of quasi-split disconnected groups. Those are inner forms
of quasi-split disconnected groups G x A that arise from H!(T', G). A general
inner form of G x A arises from H(T', G/Z(G)#) and in this section we are go-
ing to extend the conjecture from pure inner forms to general inner forms. Just
like in the connected setting, the notion of an inner form needs to be rigidified.
For this we can use the cohomology set H'(u — W, Z(G)* — G) defined in
[Kall6b], see also [Kall8]. However, in order to normalize the transfer factors
in the disconnected case, we shall need a generalization of this cohomology set
to complexes of tori of length 2, as well as a Tate-Nakayama duality theorem for
this generalization. This will be the concern in the first two subsections below.
Thankfully, what is needed is little more than a combination of the arguments
of [Kall6b] and [KS99, App. Al.

5.1 Definitions of hyper(co)homology groups

Consider a complex Z — T — U, where T and U are tori, Z is finite, and
Z — T is injective. We write f for the map 7" — U, and leave the map Z — T'
unnamed. Let T be the quotient 7//Z. The map f induces amap f: T — U.

We shall first define and study a cohomology group H'(u — W, Z — T —
U) that combines the group H'(u — W,Z — T) of [Kalléb] and the group
HY(T, T — U) of [KS99, App. A]. Define Z'(u — W, Z — T — U) to consists
of pairs z € Z'Y(u — W, Z — T) and ¢ € C°(T,U) such that f(z) = dc, where
z € ZYT,T) is the image of z. Define H'(u — W,Z — T — U) to be the
quotient of Z'(u — W, Z — T — U) by the subgroup B*(I',T — U) consisting
of {(t"Lo(t), F(1)|t € T(F)}.
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This definition involves a particular choice of extension 1 — v — W —
I' — 1 in the distinguished isomorphism class. Just like in the case of H*(u —
W,Z — @G), the cohomology set H!(u — W,Z — T — U) is independent of
that choice, in that there is a unique isomorphism between the two versions
of it coming from two choices of extensions. The argument is as follows. It
is enough to show that an automorphism of the extension W acts trivially on
H'(u — W,Z — T — U). The vanishing of H*(T,u) asserted in [Kalléb,
Theorem 3.1] implies that such an automorphism is of the form Ad(z) for some
z € u. Anelement (z,u) € Z'(u - W, Z — T — U) is sent by Ad(z) to (2, u)
where 2/ (w) = z(zwz ™) = 2(z - o(x71))2(w) = 2(x) - 0(2(2))) "' - 2(w), where
o € I'is the image of w. So the difference between (z,u) and (2, u) is measured
by (z2(z) - o(2(z))~*,1) € BY(',T — U). We are using here that f|z = 1.

We have the following analog of [Kal16b, (3.6)]:

T(F) T(F)

Inf Res

1

HYT,Z)

HY(u—W,Z = Z)

Hom(u, Z)T

1—> HY,T > U) " H'(u - W,Z - T - U) > Hom(u, Z)" — H2(T,T — U)

! ‘ ‘

H'(,T »U)— > H' (T, T>U)—— > H*T, Z) — H*I,T = U)

1 1
(5.1)
We also have the following analog of the long exact sequence [KS99, (A.1.1)]

0— H'T,Z)— H°(T,T) —» H'T,U) —
S H'(Ww—W,Z =T —-U)— H(u—W,Z—-T)— HT,U) -
— H*T, T - U) - H*T',T) — H*(I,U) —

Note that the kernel of H'(u — W,Z — T — U) — H'(u — W,Z — T)
lies in the subgroup H'(I',\T — U) of H'(u — W,Z — T — U) and the
map H'(u - W,Z — T) — H*(T,U) factors through the surjection H'(u —
W,Z — T) — HY(T',T). The difference between [KS99, (A.1.1)] and (5.1) is that
we have replaced H'(I',T — U) by H'(u - W,Z - T — U), H(I', T — U)
by H{(T,T — U),and H (T, T) by H (T, T), for i > 1.

Finally let K and C be the kernel and cokernel of f, respectively, so that we
have an exact sequence 1 - K — T — U — C — 1 of diagonalizable groups.
By assumption Z C K and thus we also have 1 - K — T — U — C, where
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K = K/Z. We have the commutative diagram with exact rows

0

H'T,K) ————> H'(I'\'T - U) H(T',C) — H2(T', K)

| | | i

0—=H@w—W,Z - K)—>H'\u—W,Z—-T—U)— H)I',C) — H* (T, K)

i i | |

HY(T,K) HY(TI,T - U)

0 HO(T',C) — H2(T, K)

Next we shall define a functor Y, ,;(Z — T' — U) that combines the func-
tor Y, 1or(Z — T) of [Kall6b] and the homology groups Ho(W,p, X.(T) —
X.(U))o of [KS99, App. A]. Consider the homomorphism f, : X.(T) — X, (U).
The assumption Z C ker(f) implies that this homomorphism extends (nec-
essarily uniquely) to f. : X.(T) — X.(U). We consider this as a complex
placed in degrees 0 and 1. For every finite Galois extension K/F splitting T
and U we have the hyperhomology groups Ho(Wg/r, X«(T) — X.(U)) and
Hy(Wgk/p, X«(T') — X.(U)), as well as their subgroups Ho(—)o defined in
[KS99, App. A.3]. Let us recall some details. The group of inhomogenous
n-chains C,,(Wg/p, X.(T')) consists of all set-theoretic maps W r— Xa (T)

with finite support. If y is such a map, its differential 9y : Wi/ > — X (T)is
given by

8y(w1, e ,wi_l)

Zx_ly(az,wl, ey Who1)

E E —1
+ yw17"'7wi717wix 7x7wi+17"'7w’n71)

=1

+ Zywla"'7w77,—1ax)a

where z runs over Wy, p. The group Zo(Wk, p, X«(T) — X.(U)) has the
explicit description as the set of pairs {(\, p1)|A € Co(Wg/p, Xu(T)), 1 €
Ci(Wgkp, X«(U)), f«(A) = Ou1), while the group Bo(Wg,p, X«(T) — X.(U))
is givenby {(3)\1, f*()\l)—a,uQ)|/\1 S Cl(WK/F7 X*(T)), L2 € CQ(WK/F, X*(U))}
Then Hy = Zy/By. The subgroup Zy(—)o consists of those (A, u1) satisfying in
addition Ng,pA = 0,and Ho(—)o = Zo(—)o/Bo. Note that Ho(Wg/p, X.(T))o =
Hpt Tk p, Xi(T)) = [Xo(T)/IX.(T))tor, where I is the augmentation ideal in
I'k/r, or equivalently in I'. In [Kall6b] we used the notation Y. (7") for this
finite abelian group.

{fct:tn++esyl}
Fact 5.1. We have the exact sequence

Hl(WK/F,X*(T)) — Hl(WK/F,X*(U)) —
—Ho(Wr/r, X(T) = Xu(U))o = Yior(T) = Yior(U).

Proof. Left to the reader. O
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We define Ho(Wy/p, X.(T) = X.o(T) = X.(U))o = Zo(Wip, Xo(T) —

{fct:tn++esy2}
Fact 5.2. We have the exact sequence

Hi\(Wg/p, Xu(T)) = Hi(Wg/p, X (U)) —
—)H(](WK/F,X*(T) — X*(T) — X*(U))() — YJr’mr(Z — T) — }/tor(U).

Proof. Left to the reader. O

There is a coinflation map C,,(Wp,p, X.(T)) — Cn(Wgk/p, X«(T)) for a
tower L/K/F defined by

coinfy(wy, ..., w) = Yy, ... 1),
wi€p~(w;)

where p : Wi ,p — Wk p is the natural projection. This map respects dif-
ferentials and induces a corresponding map H,, (W, p, X.(T) — X.(U)) —
X, (U))o, this relies on the torsion-freeness of X, (7).

{fct:ksl}
Fact 5.3. Consider a tower of finite Galois extensions L/ K /F and assume K splits T

and U. Then the following diagram commutes

Ho(Wrp, Xo(T) = X.(U))o — H'(K/F, T(K) — U(K))

| |

Ho(Wie/p, Xo(T) = X.(U))g — H(L/F,T(L) - U(L))
where the left map is coinflation, the right map is inflation, and the horizontal maps

are the isomorphisms [KS99, (A.3.4)]. Both vertical maps are isomorphisms.

Proof. This is diagram [KS99, (A.3.11)], and its commutativity is proved there.
The fact that inflation is an isomorphisms follows from the 5-lemma applied to
the exact sequence

T(F) = U(F) - H(K/F,T(K) - U(K)) - HY(K/F,T(K)) - H (K/F,U(K))

and its L/F-analog. The fact that coinflation is an isomorphism follows from
the commutativty of the above diagram. O

The coinflation map induces a map

Ho(Wp) 5, Xo(T) = Xo(T) = Xo(U))o = Ho(Wie/p, Xo(T) = X (T) = X.(U))o.

Fact 5.4. This is an isomorphism.
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Proof. We apply the 5-lemma to the exact sequence

H1(X.(T)) = Hi(X.(U)) = Ho(Xu(T) = Xu(T) = Xu(U))o = Y tor(T) = Yier(U),

where we take homology of W ,r, and then map it, via the coinflation map,
to the same exact sequence but for Wy . For the last two terms coinflation
induces the identity. For the first two terms, it is an isomorphism due to Fact
5.3 applied to the complexes 1 - T and 1 — U. O

We define Yiior(Z = T — U) as the inverse limit of Ho(Wg,p, X.(T) —
X (T) — X.(U))o with respect to coinflation.

Fact 5.5. Let Hy(X.(T)) denote the inverse limit of H1(Wg,p, X.(T)) with respect
to coinflation. We have the exact sequence

Hi(X.(T)) = H (X (U)) = Yie(Z =T = U) = Yy 10r(T) = Yir(U).

Finally, we cons1der the dual homomorph1sm f U — T. 1t lifts (umquely)
toa homomorphlsm f U — T. Let Z be the kernel of the isogeny T' — T,and
let K and C be the kernel and cokernel of f Then | f] Y2)=K.

We define the group Cts(WF7 25T« U ) to consist of the palrs (2,¢),
where z € ZL(Wg,U) and ¢ € T satlsfymg dc = f(2), where ¢ € T is the

image of ¢. We define B* (W, Z — T + U) to consist of (du, f( ) foru € U,
and H' = Z'/B". This group fits into the exact sequence

~

HY(Wp, T) « HL(Wp,U) < H\ . (Wp,Z — T « U) + [T]* « U".

C

Define H

cts

(WF,Z ST« U)red to be the quotient of Cts(WF,Z ST+ U)
by the image of [T ]+ °. Then we obtain the exact sequence

Hclts(WF’T\) cts(WFa U) cts(WFv Z — T <~ U)red < 7"-(J([T] ) A 7"-O(fj\vr)'

(5.2)

We introduce on H' (v — W, Z — T — U) the unique topology that makes

the homomorphism U(F) — H'(u — W,Z — T — U) continuous and open.

Analogously, we introduce on Yio;(Z — T — U) the unique topology that

makes the homomorphisms Hy (W, X+(U)) = Yior(Z — T — U) continu-

ous and open. Here H;(Wg,r, X.(U)) is topologized to make the Langlands
isomorphism a homeomorphism.

5.2 Generalized Tate-Nakatyama duality
We shall now define a perfect pairing

Hw—W,Z T = U)@ H\(Wp,Z =T + U)wa — C*  (5.3)

that generalizes the pairing [KS99, (A.3.12),(A.3.16)], which can be seen as the
special case Z = 1. We do this in two steps — first introducing a pairing of
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elementary nature between Hl,(Wp, 7T — U) and Yiwr(Z =T — U),
and then an isomorphism of arithmetic nature Y, 1or(Z =+ T — U) — H'(u —
W, Z —-T —U).

Given (z,¢) € ZkWg/p, Z — T — U) and (A, j11) € Zo(Wir, Xo(T) —
X, (U))o define ((z,¢), (A, u1))x € C* as

e [T ) mw)y

wEWK/F

where (—, =) is the pairing T' x X.(T) — C* and (—, —)y is the analogous
pairing for U. It is immediate that if L/ K /F is a tower of Galois extensions and
z is inflated from Wy, we have ((z,¢), coinf(\, 1))k = ((2,¢), (A, 1)) . It is
immediately checked that this pairing annihilates the (co)boundaries on both

~

sides, as well as the image of [T]*°, and therefore induces a pairing

]‘[Clts(VVF7 7 = % — (/j)red ®Yir(Z =T — U) = C* (54) {eq:elempair}

functorialin Z - T — U. R
Recall the pairing H,(Wr,U) @ Hi(Wg, X, (U)) — C* that underlies the

~

Langlands isomorphism H} (Wpg,U) — Homgs(U(F),C*) and the pairing

~

m)(fr) ® Yior(T) — C*. The latter was generalized to mo([T]") ® Y ior(Z —
T) — C* in [Kalléb, Prop. 5.3].
R {fct:tn++dl}
Fact 5.6. The pairing (5.4) is compatible with the pairing mo([T)7) ® Yy 10r(Z —
T) — C%, as well as the negative of the pairing H' (W, U)® H(Wr, X.(U)) =
C*, and induces an isomorphism

HY.(Wp,Z =T « U — Homes(Yior(Z — T — U),C¥).

Proof. The compatibility of the three pairings is immediate from the explicit
formula defining (5.4). The compatibility with the negative Langlands pair-
ing together with the definition of the topology on Yio:(Z — T — U) implies

that the image of the resulting homomorphism HZ (W, Z 5T —U) —
Hom(Yior(Z — T — U),C*) lies in Homgs(...). Applying the functor Homs (—, C*)
to the exact sequence of Fact 5.5 produces an exact sequence: for Hom(—, C*)
this is because C* is an injective abelian group, and passing from abstract to
continuous homomorphisms doesn’t ruin exactness due to the definition of the
topology on Y (Z — T — U). This exact sequence maps to the exact sequence
(5.2), with the first two maps being the negative Langlands pairing, the middle
map being (5.4), and the fourth and fifth map coming from [Kall6b, Proposi-
tion 5.3]. All maps except for the middle one are known to be isomorphisms,
and the 5-lemma applies. O

We now turn to the isomorphism Y, or(Z = T — U) — H'(u — W, Z —
T — U). We fix as in [Kall6b, §4.4ff] an exhaustive tower Ej/F of finite Ga-
lois extensions, compatible sections s; : I', jp — Wg, /p and ¢ : T'g, /p —
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I'g,../r, a co-final sequence ny of natural numbers, a compatible sequence
I, : F* — F* of ny-roots. Define c (o, 7) = rec; ' (sx()sx(7)sx(c7) ). Then
&k = dlger, Ug, jr de € Z%(T, uy) gives rise to the extension Wy, = uy, X, T of
' by ux. We have the 1-cochain ay € C'(T,uy) of [Kalléb, (4.8)] leading to
the surjective group homomorphism fj : Wyy1 — Wy, defined by fr(z K o) =
p(z)ar(o) Ko, where p : ug1 — uy, is the surjective group homomorphism of
[Kall6b, (3.2)]. Then W = lim, W is an extension of I by w in the distinguished
isomorphism class.

We are now going to construct the isomorphism by refining and merging
together the constructions of [KS99, §A.3] and [Kall6b, §4.6]. More precisely,
a central role in the constructions of [KS99, §A.3] is played by two maps ¢ =
o1+ C1(Weyp, Xo(T)) = T(Ey) and ¢ = Yri 2 Co(Wg,/r, Xi(T))o —
Z (T g, /r, T(Ey)), where Co(Wg, /p, X+(T))o is simply the kernel of the norm
map for the action of I'g, /» on X, (T). They are functorial in 7" and satisfy
$po0 =0and Jo¢ = 1 od. We shall now recall these maps and give a
refinement ) of 1 using some material from [Kall6b, §4.6].

Fix k such that Ej, splits both T" and U and ord(Z) divides ny. Consider
A€ X, (T)and py : Wg,/r — X.(U) such that (A, 11) € Zo(Wpg, /r, Xo(T) —
X.(U))o. As in [KS99, §A.3] define ¢y (1) € U(Ey) by

us(p) = ] olmlas(m))(eulo, ) o(a)™),

o,T,a

the product running over I'g, /p X ', /¢ X E. As explained there, this is
an explicit formula for the restriction map of 1-chains C1(Wg, /p, X.(U)) —
C1(E}, X (U)) composed with the isomorphism C; (E;, X, (U)) = X.(U) @z
EY = U(Ey). Furthermore, we define ¢r(\) € Z'(u — W,Z — T) as the
inflation along W — W}, = wuy, K¢, T of the element zj ; of [Kalléb, Lemma
4.7], which we recall is defined as

e B p s ¢ x(@) - (e U miN)(p) = d5x(@) - ] po(md)(lnep.o)-

G’EFK/F

The image z5 , € Z'(T',T) of 25, is given by ¢, UX = ¥#(A) and hence satisfies
the equation f (25 ) —0¢u (u1) = f(¥r(A) =00 (11) = Yu (f« (X)) =t (Op1) =
0, due to the functoriality of ¢». We conclude that (25 4, ¢v (1)) € Z'(u —
W, Z -T —U,).

Now consider (O, f«(A1) —Op2) € Bo(Wg, yp, Xu(T) — X.(U)). Then we
have 17 (0A1) = ¢r(0A1) = O¢r (A1), and hence (Y1 (9A1), ¢u (fi (A1) —Op2)) =
(001 (M), fu(@r(A1))) is a coboundary.

We conclude that we have defined a group homomorphism

Ho(Wg, /p, Xo(T) = X (T) = Xo (U)o = H' (u > W, Z =T = U).

Next, we consider the composition of this homomorphism with the coinflation
map
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In [KS99, §A.3] a homomorphism ¢ : Co(Wg, ,,/r, X«(T))o = C°(Ery1/F, T(Ej41))

is defined, and it is shown that
inf o ¢y, o coinf = ¢p11 + 0,

inf o ¢y, o coinf = 1 + de.

The homomorphism c is defined by the formula

c(\) = H (o)) H cht1(v, Cr(0))

o€l /r vElEy /By

The compatibility of the chosen sections sj, and sj1 implies, via [Kal16b, Lemma
4.4], that this homomorphism is trivial, because the inner product is equal to
ck(1,0) = 1. Itfollows that for 41} : Wg, ., /p — X.(U) the element ¢y 41 (1)) €
U(Ejy+1) is equal to the image of ¢y x(coinf(y})) € U(Ey) under the natural in-
clusion U(Ey) — U(Egy+1). On the other hand, the inflation of z5 ; to Wiy
equals zj ., according to [Kall6b, Lemma 4.7], which in our notation here

means 47 (coinf(A)) = Y7 x41()). This gives a commutative diagram

ZoWeyp r Xu(T) = Xu(U))o

coinf Zl(u—>VV,Z—>T—>U)

M

ZoWg, p, Xu(T) = Xu(U))o

already on the level of (co)cycles, and it in turn induces a commutative diagram
on the level of (co)homology, leading to a homomorphism

Yir(Z =T —=U) = H(u—W,Z =T —=U). (5.5)

Proposition 5.7. The homomorphism (5.5) is a functorial isomorphism. It is indepen-
dent of the choices made in its construction.

Proof. Itis immediate from the construction that this homomorphism is functo-
rial. The fact that it is an isomorphism follows from the 5-lemma, applied to the
exact sequence just below diagram (5.1) and the corresponding exact sequence
of Fact 5.2. The maps between the first two terms of these exact sequences are
the Langlands isomorphism H; (X, (1)) — T'(F') and its analog for U, the map
between the third terms is (5.5), between the fourth terms it is the isomorphism
Vii(Z = T) - HY(u — W,Z — T) of [Kalléb, §4], and between the fifth
terms it is the Tate-Nakayama isomorphism Yi,(U) — H* (T, U).

We next argue that this homomorphism is independent of the choices of
sections sy, (and also () and root maps ;. For this, let (},, s}, and [}, be other
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choices. We obtain ¢}, € Z*(Tg, /p, E}), & € Z°(T,ux), Wy = up K T Let
W' = Jim W/. The construction above gives a group homomorphism

Yior(Z =T - U) = H(u—>W',Z =T = U).

Every isomorphism W' — W of extensions induces the same isomorphism
H'(u—W,Z—-T—U)— H'(u— W' Z —T — U) and we need to show
that the triangle

HY(u—=W,Z =T —U)

/

Yior(Z = T — U)

\

H'(u—=W'Z T —=U)

commutes. Define ny : I'g, /)p — E; by s}(0) = ni(0)sk(o). Define oy €
Cﬂ(F,uk)by

ap k(o) = ¢k - (ker) ™" - (dleme) ™) Ug, /F e

) ] ) ) {lem:tn++il}
Lemma 5.8. The assignment x X o — zay (o) X o defines an isomorphism of

extensions gy : W, — Wi, that satisfies zy j, o gx = zf\ e d(lenx Ug, /F npA) "L

Proof. This is a direct computation, using [Kall6b, Fact 4.3]. O

Consider the diagram

, Jk+1
Wi =% Wiy

ik

9k
W, —2 > w,

This diagram does not commute. Define 8, : I'g, /r — F* by

Br(a) =lme(a)™  J]  temesa (1),

bEFEk+1/F
b—a

{lem:tn++i2}
Lemma 5.9. 1. Bi(o)™ = 1and hence By, € uy;

2. fk o §k+1 = Ad(ﬁk_l) o gk o f]/c
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Proof. We begin with the second point. From the definitions of f; and g, we
have

fe(@r(@®o)) = pldleginesr Up,,,/r 6e) " (dlink Up, p 0c) - Gk (fi(z R o))
d[p(lk17k11 Vg, /F 0e) " (e Up, /r 0c)] - Gk (fr(z B o).

Recall the torus Sy, defined as the quotient of Resg, G, by the diagonal copy
of G,,. Its subgroup Sj[n] of nj-torsion points is precisely uj. We can compute
lknk Ug, /F 0c € Sk, explicitly and see that it is represented by the map I';, / —
F* sending a to [;ny (a). The analogous formula holds for I 117k +1UE, , , /re €
Sk+1, whose image under p then sends a to [ [, lx7i+1(b), where b runs over the
elements of I'g, ,, /» mapping to a. Thus the argument of d is 3; ' as claimed.

We come to the first point and need to prove that the function I'g, ,p — F'*
defined by a — nx(a) ! [, 7k+1(b) represents the trivial element of Sy,. For
this we recall that the sections s; and sj11 were chosen to satisfy

$ka1(YC (7)) = sk (V) sk (Ce(2)  and  si(x) = 1 (5511 (G (2))),

fory € Tg,,,/p, andz € Iy, )p, where )" is the natural projection Wg, ,  /p —
W, r. From these we obtain via direct calculation the following identities

Mha1 (0G4 (a) = M1 (v) - “mega (@) and me(a) = [  “mera(Ghla)),

velm, ,/Ek

which imply n(a) " [T, 0 me+1(0) = T1, 7k+1(v). This is a constant function
in a, hence represents the trivial element of \Sj. O

Choose 8;, € u mapping to S, € ug. Define B<k = Hf;ll Bl Define gy, :
W, — Wy as Ad([3< k) © gr. Then (gi)r commutes with the transition maps fi
and f;, and induces an isomorphism g : W’ — W. We transport z5 via g and
obtain an element z{ € Z'(u — W', Z — S) that we want to compare with z}.
Lemma 5.8 implies

. R —
Hp@Ro) = 25 (x8a)- b5, (B<k - "Bk ) - d(lpm Up,r X) ™
= 25, (@R0) - (5 (B<k) - bk Up, s i)~

On the other hand, the identity ¢ x(11) = ¢y (1) — me U f«(\) was veri-
fied in [KS99, §A.3]. Since f|z = 1 we have f(¢x ,(B<k) - Lk Up,/r 1k\) =
F UX) = nmp U fo(N). Tt follows that (7 x(\), pu k(1)) is cohomologous to
(¥ 1 (X), ¢ (111)), and so are their inflations.

Finally we argue that the homomorphism is independent of the choices of
sequences n and Ej. If n) is another sequence, we may reduce to the special
case ny|nj, by comparing both n;, and nj, to n), = nyn} . In the special case ny|n;,

choose a compatible system [, with [, /™ ' and define I, = I;"/™ Tt is
A

immediate to check that we have equality of cocycles {; = ¢}, and zj ;, = Sk
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(we have of course choosen ¢, = ¢, and s, = s}). This shows independence
of the choice of nj. For the choice of Ej, note first that passing to a co-final
subsequence has no effect. If £} is another sequence, we may pass to co-final
subsequences of both £ and Ej, to arrange Ey C B}, C Exy1 C By . Define
E}! by EY, = Ej, and EY, = E .- Then E} is again an exhaustive sequence, of
which both Ej, and Ej, are co-final subsequences. This shows independence of
the choice of E},. O

Lemma 5.10. The isomorphism 5.5 satisfies the following compatibilities.

1. The maps Hi(Wr, X.(U)) = Yy 400(Z - T — U) and H'(u — W, Z —
T — U) — HOT',U) translate the isomorphism 5.5 to the negative of the
Langlands isomorphism H;(Wr, X, (U)) — H°(T',U).

2. The maps Yy 4jo/(Z - T = U) = Yy tor(Z — T) and H (u - W, Z — T —
U) — HY(u — W, Z — T) translate the isomorphism (5.5) to the isomorphism
constructed in [Kal16b, §4].

Proof. This follows by inspecting the construction of (5.5). Indeed, the defi-
nition of ¢/ (\) as the inflation of 25, from Wy to W is the same as the con-
struction in [Kall6b, §4.6]. On the other hand, the definition of ¢y used here is
the same as the one in [K599, §A.3]. The fact that it yields the negative of the
Langlands isomorphism comes from the inverse in the formula [, . jcx zo(a™")
appearing in the middle of page 131 in loc. cit. O

Corollary 5.11. The pairing (5.3) satisfies the following compatibilities.

1. The maps HO(T,U) — H*(u — W,Z — T — U) and H*(Wp,Z — T «+
U) — H'(Wp,U) translate the pairing (5.3) the the Langlands pairing.

2. ThemapsHl(u% W,Z -T—U)— H (u— WZ%T)andwo([ [+) —
H*Wg,Z = T « U)yy translate the pairing (5.3) to the pairing [Kal16b,
Corollary 5.4].

Proof. This follows directly from Fact 5.6 and Lemma 5.10. Note that in the case
of the Langlands pairing both the Fact and the Lemma contain a negation, and
the two cancel out. O

5.3 Rational classes and invariants for rigid inner forms

With the cohomological preliminaries out of the way, we can now extend the
considerations of Section 4 to the case of general inner forms. In this subsection
we extend the concepts of rational classes and their invariants.

We begin again with a quasi-split disconnected group G = G x A. More
precisely, let G be a connected reductive group, defined and quasi-split over F.
Let (T, B, {X.}) be an F-pinning of G and let A be a finite group that acts on G
by pinned automorphisms. Assume given an action of I" on A so that foro € T
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we have o(a(g)) = o(a)(0o(g)). As we argued in Subsection 4.1 we may replace
Aby A" and therefore assume that I' acts trivially on A.

A given z € Z(T',G/Z(G)*) leads to the inner form G of G x A, where T
acts on Gz (F) via the twisted action o — Ad(Z(c)) x 0. The elements of G+ (F)

are those 0 € (G x A)(F) that commute with zZ(o) x o. Given a norm (S,)
of § = ¢ x a we would like to define a cohomological invariant measing the
relative position of (S,7) and d. If we mimic the constructions of Subsection

4.3 we would arrive at an element inv(y, (z,9)) of H'(I", S/Z(G)* I S), but
that would be too crude for our purposes.

In order to define the right invariant, we need to work with z € Z'(u —
W, Z(G)* — G) instead of z € Z'(I',G/Z(G)*). Thus we consider the set
of pairs (z,0), where z € Z'(u — W,Z(G)* — G), § € (G x A)(F), and
6 commutes with z(¢) x o, where now z € Z'(T',G/Z(G)*) is the image of
z modulo Z(G)“. This is the set of rational elements of rigid inner forms of
G x A. The surjectivity of Z'(u — W, Z(G)* — G) — ZY(T',G/Z(G)*) asserted
in [Kall6b, Proposition 3.6] implies that this set surjects onto the set of rational
elements of inner forms considered above. Furthermore, the set of rational
elements of pure inner forms of G x A injects into the set of rational elements
of rigid inner forms of G x A. The group G acts on the latter set by the same
formula as in the case of pure inner forms, and the orbits of that action are the
set of rational conjugacy classes of rational elements of rigid inner forms.

We can extend the cohomological notation of Subsection 4.2 as follows.
Given two homomorphisms (a,b) : G = G and a central subgroup Z C G
that equalizes them, we consider the set Z, ,(u — W, Z (G)* = G = Q) of
pairs (z,9), where z € Z'(u - W,Z — G) and § € G satisfying a(z(w)) =
571b(2(w))ow(8), where o, € T is the image of w € W. In our applications
we will take b = id and abbreviate Z, , to Z;. As before, (z,0) lies in Z; if
and only if § = § x a commutes with Z(w) = z(w) x 7, and we write Z! for
the set of commuting pairs (2, ). The group G acts by conjugation on the set
Z!, or equivalently by (g7 2(w)o.,(g), g~ 'da(g)) on the set Z!, and the sets of
orbits under this action are denoted by H respectively H_}. The set of ratio-
nal elements of rigid inner forms of G x A is |J,. 4 Z!, and the set of rational
conjugacy classes of rational elements is the set | J,,. 4 H.

As in the case of pure inner forms, given a rational element (Z, 6) and a
norm (S,v) for the G-conjugacy class of J, we choose a representative (3*,5*)
of the G-orbit of (2,4) as in Lemma 4.1 and the same argument implies that
(2%,6") € ZMu — W;Z(G)* — S = S) and its cohomology class is inde-
pendent of the choice of (3*,*). Moreover, (2*~',§*) lies in the set H'(u —
W,Z(G)4 — S = S) defined in Subsection 5.1. We shall denote either of
these classes by inv(y, (z,0)) or inv(v, (Z,0)). The image of this invariant in
HYT,S/Z(G)A 1= S) is equal to the cruder invariant inv(vy, (%, §)) mentioned
above.
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5.4 Refined endoscopic data

As in the case of connected groups, rigid inner forms require a refinement of
the notion of endoscopic datum. The necessary refinement is directly analo-

gous to that in the connected case. Namely, let Z C Z(G)* be finite, G =
G/Z, and G — G the isogeny dual to G — G. Given an endoscopic da-
tum ¢ = (G% G, 5% €% in the sense of Subsection 4.7, a refinement consists
of choosing a preimage $° € G x A of 5. The refined endoscopic datum is then
¢ = (G, G, 5%, ¢%). An isomorphism ¢ — ¢’ of two such data is given by g € G
satisfying £€¢ = Ad(g) o £¢ and ¢ = Ad(g)3¢ modulo Z((A?)O.

5.5 Normalized transfer factors

Given a refined endoscopic datum ¢ and a z-pair 3 for ¢ we shall now define a
normalized transfer factor: a function Aftv, ¢, 3] that assigns complex numbers
to pairs (43,4) of strongly regular semi-simple elements 7 € G3(F) and § €
G.(F). This factor is given by the same formula (4.2) as in the case of pure
inner forms, but with a different construction of Agg[w, ¢,3], which depends
on the refinement ¢ of ¢. That in turn is given by the same formula (4.3), but
we have to specify what A}SY is. We shall now give this construction in the
general case involving a z-pair.

The considerations are rather analogous to those of Subsection 4.11. We
follow the notation there. Thus we have v¢ € S3(F), (3,4) € Zl},l (u—>W,Z —
G = @), anorm (S,7) for §, and a representative (3*,45*) of the G-conjugacy
class of (,0) with §* € S(F) mapping to v € Sy(F). The element 5 = (6*,~3)
lies in the fiber product S of S — S, = S¢ + S3. Under the homomorphism
(by* —1) : § — S3, the 1-cocycle 2* € Z'(u — W,Z — S) maps to a 1-
cocycle (b —1)2* € ZY(T', S}) that satisfies (b; ' — 1)z*(0) = (0%)~'0(%), and
so (2*71,6%) belongs to Z'(u — W, Z — S T, S?). The class inv(y3, (z,9))
of this element is independent of the choice of (z*,§*). Its image in Z'(u —
W,z =S 1= S) equals the class inv(7, (#,0)) defined in Subsection 5.3.

Next we define a class Ay € H'(Wp, Z — § « §f) refining the class 4y €
HY(Wp, 8 — S) of Subsection 4.11. Following the definition of Ay we have the
element (ag',ss) € Z' (W, (1 —b;) : §i’ — §) In addition to §° = £g(ss) x b,
we now also have §¢ = {g($s) x b, where we form S = S/Z and use the unique
extension of {5 to £S — LG to define 55 € S. Then (agh, ss) € Z\Wp,Z —
S « S%) and its class is Ay.

We now define A79Y(+3, (2, ¢)) to be the value of the pairing constructed in
Subsection 5.2 at the classes inv (43, (z,)) and Ay.
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5.6 The local correspondence and character identities

Let ¢ : Ly — LG be a tempered Langlands parameter. In subsection 4.6 we
introduced the group of G-equivalences S = Cent(¢, G x A). It was part of an
exact sequence

1= Sy — 85— Al -1,

where Al¢] is the stabilizer in A of the G-equivalence class of ¢. For a finite
subgroup Z C Z(G)* we have the isogenies G — G = G/Z and G — G
and we define 5‘;; to be the preimage in G' x A of S,. This is analogous to the

definition of S as the preimage in G of Sy given in [Kalléb, §5.4]. We have
again the exact sequence

1= Sf—8f— A - 1.

We are now interested in the rigid inner form G, for some z € Z'(u — W, Z —
G). Let Al be the stabilizer of the class of z, and Al?lE] = Al¢l 0 AlZl. Pulling
back the above exact sequence along the inclusion Al?[2 — Al?l we obtain the
exact sequence

1= 85— S'df’[z] — Al 1,

In the case F = R set X, to be the associated K-group, i.e. the disjoint
union of G/ for all 2/ in the image of H'(R,G,«) — H'(R,G,) — H'(u —
W, Z(G)* — G,) = HY(u — W, Z(G)* = G).

Conjecture 5.12. 1. The choice of an A-special Whittaker datum vo on G deter-
mines a bijection between the set of irreducible admissible G-tempered represen-
tations of G.(F) when F/Q,, or any member of XG,(F) when F = R, and
the set of G x A-conjugacy classes of pairs (¢, ), where ¢ : Lp — LG isa
tempered Langlands parameter, and p € Irr(ﬂo(S';’[Z]), [2]). When z = 1 the
representation corresponding to (¢, p) is vo-generic if and only if p = 1.

2. This bijection satisfies the character identity (4.4) for a pair of functions f and
f3 as in Lemma 4.6, where now the transfer factor is the one constructed in
Subsection 5.5.

6 CHANGE OF WHITTAKER DATA

In [Kal13] we studied how the bijection Irr(m(S)) — II, of the refined local
Langlands conjecture depends on the Whittaker datum tv, in the case of a con-
nected reductive group. Strictly speaking loc. cit. considered only pure and
extended pure inner twists, but not rigid inner twists, which were unavailable
at the time. In this section we shall extend these considerations to the case of
rigid inner forms of quasi-split groups and may be connected or disconnected.

Consider first the connected case, which will serve primarily to recall no-
tation from [Kal13]. Let G be a quasi-split connected reductive group defined
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over F' and let wy, 0y be two Whittaker data. There is a unique element of
COk(G(F) — Gaq(F')) conjugating oy to wg, which we denote by (w1, 17). Re-
call from [Kall3, Lemma 4.1] that there is a natural injection

~ ~ D
cok(G(F) - Gad(F)> - ker(Hl(WF7 Z(Gso)) — H (Wp, Z(G))) .

It essentially comes from Poitou-Tate duality

H' (T, Z(Gs)) @ HY (T, X*(Z(Gs))) = H*(T,G,,) — Q/Z

~

and the identification X*(Z(Gs.)) = Z(Gs) via the exponential map exp :
X (Tsc) ®z C — Ty with kernel X, (Ti). Given a tempered Langlands pa-
rameter ¢ : Lp — LG we endow the exact sequences

1= Z(Gse) = Gse = Gag — 1, 15 Z(G) = G — Gag — 1

~ ~

with Lp-action via Ad(¢(—)). The actions on Z(Gs.) and Z(G) are of course
simply the I'-action inflated to Ly and H*(Lp,—) = HY(Wp, —) for these two
groups. The connecting homomorphism H°(Lp, (A?ad) — HYT,Z (@SC)) is con-
tinuous and thus factors through the component group of the complex alge-
braic group HO(Lg,Goq). We have Sy = H(Lp,G) and its image under that
connecting homomorphism lands in ker(H' (W, Z(Gs.)) — H'(Wg, Z(Q))).
Therefore (1w, v3) induces a character of 770(5¢/Z(CA¥)F) = WO(S;F/Z(CQJ)‘*). If

v Irr(SF) — Ty(G)

are the two bijections of the refined local Langlands correspondence, where
we are using compound L-packets encompassing all rigid inner forms, then
according to [Kal13, (1.1)] we have

t2(p) = t1(p ® (01, 1w2)).

We now turn to the disconnected case. Thus let G' = G x A be a quasi-split,
(possibly) disconnected, reductive group, and let w;, 1w, be A-special Whit-
taker data for G. Let z € Z*(u — W, Z(G)* — G). We denote by

i 2 Trr(mo (S0, [2]) — T4 (G)
the bijections of Conjecture 5.12 with respect to the Whattaker data tv;. The
approach to comparing these is the same as in the connected case. We use the
exact sequences

1—>Z(@SC)—>@SC><A—>@ad>4A—>1, 1—>Z(@)—>@xA—>@ad>4A—>1

to obtain the connecting map H°(Lp, @ad x A) — HY (W, Z(@SC)). This map
is no longer a homomorphism, but rather a twisted homomorphism (i.e. a
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1-cocycle) for the action for Gaa ¥ A on Z(Gy) given by the projection to A
and the natural action of A on Z(Gs). Nonetheless, this map factors through
To(HO(Lp, Gag x A)) and sends S, = HO(Lp, G x A) to ker(H (W, Z(Gs.)) —

HY(Wp, Z(G))). In this way we obtain a twisted homomorphism
70(Ss/Z(G)') = ker(H' (W, Z(Gs)) — H (W, Z(G))).

Since the character (tvy,15) of ker(H (W, Z(Gs)) — H*(Wp, Z(G))) is A-
invariant, its pull back under this twisted homomorphism is a character of

70(Sy/Z(G)F) = ﬂ0(§$/2(§)+), which we may pull back further to 770(5”;’[27] )-

Proposition 6.1.
t2(p) = t1(p @ (1, 12)).

Proof. Lets =sxa € S’¢. As in the proof of [Kall3, Theorem 4.3] it is enough
to prove the identity

Ags[og] = ((01,13),5) " - Aggltoy].

To prove this we choose an additive character ¢ of F' and A-invariant F-pinnings
spl, giving rise to ;. We write Axs according to (4.3) and note that only
A depends on the pinnings. Let g € G2 (F) conjugate spl, to spl, and let
x € HY(F,Z(Gs)?) be the image of g under the connecting homomorphism
for the exact sequence (cf. Fact 3.7)

1= Z(Gse)* = G2 — G4 — 1.

The argument of [LS87, (2.3.1)] shows that the twisted splitting invariant in
H*'(F,T%) with respect to spl, is the product of the twisted splitting invariant
with respect to spl; with z (note that loc. cit. uses conjugation on the right, so

their g is our g—1). Therefore A;[ws] = (x,s) "t A;[vy], as claimed. O

7 CHANGE OF COMPONENT GROUP

7.1 Restriction

Assume now given a map of finite groups B — A. We can consider the discon-
nected groups G4 = Gx A and G® = G'x B, where B acts on G via its map to A.
We can consider restriction of representations along the map GZ(F) — GA(F).
Dually, the map G x B — G x A induces for each tempered Langlands pa-
rameter ¢ a map w0(55’+’[z]) — WO(S:;’J“[Z]) and we can consider restriction of
representations along this map as well.

Let the G-tempered representation 74 of G2 (F) correspond under Conjec-

ture 5.12 to the pair (¢, p*) with ¢ : Lr — G and p* € Irr(7r0(S$’+’[z])7 [2]).
Let the G-tempered representation 77 of G (F) correspond under Conjecture
4.2 to the pair (¢/, pP) with ¢’ : Lp — G and p® € Irr(Tro(Sg’J“[z]), [2]). We
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thus have the multiplicity of 77 in Res 4. If the parameters ¢’ and ¢ are G-
equivalent we may replace (¢, p!) by an equivalent pair and assume ¢ = ¢'.
Then we also have the multiplicity of p” in Res p.

Conjecture 7.1. The multiplicity of 72 in Resw# is zero unless ¢ and ¢' are G-
equivalent. Assuming that and arranging ¢ = ¢, this multiplicity is equal to the
multiplicty of p® in Res pA.

Remark 7.2. Let G = G x A and B = {1}. Applying Conjecture 7.1 we ob-
tain a complete description of the set Il . in terms of the L-packet I, . of
the connected group G.(F): An irreducible G-tempered representation 7 of
G.(F) belongs to Il . if and only if its restriction to G (F) intersects Tl ..
Equivalently, the set I . consists precisely of the irreducible constituents of
the inductions to G, (F) of the elements of II4 .. Hence the content of Conjec-
ture 5.12 is in the internal structure and character identities with normalized
transfer factors. Note that, just like in the connected case, the packets ﬁ¢7z are
disjoint and exhaust the set of isomorphism classes of irreducible admissible
G-tempered representations, assuming this is the case for the packets Il .

7.2 Slicing by cosets

In this section we assume the validity of the refined local Langlands corre-
spondence for connected groups, as well as its functoriality as expressed in
Conjecture A.1. Given a tempered parameter ¢ : Lr — LG we then have
the L-packet II4(G.). If 7 € II4(G,) and p € Irr(wo(S(Z)) corresponding to
each other then Conjecture A.1 implies Al = AL¢]. We have the elements
ar € H2(AF C*) and o, € H2(AY, C*) corresponding to the projective ex-
tension of 7 to G, (F), and of p to my (Sqtiz] ), respectively. The elements o, and
a, are equal if and only if the representation = X p¥ of G (F) x (S} ) has an

extension to G, (F), X 4Lz 7r0(S<-;7[Z]

7p ). Such an extension is then well-defined up

to a character of Agf I,
Conjecture 7.3. Let ¢ : Lr — “G be a tempered parameter. Let w € I 4(G,) and
pE Irr(wO(Sg)) correspond to each other. The representation m X p¥ of G,(F) %
770(5;5*) has an extension (w X p¥)“ to G, (F), X 4L 770(5’;;’[)[2’]) such that for a € A,
feCx(G xa).(F))and 5 € S, mapping to a~" we have

S0, (f) = S @RV )™(f57),

w€elly(G.)

ToasET

where ¢ is the endoscopic datum corresponding to the pair (3, ¢) by the spectral con-
struction of §4.8, 3 is a z-pair for it, and f? € C2°(G3(F)) satisfies

SO, (f4) = ) Brcslw.e.3(:%.9) | Fada™).
5e[Gxal.(F)/G.(F)—conj 2€GL(F)/G=(F);
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Remark 7.4. We note that the extension (7 X p¥)®" is unique if it exists, due to
the character identities it is supposed to satisfy. Furthermore, these character
identities imply that for any b € A the isomorphism

G.(F)x X ALz Wo(g;r,iz]) = G=(F)ox X 4Lzl Wo(gzz’[f,]))

(given up to an inner automorphism) of conjugation by b identifies the exten-
sion (m X p¥ )" with (br K bp¥ )",

Proposition 7.5. Conjecture 7.3 is equivalent to Conjectures 5.12 and 7.1.

As a preparation for the proof we need the following elementary discus-
sion. Consider an exact sequence of locally pro-finite groups

1> H—>H-—>A—>1

with A finite and an A-invariant subset X of the set of isomorphism classes of
irreducible smooth representations of H. The group

.HXAﬁ:{(Bl,Bg) 6HXI§U;L1 GEQH}
fits into the exact sequence
1> HxH-—->HxsH—A—1.

Lemma7.6. 1. If X = {a} there exists a projective representation & of H extend-
ing x and satisfying &(hh) = x(h) o &(h) for h € H and h € H. The external
tensor product & X &V is a linear representation of H x 4 H depending only on
x, but not on z.

2. The isomorphism class of the representation

> HxaH ~c ~V
X=@Qmdg ;" ; i¥a",
T

where © runs over a set of representatives for the A-orbits in X, is independent
of that set and is an extension of @, oy xR x".
3. We have o
HxH ~ \Y
Indg  ~qX = @(5 XY,
where & runs over the set of irreducible representations of H lying over X.

4. Given a diagram of extensions

1 H H, Ay 1
1 H Hy Ay 1

{rem:canext}

{pro:slice}

{lem:ex2}



and an Ag-invariant set X, let X1 be the set Xo with the action of A, restricted
from that of As. The representation X, of Hy x4, H,y is the pull-back of the
representation X5 of Hy x 4, Ho.

Lemma 7.7. We are given two extensions 1 — H; — H; — A — 1 of locally profi-
nite groups with A finite. Let X be an A-set equipped with A-equivariant injections
X — Irr(H,). For x € X we write x; for its image in Irr(H;) and o, € H*(A,,C*)
for the associated class. We assume oy, = og,. Assume given an extension to
Hyy Xa, H2 «» Of the representation xy X a3 of Hy x Hs, and call this extension
%. Assume thatfor a € Aand y = ax we have § = & o Ad(a™'). Then

1. If X is a single A-orbit the isomorphism class of the representation

X = Indhaf: g

Hl X Ay H2 x
is independent of the choice of v € X. For general X set

D x

X'eX/A

2. The representation X isan extension to H 1 X Af{ 2 of the representation €
Vv
Ts.

zeX

3. Let

Hl H 1,82
mal < X = Dl mey) e

be the decomposition into irreducible pieces. Then m(&1,&2) < 1 and the corre-

spondence Irr(H,) < Irr(lffg)~ afforded by m is a bijection between the sets of
irreducible representations of H; lying over the sets X;.

4. Let A’ C A be a subgroup and write H, C H; for the preimage of A'. All
previous points can be applied to H! in place of Hy. Let & € Irr(H;) and &) €
Irr(H!) be such that & < & under the bijection of point 3, and &£ < &
under the analogous bijection. Then the multiplicity of & in &g, equals the

multiplicity of & in &| g,

Proof of Lemma 7.7. Since all statements break up according to the orbits of A in
X we assume for the rest of the proof that X is a single A-orbit. The indepen-
dence of X from 7 follows from the assumption § = #oAd(a~') for y = az and
the fact that X is a transitive A-set. The fact that X is an extension of @ z; Xz
follows from the induction-restriction formula.

For the third claim we perform induction in stages

dexHQ I ngngT 7
wXHz gz HyxXaA,Ho o

and consider first the inner induction. By assumption there exist projective
representations Z; of H; , such that we have an equality oz, = a3, of elements
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of Z%(A,,C*) and such that the restriction of 7; X 7y from ﬁm X ﬁg’x to
Hy . x4, Hyy is equal to . Write oz for the common value of oz,. Then

Indf1ex e 5 (I nd e < Mz 1)@(:%1&@;),

leXATH2z Hy XAy, Ho o

where on the right we are performing twisted induction with 2-cocycle (a; ', az)

in the left factor, and then tensoring with the (az, a;')-projective representa-
tion 7; X £¥ to obtain a linear representation of H La X H 2,z- The representation
I dH 1,z XH 2,z

Hy o XA @ H 2,
where A, is embedded diagonally into A, x A,. The latter is 1somorph1c to the
twisted group algebra C[A4,],, seen as a left-right-bimodule over itself, and as
such decomposes as the direct sum €. 7 X 7V, where 7 runs over the set of
isomorphism classes of irreducible a;-projective representations of A,. This
shows that

1of H 1o X H 2,7 is the inflation of the representation IndA 2 X Aq 1,

mdg i, P = D e Biren),

As 7 runs over the set of isomorphism classes of az-projective representations
of A,, T ® Z;, runs over the set of irreducible linear representations of H;
whose restriction to H; contains x;, and Indgz , runs over the set of irreducible
linear representations of H; whose restriction ’to H; contains x;.

For the fourth claim we write §; = Indgz T:EZ- ® T, where Z; is an extension of
x; to a projective representation of H; e with’ 2- cocycle az € Z*(A,,C*)and 7
isa pro]ectwe representation of A, w1th 2-cocycle a~ . Write correspondingly

&= Ind . xz ® 7', where we take the restriction of Z; to lfll’z and 7’ is a

projective representation of A/, with 2-cocycle given by the restriction of o *.
The Mackey formula shows that

- i Hivw oo
Resgjlndg: Ti®T = @ Ind, Res " c(Z; ®7).
i ceA’\A/Aw i,cx i,cx

The summation index parameterizes the A’-orbits in the A-orbit of . Since &;
lies over the A’-orbit of z, the multiplicity of &/ in the above restriction is zero
for all summands except possibly the one indexed by ¢ = 1. This summand
decomposes into the irreducible representations as

@Il’ld - mz QT )m(7-,7-//)7

where 7" runs over the 1rreduc1ble projective representations of A/, and m(r, 7")
is the multiplicity of 7" in the restriction of 7. We conclude that m(¢;, )
m(r, 7).

oo

Proof of Lemma 7.6. For the first point we may fix a set A C H of representatives
for A = H/H, an isomorphism () : V,, — V,, of complex vector spaces with
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the intertwining property 7 (a)oz(a~*ha) = x(h)oZ(a) forall h € H, and define
Z(ha) = x(h) o Z(a) forall h € H and a € A. Thls has the required properties
We define the automorphism 7V (h) := &(h)*~! of V,Y. The linearity of # X 7V
follows from the fact that the 2-cocycle of 7 is inflated from A and the 2-cocycle
of 7V is its inverse. Keeping A fixed, the independence from & follows because
another choice is of the form ¢ - 7 for ¢ € C*(A,C*). The independence of the
choice of A now follows readily.

If y = 2 o Ad(a) choose h, € H mapping to a and define § := & o Ad(h,).
Then j is a projective extension of y and satisfies the conditions of point 1. We
have X3 = (£X ") o Ad(h) and the second point follows from Lemma 7.7.

The third point follows from the proof of the previous lemma, for we see
from the argument given there that the right hand side is

@InngXHH ieT)R(EQT),

where 7 runs over the irreducible az-projective representations of A,.

For the fourth point we note that the right square in the diagram is automat-
ically cartesian. Since pull-back is transitive it is enough to treat the extreme
cases when A; — A, is injective respectively surjective, a property that is then
inherited by the maps H, — Hsand H; X A, H, — H, X A, H,. We may assume
that X is a single As-orbit. Choose x € X5. In the injective case we apply
point 2 and the Mackey formula to see that

HgXAzHg df{zXAzﬁQ

Res . - _ iRz
H1>< H1 HgﬁmXAzmeQ,m
is given by
H1><A H1 HQ,axXAQ Ij[2,aa; ~ ~\/
@ Ind. "~ "t Res - e ez R EY).
Hiaoxa, MH1 az Hiae X4y 40 Hi 0z ( )

a€A1\Az/As

We have already argued that a7 is a projective extension of azx to Hs ., with the
required property for point 1, and it is clear that its restriction to H 1,az 18 such
as well. Since A; \ A2/A; , parameterizes the A;-orbits in X, the claim follows
again from point 2.

In the sur]ectlve case the kernel N of A; — A, is also the kernel of the
sur]ectlve maps H1 — Hg, H1 z — H2 s H1 X A, H1 — H2 X Ay Hg, and
Hl,z XA, Hl,z — Hgﬁz XAy, H, «- The set X is a single A;-orbit. We apply
again point 2. If & is a projective extension of x to Hy , satisfying the condition
of point 1, then its pull-back to H; . is a projective extension of z that satisfies
the same condition. We have

In fH2><A2H21 I:ngAsz  iRi =In dH1><A1H1 O HZEXAz_zI:IZxNIXl
Hyxay Hy H2,m><A21$H2,m Hy, .1‘><A1‘,LH1.1‘ Hq, rXAllle
where Inf stands for inflation, i.e. pull-back. O
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Proof of Proposition 7.5. Assume conjecture 7.3. We consider the extensions 1 —
G.(F) = G(F)1¥) — APLEL o 1and 1 — mo(S]) — mo(S) 1) — AlPME 1.
Let X; = II4(G,) and X, = Irr(wo(S(;f), [2]). By Conjecture A.1 these sets are
in an Al?[#l-equivariant bijection. Define Hd,(é[f]) to be the set of irreducible

representations of G, (F)[?! whose restriction to G (F) meets X;. Conjecture
7.3 fulfills the assumptions of Lemma 7.7, see also Remark 7.4. Point 3 of that
Lemma provides a bijection between H¢(G[z¢]) and Irr(wo(S;’[z] ,[2])), and point
4 asserts that this bijection preserves multiplicities upon restriction along a map
B — A. By Conjecture A.1 the stabilizer in G, (F) of any element of H¢(C¥[Z¢])
is contained in G.(F)9]. Therefore induction gives a bijection from H¢(C~¥[Z¢])
to the set IT,,(G..) of irreducible representations of G (F) whose restriction to
G, (F) meets I1;(G.), hence the first point of Conjecture 5.12 holds. Multiplic-
ities are still preserved, hence Conjecture 7.1 holds.

Conversely, assume Conjecture 7.1 and the first point of Conjecture 5.12. Let

7 € II4(G,) correspond to p € Irr(WO(S+)) Consider the group G (F), X 4L2)

0 (S’g pz]) We claim that this group arises by taking F-points of a disconnected
algebraic group that fits in the framework discussed in this paper. Indeed, let

G denote the preimage in G of AEl. We have the isomorphism of algebraic
groups

G x4 FO(S’;;EZ]) — G, X 4Lz WO(S';;EZ]% (g X 8) — (g xaz) x 8§,

where on the left the subscript A indicates that the semi-direct product is taken
for the action of WO(S(Z’/)[Z]) on G via the projection WO(S’(Z’[Z]) — Al while on

the right the group WO(S’J’[Z}) acts trivially on G. The above isomorphism is
equivariant for the natural embedding of G into both sides and hence induces
an isomorphism between the rational forms over F' determined by the element
ze€ZY u—W,Z - Q).

According to Conjectures 5.12 and 7.1 the extensions of the representation
7 X pY of G,(F) x Wo(S(;_) to a representation of G, (F), X 4] ﬂ'o(S e ]) are in
natural bijection with the extensions of the representation p X p¥ of

mo(Cent(¢, G x 7r0(5’¢f))+) = WU(S;F) X WO(S;F)
to the group R )
7o(Cent(¢p, G X 4 WO(S;’;EZ]))J“[Z]).

To compute this group we use the isomorphism

Gra S 5 @u S0 (9,8 (9571,3),

where the subcript c on the right indicates that we are taking the semi-direct
product with respect to the natural conjugation action of S'I_gz] CGxAonG,

and § = sxa. This isomorphism restricts to an isomorphism G x S;f — G CS;f.
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We now apply Cent(¢, —) ™% to both sides of the inclusion G X, 85 — G Xe
5‘;;’[)[2] and obtain the natural inclusion
+ + + &+:[2]
Sy XSy = 85 e Sy,
which under the isomorphism (s, §) — (s3, §) becomes the natural inclusion

+ + &+s[2] otz
Sg X Sg = 8y, X glent Sy

Tracing through all identifications we see that we are looking for a natural ex-
tension of the representation p X p" of the source of this inclusion to a repre-
sentation of the target. But Lemma 7.6 provides just such an extension.

We come now to the character identities. The right hand side of the charac-
ter identities in Conjecture 5.12 is

This is the character of the representation P 7 X pY evaluated at the function
f ® d5-1. By the preceding discussion that representation is equal to

G.(F)xmo (5 .
A nd S L)
Gz(F)ﬂ'XA[z]ﬂ'O(S¢y’p )
n€lly(G.)/Alol 2] "

Let a € A be the image of 5. If a ¢ A, the character of the corresponding
induced representation is zero at f ©®0;-1. Therefore we may restrict the sum by

the condition a € A}, equivalently am = 7. Applying the Frobenius character
formula we obtain

T e (zqmglv),

€I, (G.) /AL

am=m

where x runs over the coset space
(G=(F) x 7o(S ) /(G () x4 mo(S5 1)) 22 AL x AELT AL

The compatibility of 7" with conjugation under A implies that the above sum
becomes

S owrn [ Y feso

rell,(G2) ceAl?)

am=mT

We conclude that

Yo owrRN(fxs = Y trfrca“(fox§*1),

REM4(G.) m€lly(G2)
am=T
where fy = Y ec Al f¢. Recalling from Lemma 4.6 that f* = f3"*° we see that
the character identites in Conjectures 5.12 and 7.3 are equivalent. O
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Remark 7.8. Proposition 7.5 reduces the proof of the endoscopic character
identities to the case of a cyclic A. It does not completely reduce the inter-
nal structure of L-packets to the case of cyclic A, because in the case when A
is not cyclic one still needs to show the existence of the extension 7",

7.3 The cyclic case

In this subsection we revisit the classical setting where we have a connected
reductive group equipped with an automorphism. We begin with a quasi-split
connected reductive group G equipped with an automorphism 6 fixing an F-
pinning. We further assume 6 is of finite order. Set A = (9) and G = G x (6).
Let z € Z'(u — W, Z(G)* — G). The map G (F) — A is surjective if and only
if the class [#] is fixed by 8, which we assume from now on, for otherwise we
can pass to a power of § without changing G..(F). Fix an arbitrary 6, € G (F)
mapping to # and set §, = Ad(d,). The twisted group we are interested in is
G, with automorphism 6.
Let ¢ : Lp — LG be such that its CAT‘-conjugacy class is fixed by ¢. Then we
have
1 —>7T()(S¢) —>7T0(§¢) —-A—=1 (71)

and S(Ef] = S4. This isomorphism class of a representation 7 € TI4(G.,) is 0,-
fixed if and only if the isomorphism class of the corresponding p € Irr(S;, [2])
is f-fixed. Assuming that this is the case, there is a natural extension of the
representation 71X p" of G, (F') x mg (S;r) to a representation of G, (F) x 4o (S’g)
given as follows: Since A is cyclic p extends to a representation p of wo(g;f). By
Conjecture 5.12 there is a corresponding extension 7 of 7 to G,(F). Another
extension of p is of the form p® x for some character x of A. The representation
of G.(F) corresponding to 5 ®  is then # ® x. Therefore the representation
75" of G (F)xmo (S';f), when pulled back to G, (F)) x 47 (5';;), isindependent
of the choice of . This is (7 K p¥ )" of Conjecture 7.3.

7.4 Passing from A to AlZ:(9]

Proposition 7.5 shows that, once [¢] and [z] have been fixed and Conjecture A.1
has been assumed, Conjecture 5.12 for the group G' x A reduces to the same
conjecture for the group G x Al?1[¢]. More explicitly, let B = AFLI?l and write

G4 =G x Aand GP = G x B. Let 7P € T1,(G5). All members of Resgi%)wB

belong to the packet I1;(G. ). An element of G (F) that normalizes GZ(F) and
intertwines 72 must therefore lie in GZ(F). Thus 74 := Il’ldgi}:g?;ﬂ'B is irre-
ducible, and in this way one obtains a bijection I14(GZ) — T14(G%). In the same
way one obtain a bijection Irr(mo(S4(GE)H12), [2]) — Trr(mo (S, (GA)H 1), [2]).
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7.5 Induction

Let G = G x A be a quasi-split disconnected reductive group and A — B an
embedding. Set H = IndG and H = H x B. The purpose of this subsection is
to show that Conjecture 7.3 for G’ x A implies this same conjecture for H x B.

Let a € A. An element zg € Z'(u — W, Z(G)* — G) has a-invariant
cohomology class if and only if there exists g, € G such that

azG(w) = ga_lzG(w)Uw(ga)' (7.2)

This is equivalent to g, % a € @ZG (F'). Assuming that, a representation ¢ of
G, (F) has an a-invariant isomorphism class if and only if there exists a vector
space isomorphism 74 (g, ¥ @) : Vy, — Vi satisfying

76(9a - alg) - 92 ") 0 Ta(ga ¥ a) = Tg(ga X a) o wa(g). (7.3)

Note that g,-a(g) g5 = (ga ¥ a)-g-(ga ¥ a)~!, and further that the existence of
7 (ga @ a) is independent of the choice of g,, for any other choice will be of the
form g/, g, with ¢/, € G..(F) and we can take 7 (¢,,ga ¥ a) = 7¢(g),) o7 (ga X a).

We have H = {h : B — G|h(ab) = ah(b)} with pointwise multiplication.
Letzy € Z'(u — W, Z(H)Z — H). Thus zy (w1w2,b) = zx (w1, b) - w1 zg (we, b)
and zg(w,ab) = azgy(w,b). Let b € B. The cohomology class of zy is b-
invariant if and only if there exists h, € H satisfying the analog of Equation
(7.2). Again this is equivalent to h=hxbeH lying in H.,, (F) and in terms
of the function h : B — G means

2p (0, b'0) = hy () zpr (0,6 o (he(V)), V' € B. (7.4)

A representation (7g, V) of H,, (F) can be represented as a collection
of vector spaces {V.|c € A\ B} and on each V_ a family of representations
T4+ Gap—e)(F) — Aute(Ve) indexed by ¢ € c¢ satisfying the compatibility
relation . '

T (ag) = my(9)

{sub:ind}

{eg:indla}

{eq:indlb}

{eqg:indlc}

foralla € Aand g € G, () (F). ThenV;, = ®@.V.and 7ty (h) = @.ca\p7EH(h(c))

and each factor is well-defined. We shall write 7y = X.7§;.

Assuming the existence of h, x b € H,,, (F), a representation 7y of H,,, (F')
has a b-invariant isomorphism class if and only if there exists a vector space
isomorphism 7 (hy % b) : V,, — Vg, satisfying the analog of Equation (7.3),
which in terms of the data {V..} and {7¢;} can be expressed as

ﬁ_H(hb X b)(®cvc) = ®cﬁH(hb Dol b)c(”cb)a

where
7~1—H(hb X b)c Ve = Ve

is an isomorphism of vector spaces satisfying

76 (9) o Trr(hy 3 b)e = T (hy % b)e 0 w2 (hy(&) "L ghs(¢)) (7.5)
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for one, hence any, lift ¢ € Bofc € A\ B.

For g € G and b € B we define ¢ € H to be the element supported on
Ab and sending ab € Ab to a(g) € G. Given a section s : A\ B — B of the
natural projection (which we may view as a map B — B invariant under left
multiplication by A) we define a map r : B — A by b = r(b)s(b). We have
r(ab) = ar(b).

Lemma?7.9. 1. Givenzy € Z'(u — W, Z(H)? — H) define 2¢(w) = 2z (w, 1).

Then [z5] — [2c] establishes a bijection between H'(u — W, Z(H)? — H)B
and H' (u — W, Z(G)* — G)A.

2. Assume zg(w) = zp(w,1). Given a representation wy of H,, (F) define
76(g9) = 7k (g°). Then [wy] — [rc] establishes a bijection between the set
of B-fixed isomorphism classes of irreducible representations of H,,, (F') and the
set of A-fixed isomorphism classes of irreducible representations of G, (F).

3. Fix a section s : A\ B — B. Given zg € Z'(u — W, Z(G)* — G) define
zg € ZYu — W, Z(H)B — H) by zy(w,as(c)) = azg(w). Given a rep-
resentation ng of G, (F) define a representation of H,,, (F) by ®.n¢;, where
7'(';}6) = mq. These assignments are inverses of the above bijections.

Proof. Let zy € Z'(u — W, Z(H)® — H) and 7y € Irr(H,,, (F)) have B-fixed
classes. Then Equation (7.4) for b = 1 and b = a € A shows that the class of
za(w) = zp(w, 1) is a-fixed, while Equation (7.5) withé = land b =a € A
shows that the class of ¢ (g) = 75 (%) is a-fixed. It is clear that the classes of
z¢ and mg depend only on those of zy and 7.

Consider conversely zg € Z'(u — W, Z(G)* — G) and ¢ € Irr(G., (F))
whose classes are A-fixed and let g, and 75 (g, % a) be chosen to satisfy Equa-
tions (7.2) and (7.3). Fix a section s : A\ B — B andletr : B — Abe defined by
b=r(b)s(b) forall b € B. Set hy(as(c)) = a(gr(s(cyp))- Then hy € H and an easy
calculation shows that Equation (7.2) implies Equation (7.4) for zg (w, as(c)) :=
azg(w), and further thatif h € H,,, (F) then h(s(c)) € G, (F) forallc € A\ B.
This allows us to define a representation 7y of H,, (F) acting on the vector
space V& by mp(h) = ®.ma(h(s(c))). In other words, the representation 7y is
given by the constant collection of vector spaces {V. = V;,|c € A\ B} and for
each ¢ € A\ B we have 7% (g) = mg(a=(g)). Define 7 (hy % b). : Vi — Vi
to be given by g (gq X a) : Vi — Vi, for a = r(s(c)b). Then Equation (7.5) for
¢ = s(c) follows from Equation (7.3). It is clear that the classes of zy and 7y
depend only on those of z¢ and 7¢.

We have thus established the desired maps in both directions and must now
check that they are mutually inverse. Starting with z¢ and 7¢ and construct-
ing zy and 7y it is immediate that 2y (w,1) = 2g(w) and 74 (¢%*) = 7c(9).
Conversely start with zy and 7y and define zg(w) = zp(w, 1) and 7g(g) =
74 (g%). Let now 2% (w, as(c)) = azg(w) and 7% (h) = @.mc(h(s(c))). We need
to show that the classes of zy and 2% are equal, and the classes of 7y and 7%
are equal.
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For zy and 2%, we need to show the existence of h € H such that for all
a € Aand c € A\ B we have

z%(w, as(c)) = h(as(c))*le(w, as(c))o(h(as(c))),

which due to the A-equivariance of all terms and the definition of 2%, reduces
to
zn(w, 1) = h(s(e) ™ zu (w, s(c))ow (h(s(c))),

which follows from Equation (7.4) with h = hj, b = s(c)~! and b/ = s(c). Thus
the element h we are looking for is given by h(as(c)) := ahg)-1(s(c)).

Before we can compare the classes of 7y and 7% we note that the former
is a representation of H., (F'), while the latter is a representation of H_o (F).
We must therefore precompose 7y with the isomorphism Ad(h) : H.o (F) —
H,, (F). Thus we need to show the existence of a (my 0o Ad(h), 7% )-equivariant
vector space isomorphism V., — Vo . This reduces to finding for each ¢ €
A\ B a vector space isomorphism V. — V; translating the action of G, (F)
on V, given by 73 o Ad(hg(e)-1(s(c))) to the action of on V; given by 7y;.
According to Equation (7.5) such an isomorphism is given by 7 g (hy x b). ! for
b=s(c)~t O

Lemma 7.10. Under the bijection ng < my of Lemma 7.9 the element of H?(B, C*)
corresponding to my is the corestriction of the element of H(A, C*) corresponding to
TG.

More precisely, let zg € Z*(u — W, Z(G)* — G) and 7¢ € Irr(G ., (F)) have
A-fixed classes. For each a € A fix g, € G and 7c(gs % a) satisfying Equations (7.2)
and (7.3), so that we have the element

afar,a2) = T¢(ga, X 1) 0 TG (gay X a2) 0 TG (gay X @1+ Gay X az)~t

of Z*(A, C*) representing the class associated to ¢, where the third term is defined
via the rule 7 (ggq ¥ a) = 16 (9)Ta(ge X a) for g € G, (F). Define zg (w, as(c)) =
azg(w). Define the representation gy of H,, (F) as ng = X7, w?}c) = 7q.
For each b € B define the element hy, € H by hy(as(c)) = a(gr(s(cyp)) and the
isomorphism g (hpxb) : @cVrg — @ Vg by Tr (hyxb)(®cve) = @ (gr(s(c)p) X
r(s(c)b))(vep). Then hy and 7 (hy % b) satisfy Equations (7.4) and (7.5) and the
associated element

ﬁ(bl,bg) = ﬁH(hbl X bl) O7~T'H(hb2 X bg) Oﬁ'H(hbl X b1 . hb2 X bg)_l

of Z2(B, C*) is obtained from o by applying the cochain formula for corestriction with
respect to the section s.

Proof. That Equations (7.4) and (7.5) are satisfied was already discussed in the
proof of Lemma 7.9. It remains to prove the corestriction claim, which is the
following identity:

B(by,b2) = [ [ er(s(c)br), r(s(cbr)bs)).
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The (scalar) endomorphism
7TH(hb1 X bl) o ﬁ'H(ng X bg) O7~T'H(hb1 X by - th P bg)il

of the vector space ®.Vx,, is by definition a tensor product of endomorphisms
of V. and it is enough to show that the endomorphism of the tensor factor
indexed by c is given by multiplication by the scalar o(r(s(c)b1),r(s(cb1)b2)).
By definition this endomorphism is given by

7 (hoy X b1)e 0 T (hyy X ba)ep, © T (hpy, X by - hpy X b)),
where the subscript notation is as in the proof of Lemma 7.9. We compute

Tr (hy, > by - hp, X b2)e

(P, - biho, - hy ) © T (B, by X b1b2)e

G (P (5(€)) - iy (5()b1) By, (5(€)) ™) © TG (Gr(s(epprba) X T(5(€)brb2))
G (Gr(s(e)br) * T(8(€)01)Gr(s(chy)ba) 'Qf(i(c)blbz) " Gr(s(e)bibe) X T(5(c)b1b2))
G (Gr(seypr) X T(S()D1) - Gr(s(eby)by) X T(5(cb1)b2)).

[l
R

N

With this we see that the endomorphism of the tensor factor indexed by c is
given by

TG (9r(s(e)pn) ¥ T(8(€)b1)) © T (Gr(s(ebiypa) ¥ 7(s(cb1)b2))
© G (Gr(s(e)pr) X T((€)b1) * Gr(s(ebr)py) X 7(5(ch1)b2)),
which is precisely a(r(s(c)b1), r(s(cb1)b2)). O
We consider the group homomorphism
v, H — G, h— h(1).
It is A-equivariant, hence extends to a group homomorphism
evi: HXxA— GxA, h xa— evi(h) xa.

It also respects rational structures under the convention z¢(w) = 2y (w, 1) that
has been used so far.

More generally we consider b € B and asection! : A\B/(b) — B. For every
d € A\ B/(b) let nq be the size of the orbit of the element Al(d) of A\ B for the
action of b on A\ B by right multiplication. Equivalently, n, is the smallest non-
negative number n satisfying b" € [(d) "' Al(d). Write A, := I(d)"'Al(d) C B
so that b € Ay, and write ag = [(d)b™I(d)~! € A. We obtain a section
s: A\ B — Bby

s(Al(d)b") = 1(d)b',  i=0,...,n4— 1. (7.6)
The group homomorphism

eVi(a) - H — G, h+— h(l(d))
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satisfies ev;(q)({(d)'al(d)h) = aev,y(h) for a € Aand h € H and therefore
extends to a group homomorphism

evyay : H xAg — G x A, h x 1(d)"al(d) — h(l(d)) x a,

which is defined over F' under the assumption zg (w, [(d)) = z¢(w), which is
implied by the assumption zx (w, s(¢)) = zg(w) forallc € A\ B.

Lemma 7.11. Let z& € Z'(u — W,Z(G)* — G). Define 2y € Z'(u —
W, Z(H)B — B) by 2y (w, al(d)b') = azd(w). The map

H%l?[ ]1 G, hHlZ[ ]1) h(1(d)b?)

is an isomorphism of algebraic groups. It respects the quasi-split rational structures on
both sides, as well as their twists by zyr and (2&)q respectively. It translates the action
by b to the action by (©4)q, where ©4(ga.0, - - - Jdng—1) = (Gd,15- - Gny—1, @d(G0))-

Proof. This is an immediate computation. O

Note that h(I(d)b*) = evyqy(b'h) = evyqy(Ad(1 x b)*h). Since the action of b
on H, as well as the action of a4 on G, need not respect the rational structures
given by zp and 2¢, respectively, the following slight variation of the above
isomorphism will also be useful.

Lemma 7.12. Let h € [H x b].,, (F). The map

ng—1 ng—1

H — ];[ 11 G, hw— 1;[ 11 evy(qy(Ad(h)'h)

is an isomorphism of algebraic groups that respects the twists of the quasi-split rational
structures by zy and (2&)q, respectively. It translates the action of conjugation by

h to the action sending (ga,o, - - - 9dng—1)d 10 (9a,1,- - - Jdng—1, Ad(§a)go)a, where
Jd = evl(d)(h”d) S [G X ad]ZG (F)

Proof. This is an immediate computation. O

For a moment we consider the following situation that encapsulates each
factor in the first product of above lemma.

Lemma 7.13. Let J be a locally profinite group with an automorphism 6 and consider
the locally profinite group I = JxJx- - -xJ with the automorphism © (jo, . .., jn—1) =
(J1,---5Jdn—-1,0(jo)). Consider the maps

m,po: L —J, m(jo, .., Jn-1) =Jo---Jn-1, P0(Jos---sJn-1) = Jo

as well as

Avlo']—>[7 A(]):(]vaj)7 ZO(]):(.]71771)
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1. We have m(g; " - 61 - ©(g1)) = polgr) ™ - m(61) - 0(po(gr)) for g, 61 € I.

2. The map m induces a bijection from the set of O-twisted conjugacy classes in I
to the set of O-twisted conjugacy classes in J with inverse given by 1.

3. The map po induces an isomorphism of groups Centg (61, 1) — Centg(m(dr), J)
whose inverse sends s to Ad(gr)A(s), where g1 = (go,---,9n-1) and g; =
(50 . 51'_1)71.

4. If fo,.... fac1 €C(I), fri=fo® - Q fno1,and 61 € I, then
TOé}e(fI) = TO;Q?JI)(JCO * frk foot),

where the convolution fox---x f,_1 € C°(J) is defined by fox-- - fr_1(x) =
[ fo(h) fr(Ry M he) oo fruea (Bt ghn—1) foe1 (Bt yz)dhy . . dhyy s

5. Let m be an admissible representation of J and let @ : o =1 — 7 be an
isomorphism. Then m; = m X - - X 7 is an admissible representation of I and
71 (V0@ QUp_1) = V1@ - @V, _1 @7 (v i an isomorphism T10O~1 — 7.
We have

tr(mr(fr) o @r) = tr(m(fo * - % fn1) 0 7).

Proof. The first point is an immediate computation. It follows that m induces
a map between the sets of twisted conjugacy classes, and py induces a map
between the twisted centralizers. The fact that iy respects twisted conjugacy
follows from io(g~160(g)) = g5 ‘i0(8)©(gr) for gr = (g,0(g), - ..,0(g)). The fact
that 4 is inverse to m as maps between twisted conjugacy classes follows from
the trivial relation m(io(J)) = ¢ and the relation io(m(d7)) = g; *6r0(gs) for
5] = (50> s 757171) and g1 = (903 v 797171) with go = 1 and 9i = 51 oo 5n71
for i > 0. The fact that py has the given inverse as maps between twisted
centralizers is immediate.

For the equality of twisted orbital integrals we take §; = (do, ..., d,—1) and
write out the left-hand side as

/ fo(go " 0091) f1(gy *0192) - - - fa—1(9; 2 16n-10(g0))dgo - - - dgn—1,
Cente (67,1)\I

where the integration variable is g; = (go, - .., gn—1), and use the substitution
ho = 9o, h; = 961(50 . ..(52‘,192‘ fori > 0.

The fact that 7; is an isomorphism 7; 0 ©~! — 7 is immediate. To verify
the equality of traces write ¢; = 7(f;) € Endc (V7). Then 7;(f;) is the operator
0 @ pp_10f Vo =Vo®--- @V, while w(fo * - -- * f,_1) is the operator
¢o 0 -+ 0 ¢p_1 of V. Therefore the claimed equality is

tr(¢0 Q& ¢7L—1 o 7:I'I“/ﬂ'[) - tr(¢0 O©---0 ¢n—1 o 7?|V7r)
Both sides are continuous and n-linear in the ¢;, which allows us to reduce the

proof first to the case that ¢; has finite rank, and then to the case that it has
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rank 1,ie. ¢; = \; ® w; for \; € V¥ and w; € V. The operator on the left has
rank 1 and is given by (Ao @ -+ ® Ap—1) 0 71) ® (W ® -+ - ® wy_1). Its trace
is therefore \g(w1)A1(ws2) ... Ap—1(7(wp)). The operator on the right also has
rank 1 and is given by (Ao(w1)A1(w2) ... An—2(wWp—1)) - wo @ Ap—1 o 7. Its trace is
therefore given by Ag(w1) ... Ap—a(wn—1)An—1(7(wo)). Thus the two traces are
equal. O

We now return the group H x B. We fix h € [H x b].,,(F) and let §, =
evl(d)(l:ﬂ“) € [G X ag],, (F). Consider given functions fy; € C°(G, (F)) for
de A\ B/{(byand i = 0,...,ng — 1. The tensor product ®q ; f4; becomes, via
the isomorphism of Lemma 7.12, a function fi € C°(H.,, (F)). Write fy =
R]glfH € C([H % b].,, (F)) for the function fz(h - h) = fi(h). Analogously
we obtain for each d the function R;;(fdo kcok fun,—1) € [G X ag)se (F).

Fix a collection (74)4c a\ B/ (v) Of representations of G, (F') and isomorphisms
7iq : mgo Ad(ga) ™! — m4. Via the isomorphism of Lemma 7.12 we can transport
&ﬂr?"d to a representation 7y of H,,, (F) and 7y (®4(va0 @ -+ @ Vgny—1)) =
®d(Vg1 ® -+ @ Vg ny—1 @ Ta(vg,0)) to an isomorphism 7 o Ad(iL)*1 — TH.

Corollary 7.14. 1. The map [H x b].,(F) — [[4(G % aal.q(F) sending h'
to (ly)a defined as g, = evyqy(h'™), induces a bijection between the set of
H.,,, (F)-conjugacy classes in [H x b],,, (F) and the set of G.., (F)%-conjugacy
classes in [[ (G % aql. (F).

2. If W € [H x b, (F) maps to (§)a € [1[4IG % ad)., (F) then

O}{{,(RilfH) = H Og;;(R;dl(fdﬁ ook fanga—1))-
d

3. We have
tr(ma (fu) o ®u) = [ [ tr(ma(fao -+ * fan,—1) © Fa).

d
Proof. We have the bijection H., (F) — [H x b]., (F) sending h to h - h. It
translates the conjugation action of H,, (F') on [H x b],, (F') to the twisted con-
jugation action of H.,, (F) on itself, with respect to the automorphism Ad(h).
The isomorphism of Lemma 7.12 identifies the group H.,, (F') with the group
[I,1IL; G- (F) and the automorphism Ad(h) with the automorphism sending
(94,0, - - - ,gd,nd,l):fo (gd,l,;. - 9dng—1,Ad(Gq)gd,0). According to Lemma 7.13,
the map sending ' = h' - h € [H x b],, (F) to

(evyay(h' - (RWh™Y) (R R ) ) g = (evl(d)(ilmd) : (?Vl(dz)(il"d’)*1

is a bijection from the set of H,,, (F')-conjugacy classes in [H x b, (F) to the
set of G, (F)%twisted conjugacy classes in G, (F)¢ with respect to the auto-
morphism (Ad(gq))q. Composing this bijection with the bijection G, (F) —
[G X ag). (F) sending ¢’ to ¢’gq we obtain the first claim. With this translation
set up, the other two claims follow readily from Lemma 7.13. O
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We now turn to the dual side. We can take H = Ind5 G. More precisely, if T’
is a torus with A-action, we have the identification Ind% X, (T") = X, (Ind5T)
sending an element A? : B x G,, — T of Ind§ X, (T) to the element z
AB(—, z) of X,(Ind5T). The pairing

0PN =TT 6P, X)) (7.7)

ceA\B

between Ind5 X*(T) and Ind§ X, (T) is perfect and equivariant for I' and B
and identifies Ind% X*(T") with X*(Ind5T) as I'-modules with B-action. If
(T,C) and (T, C) are I'-invariant Borel pairs for G’ and G respectively, then
(Ind5T,1nd% C) and (Ind5 T, Ind5C) are such pairs for Ind5 G and Ind5 G, re-
spectively. The duality between X, (T') and X, (T)) that realizes the duality be-
tween G and G induces, via the above palrmg, a duality between Ind% X, (T) =

X, (Ind5T) and Ind5 X, (T) = (Ind B X,(T)), and therefore realizes the du-

ality between Ind5G and Ind5 G
Let a € A. A Langlands parameter ¢c: Lr — L@, which we represent as

oc(x) = ¢ o(z) x x with ¢go : Lag — G, has a-invariant G- -conjugacy class if
and only if there exists an element g, € G satisfying

G¢G70<.’1?) = g;1¢G,0($)0w(ga)~ (7.8)

This is equivalent to g, X a € S,,. Assuming this, a representation (p¢, V) of

Se. has an a-invariant isomorphism class if and only if there is a vector space

isomorphism pg(ga % a) : V,, — V,, satisfying

PG (Ja - a(g) - 9o ') © pc(Ja X @) = pc(Ja X @) © pe (). (7.9)

Let b € B. A Langlands parameter ¢y : Lp — LH, which we again repre-

sentas ¢p(z) = ¢ o(z)xzwithepo: Lp — H has a b-invariant - -conjugacy
class if and only if there exists an element h;, € H satisfying

bmo(z,b'b) = hy ' (V) o(x, b )o. (R (b)), Vb € B. (7.10)

Again this means A, x b € Sy,,. Assuming this, a representation (pg, V,,,,) of
Sewr represented again by the collection {V;|c € A\ B} of vector spaces and the
collection p¢; of representations p¢; : Sy, (—,¢) — Aut(Ve) forall ¢ € ¢, subject to
p%(as) = p%(s), has a b-invariant isomorphism class if and only if there exists
a vector space isomorphism j (hy, x b) : V,,, — V,,, satisfying

pr (hy X 0)(®cve) = @cpr(hp X b)e(vep),

where
pH(hb X b) Ve = Ve

is an isomorphism of vector spaces satisfying
Per(9) © prr(he 3 b)e = pr (hy 1 b)e 0 iy (ho () ™" gho (¢) (7.11)
for one, hence any, lift ¢ € Bofc € A\ B.
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Lemma 7.15. 1. The assignment ¢ o(x) = ¢dm,o(x, 1) establishes a bijection be-
tween the A-invariant G-conjugacy classes of parameters ¢ (x) = ¢a,o(x) X x
and the B-invariant H-conjugacy classes of parameter ¢ (x) = ¢ o(x) X .

2. Assume ¢ o(v) = ¢mo(w,1). The assignment pg(§) = pk(§°*) establishes
a bijection between the set of B-fixed isomorphism classes of irreducible rep-
resentations of Sy, and the set of A-fixed isomorphism classes of irreducible
representations of Se.,.

3. Fixasection s : A\ B — B. The assignments ¢ o(z,as(c)) = apg o(z) and
pr(h) = @cpa(h(s(c))) € Endc(Ve) are inverses of the above bijections.

Proof. The proof is the same as for Lemma 7.9 so we will not repeat it. O

Lemma 7.16. Under the bijection pg < pg of Lemma 7.15 the element of H?(B, C*)
corresponding to py is the corestriction of the element of H?(A, C*) corresponding to

PG-
More precisely, let ¢ and pe € Irr(Sy. ) have A-fixed classes. For each a € A

fix go € G and pc(Ja X a) satisfying Equations (7.8) and (7.9), so that we have the
element

a(ay,a2) = pe(fa, X a1) © pe(fay X a2) © pa(fa, ¥ a1 - Jay ¥ a2) ™"

of Z2(A, C*) representing the class associated to m¢. Define ¢ o(z,as(c)) = apao(x)

and the representation pg of Sy, on ®.V,., by pu(h) = ®cpc(h(s(c))). For each
b € B define the element hy, € H by hy(as(c)) = a(Jr(s(c)p)) and the isomor-
phism pg(hy x D) : @cvpc - @cvpc by pr(hy X b)(®cve) = ®C,5G(gr(s(c)b) X
r(s(c)b))(vep). Then hy and pr(hy % b) satisfy Equations (7.10) and (7.11) and the
associated element

B(b1,b2) = prr(hw, % 1) © prr(hy, 3 bs) 0 prr(hy, 3 by - hy, 3 by) ™"

of Z*(B, C*) is obtained from « by applying the cochain formula for the corestriction
with respect to the section s.

Proof. The proof is the same as for Lemma 7.10, so we will not repeat it. O

Consider again b € B and asection! : A\B/(b) — B. Letngands: A\B —
Bbe as in (7.6). Recall ag = I(d)b"™1(d)~! € A.

Lemma 7.17. Let ¢ o : Lp — G. Define ¢po : Ly — H by ¢po(x, al(d)b?) =
a¢d(x). The map

ng—1 ng—1
f[_>1;[ 11) G, iL»—)l} 1:[0 h(1(d)b?)

is a T-equivariant isomorphism of algebraic groups. It translates conjugation by ¢ ()
to conjugation by (¢ (x))q. It translates the action by b to the action by (©4)a, where

ed(gd,oa v 7gd,nd—1) = (nga v 7gnd—1,ad(g0))‘
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Proof. This is an immediate computation. O

Lemma 7.18. Let by, x b € S,,. The map

H-TTII G he ]I evua (Ad(h, x b)'n)
d 1

is an isomorphism of algebraic groups. It translates the action of Ad(¢n(w)) to the
diagonal action of (Ad(¢%(w)))a. It translates the action of conjugation by hy x b

to the action sending (Ja,o; - - -, Jd,na—1)d t0 (ga,1s-- -, 9dna—1,Ad(Ja X ad)da,0)d,
where g X aq = evyq)((hy x b)"4).

Proof. Direct computation. O

Lemma 7.19. Let J be a quasi-split connected reductive group with a pinned auto-

morphism 6. Consider I = J x --- x J with the pinned automorphism © defined by
©(g0,---s9n—1) = (915- -+, 9ny—1,0(g0)). Let 6 and © denote the duals of 6 and ©.

~

We have I = J x - x J and © (o, - - -, Gin-1) = (0(Gn-1): 0+ - - - + Gin—2)-
1. If (J¢,T¢, 85,£5%) is an endoscopic datum for J x 6 and we write 55 = 35 x )
and £5(3) = £50(7) x w,, and define I* = J¢, ¢ = J, 57 = 37 x O,

57 =085, 1,...,1),&5(0) = (§50(2), - -+, €50(2) 2 w,. Then (1%, Z¢,57,£3) is
an endoscopic datum for I x ©.

2. If (I8,7°,355,&%) is an endoscopic datum for I x © and we write 55 = 3% %
0, 5 = (50,...,8n-1), &(2) = (&), ..., &1 (1)) % w,, and define J© =
IS, J¢ =T¢, 5 = 55 %0, 58 = 8,_1...50, &50) = €&_,(1) x w, then
(J¢,T¢, 85,£9) is an endoscopic datum for J x 6.

3. The above constructions given mutually inverse bijections between the sets of
isomorphism classes of endoscopic data for J x 6 and I x ©.

4. Let ¢pj0: Lp — J and define ¢r o = (¢y0,...,040). In the above construc-
tions we have 51 € Sy, if and only if 55 € Sy, and the isomorphism classes of
the resulting endoscopic data correspond under the above bijections.

5. Let zy € ZY(u — W, Z(J)? — J) and define z; = (24,...,25) € Z*(u —
W, Z(I1)® — I). If e is an endoscopic datum, both for I x © and for J x 6 via
the above bijections, 3 is a z-pair for ¢, vo is a 6-special Whittaker datum for J
and hence a ©-special Whittaker datum for I, 61 = (do,...,0n-1) € L., (F),
and 65 = dg ... 0p—1 we have

AKS[mvevé](’yaaél X @) = AKS[maesz’yéa(s.] X 0)

Proof. For the first two points we only need to check parts (4.7.6) and (4.7.7) of
the definition of endscopic datum in §4.7. These verifications are immediate
and left to the reader. For the third point, the assignment (J¢, J¢,35%,£5) —
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(I¢,7¢,55,&5) — (J%,T*, 85,£5) is the identity on data, even before taking iso-
morphism classes. On the other hand, the element (go,...,dn-1) € T with
Ji = 8p—1...8i+1 gives an isomorphism between the soruce and target of the
a351gnment (I¢,7°,55,&5) = (J*, T¢,55,£5) — (I¢,1°,55,&5). For the fourth
point it is enough to start with (5, ), let §; be as in the first point, produce
from (5, ¢ ) respectively (51, ¢;) endoscopic data (J¢, J¢, 59, £5) respectively
(I¢,Z°¢,5%,&5) via the spectral construction of §4.8, and then verify that these
two data are related by the construction of the first point. This is immediate
and left to the reader.

The remainder of the proof will be concerned with the equality of transfer
factors. We consider each individual term in the product (4.3)

Ags = e([I x 0]z, )er (V) (AF™) T A (ANY) A

These terms were recalled in §4.9, except A%y, for which we follow the con-
struction given in §5.5. These terms depend on various auxiliary data recalled
in §4.9 and their comparison requires that we compare this auxiliary data for
the group I and the group J.

We fix a ¢-invariant F-pinning (Ty, By, {X.}) of J and a non-trivial char-
acter ¢ : F' — C*. Thaking the product of this pinning gives a ©-invariant
F-pinning of I and all ©-invariant pinnings of I arise this way. In this way
O-special Whittaker data for J correspond to ©-special Whittaker data for I.
We fix a norm (Sy,) for ; x ©. Here S; C I,, is a maximal torus defined
over F, invariant under ©, and contained in a Borel subgroup C; C I de-
fined over F and invariant under ©. Moreover v € [S;]e(F) and there exists
gr € I such that g;l(él x O)gr = §7 x © with 67 € S; whose image in [S;]e
is . It is immediate that S; = S and C; = (7 for a #-invariant Borel pair
S; Cc Cy C J, with S; defined over F. Moreover, the product map S; — S
induces an isomorphism [S;]e — [Ss]e. If we write g1 = (go, ..., gn—1) then
5t = (9500915 -+ 95 90n—29n-1,9, 10n—10(g0)) and its image in S is given
by &% = g, 5100 ...8,-160(go). Therefore (S;,~) is a norm for &7 x 6.

The set of ©-orbits in R(St, I) is in natural bijection with the set of §-orbits
in R(Sy,J). In this way Rres(Sr,I) = Ryes(Ss, J). We fix a-data and x-data for
this set.

We can now compare the individual terms of Ak for I and J. The term
er,(V, 1) for I is the root number of the virtual Galois representation X*(77)& —
X*(T%)c. But X*(T7)® = X*(T,)? so this equals the term e, (V, ) for J. The
equality e([I x ©]z,) = e([J % 0]z,) is Lemma 3.11.

The term Ay is a fraction. The denominator for I equals the denominator
for J by virtue of the identification /¢ = J¢. The numerator for I is a product
over the I'-orbits in Ryes(S7,I) and the factor corresponding to ayes involves
the quantity Noa;(d7), where oy € R(St, I) represents ares. Now R(Sy,I) =
R(Sy,J)U---UR(S;,J)and if oy € R(Sy, J) represents cues then Noar(d7) =
Nyaj(8%). Therefore the numerators of Ay for I matches the numerator of
A II for J.

The term Ay is discussed in the same way as the term Aj;.
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The term ATV for J is defined as the Tate-Nakayama pairing applied to
an element t; € H'(T,S?°) with an element 5,9 € 70([S]}). The diagonal
inclusions J — I and S; — S; become isomorphisms J%° — I19:° and Si’o —
S?"’. Tracing through the construction we see that under the isomorphism
HY(T',8%°) = HY(", $2°) the elements ¢ ; and ¢; are identified.

The element 375 € 7r0([S 1)5) is obtained by recognizing that 3; lies in the
image of a certain embedding § T — f, so that it can be transported to S 1 under
that embedding and then mapped to [§ 1]le. Dual to the isomorphism SG °
SP° is the isomorphism [Si]le — [Ss]e induced by the product map S; =
S;x -+ x8; = 8. Since the image of 51 € S; under the product map
produces the element 57 € S 7, we see that the term ATV for I equals the term
ATV for J.

We come to the term A%}$Y. We shall give the proof in the special case of
pure inner forms and no z-pair. The proof in the general case is the same,
but with more cumbersome notation that obscures the main point. This term
for J is given by the Tate-Nakayama pairing of the element inv(vy, (z7,07)) €

HY(T, S, =4 S;) with the element A ; € H (W, g, = §;)
We consider the two dual commutative diagrams

S5, 5 < Sy
1(~)J/ l1—9 1—€)T T1—§
St == 5 S ~x S,

Where m is the multiplication map, A is the diagonal inclusion, i is the in-
clusion into the first coordinate, and py is the projection onto the first coor-
dinate. These diagrams can be seen as morphisms of complexes of tori of
length 2, the complexes being the vertical arrows and the morphisms being the
horizontal arrows. It is immediate to check that these morphisms are quasi-

isomorphisms. Therefore they induce isomorphisms H(T', S; " gy 1) —
HI(F, SJ 1;6> SJ) and Hl(WF, §J 1;6> §J) — Hl(WF,§[ Pj} §1) The ele-
ment inv(y, (27,7 x ©)) is the pair ((g; ' z7(0)o(g1)) "1, 65) € ZY(T, Sy =9 Sr).
We had already noted that the image of 67 under the multiplication map is 7.
At the same time, the image of g; ' z7(0)o(g7) under py is g, '27(0)o(go). Thus
the image of inv (v, (21, 0r x ©)) under the first of these isomorphisms is indeed
inv(y, (27,05 % ©)).

67



To compare Ay ; and Ay ; we consider the commutative diagram

Lr
&7 y
LJe A LJl
53 nat
£ Ly €
LSe - LSG
Py

The element A ; is the class of (agl, 57), where as, : Wp — S 7 is the 1-cocycle
measuring the difference between £ o £§ o Lo, v and nat o o L. The element
Ao, is the class of (aS ,81), where ag, : Wp — S 1 is the 1-cocycle measuring

the difference between & o €5 o Lp.e ., and A o ofl. The commutativity of
the diagram shows that as, = A(ag,). On the other hand §; = i¢(3;) and we

conclude that the image of 4, _; under the isomorphism H!(Wpg, S 7 =43 ) —
Hl(WF,§[ 5;) g[) equals AO’]. O
Corollary 7.20. Let ¢5 : Lp — “H and 55 € Sy,,. Write 55 = 5 x b. Fixa

section ] : A\ B/(b) — B. Foreachd € A\ B/< ) define 34 = evyq)(3%') and
ba,0 = evyq) © dr0. Then ¢q : Ly — “G and 54 € Sy,

1. Let ey and eq be the endoscopic data associated to (S, o) and (34, ¢a). There
is a natural identification
ey = H €d.
d

2. Fix a z-pair 35 for ey and express it as [ [, 3a. If v¥# corresponds to (73+)q un-
der this identification, and the stable class of K € [H x b~1],,, (F) corresponds
to the stable class of (§);)q under the bijection of Corollary 7.14, then

Axs (73 1) HAKS’Y »Jd)-

3. The transfer of the function R*1 fm € C*(H, (F)) to 3m equals the tensor
product over d of the tmnsfers of the functions R, ( fao* % fan,—1) €
€22 (G (F)) 10 3a.

Proof. We consider the isomorphism

ng—1 ng—1

H%E{ ]1 a, hHE[ ]1 h(l(d)b™
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of Lemma 7.11 and the isomorphism

ng—1 ng—1
A-TIIIG Ao LI Aap)
d =0 d =0

of Lemma 7.17, both applied to the element b=!. They are dual to each other
(cf. (7.7)). The first of them translates b= to (©,4)4 and hence a;l to 64, while
the second translates b to (@d)d and a4 to é\d.

Since the H-conjugacy class of ¢ is b-invariant, we may conjugate (¢, 311
by H to arrange that the image of ¢% under the second isomorphism is of the
form (¢Y,...,4Y)q for parameters ¢4 : Lr — LG. Let (34;) be the image of
5. Then Lemma 7.19 gives the identification ey = [], ¢/, where ¢/, is the
endoscopic datum associated to (54, ¢q) with &, = 8/, x ag and

5= Samgmr - a0 = S (U(ADT) S (AP ) g (1(d)).

The element (34,1 - --84,1) " conjugates 3/, to 5, and hence provides an iso-
morphism ¢/, — ¢g4.

Let ' = W' x b~ and let (g4,) be the image of A’. It is immediate that
9d,0 -+ - Gdng—1 X a;l = evl(d)(iz’) = g/, therefore Lemma 7.19 (and Fact 3.10)
implies

AKS(A/év iL/) = H AKS(A/éda gél)
d
The identification of transfers of functions follows from the equation

SOA{%H((RijlfH)eH) = ZAKS(’YZH’E/)O;?(R#JCH)

hl
[I1D Axs(r,3)0F, (R (fao * -+~ * fama—1))
d g,

[T 50.04 (B3} (fao % * fama—1))).
d

Here 7’ runs over the set of H., (F))-classes in [H x b~']., (F). We have
used Corollary 7.14 for b=! to identify this set with the set (§,)q of G (F)4-
conjugacy classes in [,[G xa}; ']., (F), and to related the corresponding orbital
integrals. O

We continue with z¢ and ¢ whose equivalence classes are A-fixed and
consider 7 € Il corresponding to pe € Irr(mo(S},)) whose equivalence
classes are also A-fixed (provided these exist). Recall that z and ¢ determine
B-fixed equivalence classes of zy and ¢, and that 7g and pg determine B-
fixed isomorphism classes of representations 7y of H,,, (F') and pg of mo (SYJH ).
Assume given an extension of ¢ X pf, from G, (F) x WO(SJG) to G, (F) x4

770(5’;52 ). We claim that it determines an extension of 7 X p}; from H,,, (F) x
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m0(S) ) to He, (F) x g (S ). To see this, fix go € G and #¢(ga % a) : Veg —
Vi satisfying Equations (7.2) and (7.3), and fix analogously g, € G and P (Ga X
a) : V,, — V, satisfying Equations (7.8) and (7.9). We demand that these
choices are made in such a way that the restriction to G, (F) x 4 WQ(S;FG) of the
exterious tensor product 7¢ K pf is the given extension of 7 X pf.. We fix a
section s : A\ B — B and according to Lemma 7.9 we can take zy (w, as(c)) =
azg(w) and 7y (h) = ®cma(h(s(c))) acting on V2, and according to Lemma
7.16 we can take ¢p o(x,as(c)) = apgo(r) and py(h) = @.pa(h(s(c))). We
then define for each b € B the element h, € H and the isomorphism 7 g (hy, x b)
as in Lemma 7.10 and the element h;, € H and the isomorphism pg (fzb X b) asin
Lemma 7.16 and consider 75 XY, restricted to H.,, (F) x5 wo(gz{H ). According
to Lemmas 7.10 and 7.16 this is a linear representation and extends 7y X pY,.

Lemma 7.21. The restriction of 7pr X pY; to H., (F) x WO(S';H) is independent of
the choices of ga, Tc:(ga X @), Jo, and pi(Jo * a).

Proof. Keeping {g.} and {g,} fixed, for any a the isomorphism 7 (g, * a) can
only be changed to z,7¢ (g, X a) for some z, € C*. Since the restriction of
Ta @ pa to G.o(F) x4 71'0(5;1;) is fixed, this means that j¢ (g, % a) must be
changed to z; ' pc(§a % a). Now 7 (hy x b) is multiplied by 2, raised to the
power of the cardinality of {c|a = r(s(c)b)}, while pg (hy, x b) is multiplied
by 2, ! raised to the same power, so we see that the restriction of 7y X p}; to
H.. (F)xp Wo(S’;FH) remains unchanged.

Replace now g, by g, = ¢%9. and ga by g, = §09a for g2 € G..(F) and
g% e Squ. By the previous argument the choices of 7 (g, x a) and pg(g, x a)
will not influence the construction. We choose them to be 75 (g°) o 7 (g, x a)
and pg(g0) o pc(da x a) respectively. We claim that 7 and jy are both un-
changed. Indeed, hy, is now replaced by h;, defined by hj,(as(c)) = a(g}. () =
a(gg(s(c)b)) - a(gr(s(cyp))- Define h® € H by h°(as(c)) = a(gg(s(c)b)). Then Rr° €
H,, (F) and h) = h°h;. The new choices now stipulate

Tr(hy X 0)e = T (g (s X T(5(0)D)) = 76 (9 s(eyp)) © TG (Gr(s(epp) X T(s(c)b)),
while according to the old choices we have
7 (hy 0 b) = 7 (h°) o 7 (hy % b)

and we see that both of these values for 7y (h; » b). agree. The argument for
pu is analogous. O

Thus far we have focused on the setting in which the objects zy, mr, ¢,
pr have equivalence classes fixed by B. In general this will not be the case, but
one can reduce to that case by a simple application of Mackey theory, at the
expense of introducing rather cumbersome notation. This is what we turn to
next.

Let B’ C B be a subgroup. Fix a section! : A\ B/B’ — B of the natural
projection. For eachd € A\ B/B’ let Ay = I(d)~'Al(d), A, = A; N B’, and
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write G for the group G with action of A, defined by (I(d)~tal(d)) -4 g = ag.
Fix a section sq : A/, \ B’ — B’ of the natural projection. Then each element of
B has a unique expression of the form b = al(d)sq(c};) for d € A\ B/B’ and
¢, € A\ B’. This gives a section A\ B — B.

Corollary 7.22. 1. Let zy € Z'(u — W, Z(H)®" — H) have a B'-fixed class.
For each d € A\ B/B’ we obtain an element of Z'(u — W, Z(G4)A4 — G7)
by zga(w) = zg(w,l(d)), and the map zg +— (zga)q is a bijection between
H'(u— W, Z(H)?" — H)? and [], H' (u — W, Z(G)4a — G)4a,

2. Let wy be an irreducible representation of H,,, (F') whose class is B'-fixed. For
each d € A\ B/B’ we obtain an irreducible representation wga of chd (F)

on Viqy by mga(g) = wllgd) (g9). The map g — (mga)q is a bijection between

Irr(H.,, (F))5" and [, Irr(G2_, (F))".

3. Let ¢ (x) = ¢uo(x) x x be a Langlands parameter for H whose class is B’-
fixed. For each d € A\ B/B' we obtain a Langlands parameter ¢ga o for G
by ¢gao(r) = dmo(x,l(d)). The map ¢ — (¢ga)q is a bijection between
O(H)P" and [], ®(G4)4a.

4. Let pgr be an irreducible representation of Wo(S;)LH). Foreachd € A\ B/B’
we obtain an irreducible representation of ﬂo(S;er) by pga(g) = plf(ld) (9).
The map pg +— (pga)a is a bijection between the sets Irr(wo(S(tfH))B/ and
[, (ol )™

5. The inverse of the above bijections are given by zg (w, al(d)sq(c}))) = azq,q(w),
¢u(z,al(d)sa(cy)) = adge(x), wu(h) = Qi Oc, mga(h(l(d)sa(cy))), and

pu(h) = @a Oc;, paa(h(1(d)sa(cy))).

6. Foreach d € A\ B/B' and a; € A} choose g, € G? and 7 qa (az, ¥ ag) -
Vi o = Vi, satisfying Equations (7.2) and (7.3) for G4 x A} For each b’ € B’

Tl'Gd

define hy € H by hy (al(d)sq(cy)) = AGr4(sa(c,)b") and
Ta(hy X ') : @4 @, Vi, = @a @, Ve,
by
T (hy X0 ) (®4®er,Va,er,) = @a®er, Taa(Gry(sa(e,)b) X Ta(8a(C)b ) (Va,e )

Then these satisfy Equations (7.4) and (7.5). Moreover, the 2-cocycle 5 €
Z%(B',C*) for 7y is the product over d € A\ B/B' of the co-restrictions
(computed with respect to the sections sq) of the 2-cocycles aq € Z*(A/, C*)

for Tga.

7. Foreach d € A\ B/B" and a; € Aj choose g, € G and paa(Ga, X ay) :
Vpoa = Vo satisfying Equations (7.8) and (7.9) for G* x A};. For each b’ € B’
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define huy € H by hy (al(d)sa(ch)) = agr,(sa(c, ) and
pr(hy X V) : ®4 @y Vier = @a @cr Vaer
by
P (hy X ) (@4 @ Vare!,) = @a®cr, P (Gra(sa(eypr) X Ta(sa(cg)b’)) (Ve vr)-

Then these satisfy Equations (7.10) and (7.11). Moreover, the 2-cocycle 8 €
Z%(B',C*) for py is the product over d € A\ B/B' of the co-restrictions
(computed with respect to the sections sq) of the 2-cocycles aq € Z*(A!, C*)
for pga.

8. Let by € Band set B} = byB'b;*. Definely : A\ B/B} — Bbyli(dy) =
I(d)by " for dy € A\B/B} and d = d\b; € A\ B/B'. Define sq, : A \ B] —
B by sa, (c}y,) = bisa(cy)by " for ¢y € AL\ B and ¢, =bicb;"' € Ay \ By
If (zpr, ) corresponds to (zga, Tga)q via the choices of l and (sq), then b(z g, )
corresponds to (zga, , Tgay ) via the choices of 1y and (sq,), where zga, (W) =
Z@d (w) and Tgd = Tgd.

Proof. We have the Mackey isomorphism

Res5, H — H Ind]j;Resﬁ?Gd.
d
deA\B/B’

It sends h € H to the collection (hq)q given by hq(b’) = h(I(d)b'). Write Hy =
Indf;ResﬁZGd, so that Res5, H = [] Hy.

The element 2y is mapped to the collection (zy, )4, where 2, € Z'(u —
W, Z(Hy)®' — Hy). The class of each zj, is B'-invariant, as one checks by
sending (7.4) through the Mackey isomorphism. In turn, zp, corresponds
by Lemma 7.9 to zgq € Z'(u — W, Z(G%)% — G7). Explicitly, we have
za(w, al(d)sq(c))) = azm, (w, sq4(cy)) = azga(w).

According to the product H = [], Hy, the representation 7 is given by
®mH,, where 7y, is a representation of Hd,ZHd (F') on a vector space V;. Thus
g acts on ®4Vy as wpr(h) = @qmm, (hq). Therefore each 7y, acts on ®cr, Va,c, as
7, (ha) = ®Cé7r§ld(hd(cg)). Thus we have 7y V(0 — wﬁjd(ci”) acting on V.
The class of each 7y, is B'-invariant, so 7y, corresponds to the representation
ma of G on the vector space Vg1 given by mga(g) = 7, (9) = wllgd) (9).

The statements concerning z and 7z now follow immediately from Lemma
7.9 by taking products over d. The statement about 7z follows from Lemma
7.10. The argument for the dual side is analogous, using Lemmas 7.15 and 7.16
instead. O

Proposition 7.23. Assume that Conjectures A.1 and 7.3 hold for G x A. Then they
also hold for H x B.

72

{pro:ind}



Proof. Let ¢y : Ly — L H be a tempered Langlands parameter, 2y € Z'(u —
W,Z(H)® — B) and pg € Irr(S;fH, [zm]). We are assuming the validity of
the refined local Langlands correspondence, so there is a corresponding 7y €
gy (Hzy )

Consider any subgroup B’ C B fixing the equivalence classes of zy, g,
¢, pra- Choose a sections [ : A\ B/B’ — B, as well as a section sq4 : A}, \ B’ —
B’ for eachd € A\ B/B’, as in the discussion before the statement of Corol-
lary 7.22. That Corollary provides collections (zga),(mge),(dga),(pga) indexed
by d € A\ B/B’, where ¢ga € ®(G?), pga € Irr(wo(SJGd)), zga € ZY1(u —
W, Z(GHA — G%),and 7qa € Irr(G¢_, (F)). Since the refined local Langlands
correspondence is compatible with products of reductive groups we see that
for each d, (¢ga, pga) corresponds to (zga, mga). The part of Corollary 7.22 that
describes the compatibility of forming these collections with the action of B,
applied to the case B’ = {1}, shows that for any b; € B the pair b1(¢u, pr)

corresponds to the pair by (zgr, 7). That is, Conjecture A.1 holds for H x B.

In particular we see B,[,‘ZH I'= B Take B’ to be this group and ap-

ply the above discussion to obtain the collections (zga),(7ga),(9ge),(pge). Let

TG, M plia be the extension of 7ga X pf, to G(Zicd (F)rpa Xar, ﬂo(g;_;fi)‘;]d) that
Conjecture 7.3 for G x A!, provides. Taking the tensor product over d of the ex-

tensions provided by the construction prior to Lemma 7.21 gives an extension

7 R pYy of W pYy to ey (F)y X mo(S5010). v )
We now come to the character identity. Thus we fix iy X b € Sg,,, hp X b=l e

H., (F),afunction fy € C°(H,, (F)),and f € Sy, and consider

> tr(d ®py) (R, i fu % (Fhy x0D)). (7.12)
7TH€H¢H
THobXT

We apply Lemmas 7.12 and 7.18 to represent 7y as &ﬂr?"d and py as

&dp§”d where, for each d € A\ B/(b), m4 is a representations of G, (F) in-
variant under g4 X agl = gqa = evyq)((hy b=1)"4) and p, is a representation
of Sy, invariant under gq x aq = evl(d)((ﬁb x b)"). We fix isomorphisms
7 1 g0 Ad(Ga) ™! — mqand pg : pg o Ad(Gq ¥ aq)~t — pg. We are interested
in the canonical extension 7y X py; of 7 X py; to [H x (b)].,, (F) X ) [H
(b)) 45 - Under Lemmas 7.12 and 7.18 this is the representation My(74 X gy ) %74
of [I4 111G % (aa)]-c X (ag) [Gx (aq)]¢e, where 4K pY is the canonical extension
of mg X py. We write fg = ®q ®?:dal faiand £ = [],[1,; 34,; and then Lemma
7.13 implies that tr(7y K ﬁ\;{)(R;:xb—lfH x (thy x b)) equals

[[trG® a7
d

_1 . . o
gana; 140 % ¥ fana—1,840- - San,-19a % aq).

The set {my € Iy, |7y o b = wy} is translated to the set {QRqmy € ®qIly,|Tq ©
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ag = wq}. Therefore (7.12) becomes

1 . - o
H § 7Td Xp pd (Rgdmdfd,o O fd,nd—la Sd,0---Sdng—19d A ad)-

T €H¢d
Tgoaq=mg

The parameter ¢4 and the element 340 ...54n,-10d X G4 € G x A lead to an
endoscopic datum ey and parameter ¢.,. The character identities for G imply

that the above equals
115€s., (&)
d

where f; 2 is the transfer of R;dlxad fa0 %+ * fan,—1 with respect to Agg. By
Corollary 7.20 the endoscopic datum for H and ihy x b and ¢y is [I,¢e4, and
the function ® %5 has K S-matching orbital integrals with f.

O

8 THE CASE OF TORI

In this section we are going to sketch the proof of Conjecture 5.12 in the case
where the reductive group G is a torus. We will write T instead of G to empha-
size this. Note that, while a torus T is tautologically quasi-split, an inner form
of T' x A need not be quasi-split. This is the main source of complications we
will have to deal with.

8.1 Initial considerations

Let ¢ : Wp — T and let [¢] denote both the equivalence class of ¢ and the
corresponding character T'(F') — C*. Let Z C T be finite and defined over F,
and z € Z'(u -+ W, Z — T). Then

T.(F) = (T(F) x A)*®) = {§ € T(F) x A|Ad(3(0))é = 6 Vo € T'}.
The group T, (F) is an extension
1= T(F) = T.(F) - AF — 1.

The set T . consists of those irreducible admissible representations of 7. (F)
whose restriction to T'(F') contains the character [¢]. All these representations
are finite-dimensional. They can be described as follows. We have the pull-
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back and push-out diagram

1 T(F) (T(F) x A)D) Al] 1
1 T(F) (T(F) x Al#1E(D) 5 ALl o1
o |

z z],[®
1 Cx £ Al o

The bottom extension is central. If we let Irr(c‘f[zd)],id) denote the set of irre-
ducible representations of £ whose central character restricts to the identity

on C%, then inflating an element of Irr(&f;), id) to (T(F) x Al?N2T) and then

inducing it to (T'(F) x A)*T) provides a canonical bijection
Irr(E7),id) — Tl ..

Dually, we have Sc[;] = (T x AEN9(Wr) Tts preimage S';f’[z] in T x A fits in
the following push-out diagram

1> mo([T]) ——> mo(§ 1) ——= AL 1

(2] l

1 Cx g[ﬁ] Alzblel o q

and again there is a canonical bijection Irr(é'f; P id) — Irr(S‘(b,[z], [2]) given sim-
ply by inflation.

While the extensions 5{’; j and &F are constructed from essentially the same
data, their constructions are in some sense dual to each other. In Subsection 8.2
we will construct a natural isomorphism of extensions £, = £ [d; - The resulting
bijections

Trr (S, 2, [2]) = Tre(E()) id) = Tre(€7y), id) — T - (8.1)
will imply Conjecture 4.2. We will then go on to verify the identity claimed in
Conjecture 4.7.

. : z o~ P
8.2 The isomorphism &) = &,

We will first realize the extensions £, and 5{‘;  explicitly as twisted products of
CX with AW
For each element a € A%l we choose t, € T(F) and s, € T such that

(z,te) €ZNu—W,Z =T =T) and (¢ s, %a)€ ZWp, T =T).
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More explicitly, if we write ¢(w) = ¢o(w) x w, then the above can be reformu-
lated as

2(w) ™ a(z(w)) =t ow(ta)  and  go(w) T aldo(w)) = 551 0w (sa),

where o,, € I is the image of w € W in the first case, and of w € Wy in the
second. The choices of t, and s, give us sections a — t, x a and a — s, x a of
the two extensions

1= T(F) — (T(F) x Al?l)> - Aleblel 5 q

and R R
1= TF — (T x AEY? — AlPLED g,

Choose a lift 5, € i\_“ for each s,. Then a — s, X a is a section of the extension

1= mo([T]) — g;[z] — AL 5
The 2-cocycles corresponding to the sections a — t, x a and a — 3, % a are

ala,b) =t, -t} and  Bla,b) =35, “& -5,
Let @ = [¢] o a and 8 = [2] o 3. Then we have
£y =C Ra APl and  gf) = C* ®; APIEL
By construction, for each a € AL, we have (25',t,1) € Z'(u — W, Z —
T T)and (¢, 8a) € ZH (W, Z — T &2 T). We put
h(a) :== a(a™',a) - <(z*17ta_1), (¢al, sa)> ,

where the pairing (—, —) is (5.3).

Proposition 8.1. The map x W a +— xh(a) W a is an isomorphism E¢,) — 5[4; |- Itis
independent of the choices of t, and 5.

Proof. 1t is obvious that the map is bijective, but we need to show that it is a
homomorphism. This amounts to the equation

h(a)h(b)h(ab)~' = a(a,b)B(a,b) . (8.2)

We choose for each a € A an element (A4, 1) € Zo(Wikp, X+ (T) = X.(T))o

whose imagein H'(u - W, Z — T 1~ T') under the isomorphism (5.5) equals
(271, t,). Here K/F is a suitably large Galois extension. Note that all \, €
Zo(Wi p, X+(T))o = X.(T)Nx/7 have the same image in X.(T)" /IX.(T),
since their images under the isomorphism X, (T)Y /I X, (T) = H'(u — W, Z —
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T) all equal z~!. Thus we may choose a single A € Zo(Wg,p, X.(T))o and ar-
range, by modifying (A @ e) by a coboundary, that A, = A for all a. Then the

pairing (271, t,-1), (g ', $4)) is equal to
Nsa) o TT (Har (), do(w)),

’u)GWK/F
according to the definition of (5.3) as the composition of (5.4) and (5.5). Here
the angle brackets denote the canonical pairing X, (T') ® T — C* and its analog
for T.
With this, we can now compute h(a)h(b)h(ab)~t. For h(b) and h(ab) we
simply plug in this formula. For h(a), we shall replace (¢; ', 5,) by the element
(Pdg »8a- "S-, '), which is easily seen to be cohomologous using the fact that

(¢5', %) € Z'(Wp,Z — T =2 T). All together we obtain
h(a)h(b)h(ab)™" = o’z(ail,a)éz(lfl b)a((ab)~* ab)~?
(Nsa- %50 [T Hams + o1 = Bgany-1, do(w)).

w

Using (¢ '+ 82) € Z2'(Wp, Z - T & U) and (A, pa) € Zo(Wie/i, Xo(T) "=
X.(T)) one checks that 3, - %, - §,,} € [T]+ and -1 4 o1 — [(ab)-1 €
Z1(Wk/p, X«(T)). The functoriality of the maps ¥ and ¢ that make up the
isomorphism (5.5) implies that we have

h(a)h(b)h(ab)™' = ala™', a)a(d~ !, b)a((ab)~t, ab)~t -
)

<( S Sb 3 a(@balvtb*l = t t(_ai) 1)>

where the pairing is now between H(u — W, Z — T % T)and H'(Wp, Z —
T T). Using Corollary 5.11 we see

h(@)h(B)h(ab) " = ala",@)a(b " b)al(ab) ", ab) " ab o) " - Ba,b) !

Finally, an elementary computation using the fact that & is a cocycle shows that
all terms involving & combine to &(a, b).

It remains to show that the isomorphism £, — Ef; | we have just con-
structed is independent of the choices involved in its construction, that is of

the choices of elements ¢, € T'(F) and 3, € T.. For this we need to check that if
we replace t, by z,t, with x, € T'(F), then h(a) is replaced by ([¢], z,)h(a), and

if we replace $, by y,$, with y, € [T]T, then h(a) is replaced by ([2], ya) ~'h(a).
Both of these verifications are immediate. O

8.3 Remarks and generalizations

Before we continue with the proof of Conjecture 5.12 for tori, we would like to
point out a beautiful symmetry between 7, (F) and S'(Ef] that may have become
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covered under the debris of generality. To see it more clearly, let us consider
the special case where the Langlands parameter ¢ extends to the Galois group
(thus it corresponds to a character of T'(F') whose composition with the norm
map Ng/p : T(K) — T(F) is trivial for some finite extension K/F) and the
inner form of T' x A we are considering is pure. As above we shall write ¢ :
I' — T x T for the Langlands parameter, and ¢ : I' — T for the corresponding
cocycle, so that ¢(0) = ¢g(o) x 0. We shall use the analogous notation z :
I' =T xI'and 2z : I' = T for the pure inner form, slightly deviating from the
notation of the rest of the paper, where we used z and Z instead. We are writing
T for T(F), in the same way we are writing T for T(C).

Now T,(F) = (TxA)*D and S, = (T x A)*™). These fit into the extensions

1750 5 (T x AT 5 AE 51

and ~
1= T%M o (T % AP0 5 Al 1,

We have written 7%(") for 77 = T(F) and T*™) = TT to emphasize the sym-
metry. Now [¢] is a character of T#(I) and [2] is a character of T7¢("). We pull
back the above extensions along the inclusions of Al?/¢] into Al*l and Al?! and
obtain the push-out diagrams

1 —— T — = (T A)Z(F)J«b] S Al o

l (4]

(CX

and

J{ (2]

CX
Which lead to the extensions £, and S[i  of A9l by C*. The symmetry of
the situation now makes it rather natural to expect that these two extensions
are closely related.

Moving towards the opposite end on the spectrum of clarity, we are now
going to formulate a situation a bit more general then the one considered in
Subsection 8.2. We will not need this generalization in the present paper, but
will need it in a forthcoming paper in a rather different set-up.

Let T be an algebraic torus 1" defined over F, and A a finite group acting
on T by F-automorphisms. Let Z C T be a finite subgroup defined over F' and
fixed pointwise by A. Let ¢ : Wp — T x Wrand z € Z'(u — W,Z — T).
Write T for the complex dual group of T = T/ Z.

Instead of considering the split extensions T'x A and T x A, we now assume

given extensions1 -7 —-T — A —land1 — T — T — A — 1 that may or
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may not be split. Dividing out by 7 we obtain an extension1 — T — T — A —
1. We emphasize that no relation is assumed between T and 7. We assume that
after taking F-points the sequence 1 — T'(F) — T(F) — A" — 1 is still exact,
and after taking I-invariants the sequence 1 — 77 — 7T — AT — 1 remains
exact. Let [T]T be the preimage of 7% in T.

Let1 — C* — &) — Al — 1 be the push-out of 1 — T(F) — T(F)l¥l —

Al — 1 along [(b] : T(F) — C*. Let1 — C* — &) — AFl — 1 be the

push-outof 1 — [T ] [7']+[Z—>A[Z—>1along[] [ ] — C*.

We now consider the inner form 7,. We have T.(F) = {t € T(F)|Vo ¢
[ : ¢t = Ad(z(0))o(t)}, where again z € Z}(T,T) is the image of z, and we
are using that the conjugation action of 7" on T factors through T because Z is
pointwise fixed by A. The assumption that T(F) — A" is surjective implies
that T,(F) — Al is surjective, where again Al*l is the stabilizer in A of the
class [z] € H'(u — W, Z — T). Thus we have the extension

1= T(F) - T.(F) — A - 1.

We pull back along the inclusion Al?:[¢] — Al and push out along [¢] :
T(F) — C* to obtain an extension 1 — C* — &gy — Al 1,

Dually we consider the centralizer S, = T¢Wr) of ¢ in T. Again the as-
sumption that 77 — A" is surjective implies that Sy — Al?l is surjective. Let
S;{ be the preimage of Sy in T, so that we have the extension

1—>[7é“]+—>5;r—>A[¢]—>1

We pull back along the inclusion A4l — Al¢l and push out along [2] : [’f’]Jr —
C* to obtain an extension 1 — C* — Eﬁ] — ALLIL 5 g,

Proposition 8.2. Let 50 U and 5 M be the pull-backs of 5[0¢ and 50 along the

inclusions of AZb1?] into AM’ and A[Z An isomorphism of extensions ( 5 [z]

5[0 ][¢ determines an isomorphism of extensions & : €7 — S AR multzplled bya

character AGHS) — CX, then ¢ is multiplied by the same chamcter.

Proof. To lighten notation, we replace A by its subgroup Al*l19]. Foreacha € A
choose lifts 6, € T(F) and 7, € [T]T, as well as elements t, € T(F) such that
t 0, € TZ(F) and $, € T such that $aTa € S’¢ .

The section a — t,0, realizes the extension 8@] as the twisted product
C* Ry A, where o/ € Z2(A,T(F)) is defined as o/(a,b) = t,0,tp0, (tapbap) ™t
and & = [¢] oo/ € Z2(A,C*). The section a > 3,7, realizes the extension
5{’;  as the twisted product C* M5, A, where 3’ € Z%(A, [%]J“) is defined as
B'(a, b) = SaTaébTb(éabTab)_l and B/ = [Z] o B/ S Z2(A,(CX).

We have o(a,b) = a(a,b) - ag(a, b) with a(a,b) = t, -, -t} and ag(a,b) =
0,050.,". The element g € Z2(A, T(F)) is the 2-cocycle corresponding to the
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section a — 6,, which then identifies 5[(32;][2] with C* K, A. Analogously we
have 3'(a,b) = B(a,b)Bo(a,b) with S(a,b) = éaaébé;bl and By(a,b) = TaTbTC:bl.

~

The element 3, € Z2(A, T) is the 2-cocycle corresponding to the section a — 7,
which then identifies 5[02 "]M with C* Kz A.

Let ¢ : 5[3;][2] — 5[();][¢] be an isomorphism of extensions. The composition
C* Mg, A — SEZ;][Z] — 8[02’}[@ — C* KMj Ais givenby 2 K a — x(y(a) K a, where
Co: A — C* is defined as (y(a) = ¢(0,)7; ! and satisfies ((a)(o(b)¢o(ab)~! =
ao(a,b)"'Bo(a,b). Here 0, € EEZ;][Z] and 7, € 5[()2’][¢] are the images of ¢, and 7,

respectively.
Let h : A — C* be defined as in Subsection 8.2. We claim that

C* Maa, A — C* Nzp, A, xXa hia)o(a) Xa
is an isomorphism of extensions and the composition
£: &}y — C* Ragy A > C* gz A EL)

depends only on ¢, and not on the choices of 0,, 7,, ts, O $q.

The first part of the claim is equivalent to h(a)h(b)h(ab) "t = a(a,b) "1 B(a,b),
which was the content of the proof of Proposition 8.1. This proof remains valid
verbatim in the current situation. For the second claim, the independence of
the choices of ¢, and $, was already addressed in the proof of Proposition 8.1.
Now say we replace 0, by 2,0, and 7, by 9,7,, for z, € T(F) and 3, € [T].
Since we already have independence of ¢, and $,, we are free to replace ¢, by
x; ', and §, by 9, '$,. This has the effect of keeping aay and 3/, as well as
the first and third arrows in the last displayed sequence, unchanged. At the
same time, h(a) is replaced by h(a){[¢], z,'){[2], V), while (o(a) is replaced by
Co(a)([¢], za)([2], 95 1), so the middle arrow is unchanged as well.

Finally, if ¢ is replaced by 4¢, then (, is replaced by (6¢)o specified by
(6¢)o(a) = (6¢)(Bo)7t = 6(a)C(Bo)7t = 6(a)o(a). If follows that the iso-
morphism C* a5, A — C* Kz, A is multiplied by §, and the same is then
true for &. O

8.4 Computing the right-hand side of (4.4)

In this section we will compute the virtual character

f;) = Ztrp(§) O,
p
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where p runs over the set Irr(m(

gc[;]), [2]). We recall from Subsections 8.1 and

8.2 that we have the following diagram
1 T(F) (T(F) x AT Ale] 1
1 T(F) (T(F) x Al#))Z0) 5 gleblel 51
l[cﬁ] F
1 Cx £ POl
y
1 Cx &l ALl o
[ZJT G

o~

1——mo([I]F) ———mo(S)) ———— A

We can be more explicit about the maps F', G, and H. Recall from Subsection

8.2 that we have fixed elements t, € T'(F') and s, € T such thata +— ¢, x a and
a — $q % a are sections of the top and bottom extensions. The corresponding

2-cocycles are

ala,b) =t, - “ty -t

and setting & = [¢] o @ and 3 = [z] o 3 allows us to make the identifications

z @],[z
£y = C* By AlPLE

~

and  B(a,b) =34 "S- 5,

and £ =C* Kz AP

The maps F, G, and H are now explicitly given by

F(t-t,xa) =[6](t)Xa, G($- 3, xb) = [2](s) XD,

We now fixt-t, Xa € TZ(F) and $-$, xb e 5‘5] and set out to compute

O35 (t - tq x a).

Since this is a virtual character of (T'(F) x A)* which is induced from a virtual
character of (T'(F) Al?l)? there is no loss of generality if we assume ¢-t, xa €
(T(F)xAl?h?, which simply means a € Al?l::]. Then, by construction, we have

S (G- 8 1 b)

O3 (t -ty xa) =
TeIrr((CX@BAW]v

A =L ST 3 (HF((te % €)(t -t a)(te @ ¢)7Y)

(=1 id)

ceAl?]

cac—Te Al#l L]
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where x, denotes the character of the finite dimensional representation 7 and
the second line is the Frobenius formula for the character of the representation
on T (F) induced from 7 o HF.

We compute

(te X e)(t-tq xa)(te xc)™' =<t -C(c,a) - toger x cac™t,
where N
(e, a) =ttt e T(F).
With this we have
05 (t-taxa) = [2](8) D_[@(°t¢(c, a))h(cac™ )| APHETLY Ty (b)xr (cac™).

We now apply Lemma C.1 to the sum over 7 and conclude that if cac™! is not
conjugate to b~! then the corresponding summand is zero. It is more conve-
nient to apply this information not to the expression we just obtained, but to
the original expression we started with, namely (8.3). This allows us rewrite
that expression as

AP E 7Y Z g1 (7)) X (G5 - 8 x0D))

Z Xr(HF((te x ¢)(t-tq xa)(te xc)™1))
yeAlebIz]
ce Al
cacilzybfly’1

and making the substitution ¢ — yc this equals
JALE T Z 400 (07D X (G5 - 85 x0D))

Y X (HE((tye 2 ye)(t - ta 3 a)(tye 3 ye) 7))
ye Aol l2]

ceAl?]
cac™t=b"1

Since the images of t. x ¢ € T,(F) and t,. x yc € T.(F) in the quotient
(T(F) AW’])Z \ (T(F) x A)* = All[2] \A[Z]

are equal, the character of 7 o H F' will remain unchanged if we replace yc by y.
Doing this leads to the expression

O (ttaxa) = [Zywa(d )Y xr(G(5- 8 % b))

Z Xr(HE((te xc)(t -ty xa)(te xc)™h)).

ceAl?l
cac”t=p""t

82



The same analysis as for (8.3) now leads to

05 (t-taa) = [2)(3) Y [4](°t¢(¢, a))hleac™ )| Zawm e (07T Y xr (B)xr (cac™).

c

Since now cac™! = b~! we can apply Lemma C.1 and, recalling the definition
of h(b) from Subsection 8.2, we obtain

O (- taxa) = [HSAOTAD7Y) Y [BH(e,a))

c

= [I&hO) " ab,07h) Y [8l(t¢(e,a))

c

= B (), (075 8)) S [61(H (¢ a))

C

8.5 Computing the left-hand side of (4.4)

We will now compute the lift to T, (F) of the virtual character SO,.. Recall
that we have fixed an element s = $- §, x b € S'Q[f] and e is the endoscopic triple
for the twisted group (G,b™!) corresponding to 5 and ¢ and augmented by a
choice of an L-embedding ¢° : 'G* — LG whose image contains the image
of ¢. In our special case of G = T, we have G* = T},-1 and we can choose
& [f]l”O x Wr = T x Wg to be given by (¢, w) + t - ¢(w). With this choice,
¢*(w) = 1 x w and hence SO . is the trivial character of Tj,-1 (F"). On the other
hand, the function f¢ from Lemma 4.6 is given by

o) = > A(%g)/~  f(#@6iYda
ST, (F)/T.(F)—conj TET.(F)/T:(F);

= > A(%S)/ F(#55 V) d,
©€T,(F)/T.(F);

€T, (F)/T.(F)—conj

where A is the transfer factor determined by ¢ and the fixed L-embedding
(there is no Whittaker datum since we are dealing with tori). Thus the lift
of SO 4 evaluated at f is equal to

/ FE()dy
YET, -1 (F)
/ > A(y,9) f(@6zY)dz

SGTZ(F)/TZ(F)fconj TET-(F)/T=(F)s

_ l 3 S Ags(y,det) / F(#85)dF

S€T.(F)/T.(F)—conj c€T.(F)/T-(F) TET-(F)/T-(F);
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Recall that A g is supported in the variable 4 on the coset (G x b~1).(F). We
obtain

— < -1 ~ T~ g~
_ / > > S Aks(y,cbeh) / S F(#35)da

7 a€AlF §e[Txa), (F) /T (F)—conj c€T. (F)/T ( )
cac™t=p!

We interchange the integral over v with the sums over a and c. Moreover, as ¢
runs over Ty-1(F), ¢ 1ycruns over T, (F). We make the substitution v — ¢~ !vc
and arrive at

- Z / Z Z AKS(C'YC_l,CSC_l)/ f(i‘g.fj_l)d,fj
YETL(F) seT ()T (),

acAl?] S€[Txal.(F)/T.(F)—conj c€T,(F)/T.(F)

cact=b"1

Now Agks(7y, ) ), in our special case of tori, is non-zero if and only if §=dxb!
and the image of ¢ in T} (F') equals v. Thus the function

(0) = Z Ags(eye ™, ede™h)
ceT, (F)/T (F)
ca =p~?!

depends only on 4, as  can be recovered from 5. We arrive at the formula

3 / 3 () F(@sa1)di
wealsl P 1ETa(E) 5 (YT (F)—conj FET.(F)/T-(F)s
Sy

Since ®(0) is conjugation-invariant under T (F'), we obtain

/ > / (207~ 1) f(z6z V) dz
€Ta(F) 51T xa]. (F)/T. (F)—cong * €T (F)/T=(F)s
Sy

ac Al

A simple integration formula now shows that this is equal to

| e®)1G).
SeT.(F)
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We conclude that the lift of SO to T, (F) is represented by the function ®. We
have

O(t-tyxa) = Z Ags(eye™ et -ty xa)e™)
c€T.(F)/T.(F)
cac™l=p"1
= Z Ags(eye™, (te xe)(t-tq xa)(te xc)™Y)
c€T: (F)/T:(F)
cac™l=p"1!
= Z Ags(cye™ “tl(c, a)tege—1 x cac™t)
c€T:(F)/Tx(F)
cac™t=p""!
= > A{ET e a)t), (g1 8%)) !
ce Al
cac™l=p"1
= (Nt (G 3T D [9lCH(e a)).

ceAl?]
cac”t=p""t

The final expression is equal to the formula for @‘;"éb”b(t - 14 X a) obtained in
the previous section. The proof of Conjecture 4.7 in the case of tori is now
complete.

Appendix

A  FUNCTORIALITY OF THE LOCAL CORRESPONDENCE FOR CONNECTED
GROUPS

Let ¢ : Ly — G be a tempered Langlands parameter. As in [Kall6b, §5.4] and
[Kall8, §4.1] we expect to have a compound L-packet II;, and a commutative
diagram

I Irr(S;)

| i

o~

H'(u = W, Z(G) = G) — mo(Z(G))*

Recall here that II,; is a subset of the set Iliemp of tempered representations of
rigid inner twists, that consists of tuples (G, ¢, z,m), where £ : G — G, is an
inner twist, z € Z'(u — W, Z(G) — G) is such that ¢ 1o (¢) = Ad(2(0)), where
z € Z1(I', G,q) is the image of z under the natural projection G — G4, and 7
is an irreducible tempered representation of G, (F).

The group A acts on Z'(u — W, Z(G) — G) by a(2)(w) = a(z(w)). Given
rigid inner twists (§;, %) : G — G, fori = 1,2 and a € A such that z2 = a(#)
one checks that the isomorphism b := & 0ao0 &' Gy — Gy is defined over
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F. More generally, if a(z;) and 2, are cohomologous and one chooses h € G
with z(w) = h=ta(z(w))o,(h), then b := & 0 Ad(h) o a o €71 is defined over F.
A different choice of h will change b only by an inner automorphism coming
from G, (F).

Seen from a slightly different perspective, this can be formulated as an ac-
tion of A on the category of rigid inner twists of G, namely a(§,2) = (£ o
a~',a(z)). This action can be upgraded to an action of A on the set Iliemp by
a(G., & z,7) = (G, E0a" Y a(z), m).

Consider now the dual side. Given a tempered Langlands parameter ¢ :
Lp — "Gand p € Irr(S}) we obtain a¢ := ao¢ : Lr - “Gand ap := poa™' €
Irr(S:¢). Thus A acts on the space of refined Langlands parameters.

It is reasonable to expect that the above commutative diagram is natural
with respect to this action. More precisely:

Conjecture A.1. If 7 € Il corresponds to (¢, p), then at corresponds to (ag, ap).
Formulated equivalently, if (G1,&1,21,m1) and (Ga, &z, 22, m2) correspnd to (¢, p)
and (a¢p,ap) respectively, then the isomorphism b : G1 — G4 constructed above
identifies 1 with .

In the special case of a rigid inner twist (G, £, z) for which the cohomology
class of z is fixed by a, in particular in the case z = 1 where G, = G, this
amounts to a compatibility with automorphims of the refined local Langlands
correspondence for the group G.. However, the above statement applies even
to inner forms of G which do not admit a as an automorphism defined over F.

B AUTOMORPHISMS OF WEIL-RESTRICTED GROUPS

Let E/F be a finite extension, A = Gal(F/E) C T' = Gal(F/F). Let G be an
absolutely simple connected reductive E-group. Let a be an automorphism of
H = Resg,pG. Recall the natural identification H(F) = Ind\ G(F). For every
o € I' let “ E be the subfield o(E) of F' and let G” be the ? E-group obtained by
twisting the rational structure, i.e. G = G Xspec() Spec(? E), where we have
used themapo : £ — 7 F.

Lemma B.1. There exists oy € Np(A) and an isomorphism o’ : G — G°° such that
a(f)(o0) =d(flog'0)),  Vfe€H(F)=Indy\G(F), Yo €T.

The A-coset of oy is unique and o' is uniquely determined by the choice of oy within
its A-coset. If oy is replaced by oo with T € A then o' is replaced by T o o’.

Proof. Choose a set of representatives o1, ...,0, for A\ I and arrange 01 =
1. Then f — (f(o1),..., f(0,)) is an isomorphism H(F) — [[i_, G(F) of
algebraic groups. It translates the automorphism a to an automorphism of
[T, G(F). Such an automorphism must map each factor in the product to
another factor. In this way we obtain a permutation p of the set A \ I which
has the property that if f € H(F) is a function supported on the coset Ao, then

86

{cnj:func}

{app:weil}

{lem:weilauto}



a(f) is a function supported on the coset Ap(o). Since a is an F-automorphism,
the permutation p is I'-equivariant, i.e. p(oy) = p(o)y. It follows that there
exists op € Np(A) such that p(y) = 0¢, and the A-coset of o is unique.
Given g € G(F) and o € T let g°> € H(F') be the unique function sup-
ported on Ao and with value g at 0. Define the F-automorphism o’ of G
by a/(g) = a(g®)(co). One checks immediately that a/(rg) = ooToy  d'(g),
so that o’ is in fact an isomorphism of E-groups G — G?°. The equality
a(f)(o) = d'(f(og o)) can be checked on functions f of the form g% for ar-

bitrary g € G(F) and 7 € I'. We compute that a(¢g°")(c) equals

1 1

a(y " (g’))(0) = a(g” ) oy ) = oy oy td (g) = d' (05 'yt og) = a/ (97 (05 ' 0)),

provided o, 'y~ 'o € A, and that a(¢%) = 1 = a' (g% (0, '0)) otherwise. O

C ORTHOGONALITY RELATIONS FOR PROJECTIVE CHARACTERS

We have now constructed the bijection (8.1). Our next goal is to show that with
this bijection the character identities (4.4) hold. In this section we will prove a
lemma that will be needed for the evaluation of the right hand side of (4.4). It
is a refinement of the orthogonality relation

{|ZA<a>|, be Cala)

> X (a)x-(b) =

T€lrr(A) 0, else

for the characters of the irreducible representations of a finite group A. Here
Z4(a) and C4(a) are the centralizer and the conjugacy class of ¢ in A.
The refinement we need is the following. Consider a central extension

1-2Z—-F—A—1.

We assume that A is finite. For e € E we will write e for its image in A. Let
Y : Z — C* be a character, and let Irr(E, ¢) be the set of all irreducible rep-
resentations of £ whose central character restricted to Z equals 7. This is a
finite set and each element of it is finite dimensional. For each 7 € Irr(E, )
its character ., is a class function on F that satisfies x-(ze) = ¥(z)x.(e). This
implies that if the images of e, ¢’ € E in A commute, so thatee’e~le’~! € Z, but
Y(ee’ete’71) # 1, then . (e') = 0. We will say that ¢’ € F is ¢-centralizing, if
forall e € E such that ee’e "'/~ € Z we have ¢(ee’e"te’~1) = 1. Note that the
notion if being 1-centralizing is invariant under conjugation as well as under
translation by Z. The refinement of the orthogonality relations we need is the
following.

Lemma C.1. Assume that e € E is y-centralizing. Then

> xT(e)XT(e’){|ZA(€)|¢(€€'), e €7

—1 5!
Telr(E ) 0, e ¢ Cal@)
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Proof. We will make use of the character theory of projective representations of
finite groups, for an exposition of which we refer the reader to [Che]. We first
form the push-out

1 Z E A 1
b
1 ol Ey A 1

Inflation provides a bijection Irr(E,,id) = Irr(E, ¢) that preserves characters.
Moreover, ¢/ € E is t-centralizing if and only if its image in E,, is id-cen-
tralizing. This reduces the problem to Z = C* and ¢ = id. Next we fix a
set-theoretic splitting s : A — E such that all values of the corresponding 2-
cocycle a(a,b) = s(a)s(b)s(ab)~! are complex roots of unity, see [Che, Lemma
3.1]. For each 7 € Irr(E,,id) set 7 = 7 o 5. Then 7 is a projective representation
of A with cocycle a and the map 7 +— 7 o s is a bijection between Irr(Ey,id)
and the isomorphism classes of projective representations of A with cocycle
a. Let f be the a-class function [Che, Definition 3.13] on A supported on the
A-conjugacy class of e~ and having the property with f(e~!) = 1. This class
function exists because ! is an a-element. According to [Che, Theorem 3.15],

we have
F=> (fxe)xe

7

Since both f and x- are a-class functions and « is unitary, the product f - Xz is
a 1-class function (i.e. an honest class function) and one sees

(fox=) =AY fla)x=(a) = |Za(@ ") xz(E D).

a€A

We thus obtain

Z4(@)If(€) = xr(e Dxr(€)
and then further T
doxrlexe(e) = Y (e ) r(r(e))
T = i:tr((ze17(6_1))_1)tr(7(€/))
- P D TE )
_ ee’Zx;(el)xf(e’)

ee'|Za(e)|f(€)

We have used in this computation that the projective representation 7 is unita-
rizable, which is a consequence of our choice of s. The lemma follows. O
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