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Abstract

We provide an explicit construction of the local Langlands correspon-
dence for general tamely-ramified reductive p-adic groups and a class of
wildly ramified Langlands parameters. Furthermore, we verify that our
construction satisfies many expected properties of such a correspondence.
More precisely, we show that each L-packet we construct admits a parame-
terization in terms of the Langlands dual group, contains a unique generic
element for a fixed Whittaker datum, satisfies the formal degree conjec-
ture, is compatible with central and cocentral characters, provides a stable
virtual character, and satisfies the expected endoscopic character identities.
Moreover, we show that in the case of GL,,, our construction coincides with
the established local Langlands correspondence. Our techniques provide
a general approach to the construction of the local Langlands correspon-
dence for tamely-ramified groups and regular supercuspidal parameters.

The purpose of this paper is to construct the local Langlands correspondence
for the epipelagic representations of tamely-ramified reductive p-adic groups.
These are certain irreducible supercuspidal representations of positive depth
that were defined and studied by Reeder and Yu in [RY14]. The depth of an
epipelagic representation is a rational number of the form L. In this paper, we

e construct an L-packet consisting of epipelagic representations of depth
L for each epipelagic Langlands parameter of depth -- and each tamely-
ramified p-adic group, provided that p { 2m;

e prove that our L-packets behave as conjectured with respect to central
and cocentral characters;

e prove that our L-packets satisfy the Hiraga-Ichino-Ikeda formal degree
conjecture and Shahidi’s tempered L-packet conjecture;

e show that the internal structure of our L-packets is canonically parame-
terized by the centralizer of the Langlands parameter;

e prove the stability and endoscopic transfer conjectures for our L-packets,
under further restrictions on p;

e prove that our construction is compatible with the established Langlands
correspondence for general linear groups over division algebras.

Motivation for studying this class of representations comes on the one hand
from their ramification properties. In a suitable sense, epipelagic represen-
tations are minimally wildly ramified, and as such represent a natural next
step for the construction of the local Langlands correspondence for regular su-
percuspidal parameters after the tamely-ramified case handled by DeBacker-
Reeder and the author in [DR09] and [Kal14]. On the other hand, epipelagic
representation have proven to be quite fruitful for number-theoretic applica-
tions. Following work of Gross [Gr11] on counting automorphic representa-
tions with local behavior prescribed to be either real discrete series, Steinberg,
or epipelagic representations of depth equal to one over the Coxeter number,
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Heinloth, Ngo, and Yun, construct in [HNY13] very interesting I-adic local sys-
tems on G,,,, which generalize the Kloosterman sheaves introduced by Deligne.
In subsequent work, Yun uses epipelagic representations of depth 1/2 to con-
struct in [Yn14] motivic Galois groups of exceptional type, and obtain results
towards the inverse Galois problem.

Our construction of the local Langlands correspondence is inspired by the ap-
proach originally used by Langlands [Lan88] to construct the discrete series
L-packets for real groups, and later reinterpreted and amplified by DeBacker
and Reeder [DR09] to construct supercuspidal L-packets for certain tamely-
ramified parameters and unramified groups. However, there are two inter-
esting new phenomena occurring in the present situation which were visible
neither in the setting of real groups, nor in the setting of tamely-ramified su-
percuspidal parameters.

To describe the first phenomenon, we recall that the first step in Langlands’
approach is the construction of an elliptic maximal torus S C G and a char-
acter x : S(F) — C* from the given Langlands parameter . Obtaining the
maximal torus fairly straightforward. Obtaining the character x is more sub-
tle. Both in Langlands’ original paper, as well as in the work of DeBacker and
Reeder, x was obtained by an ad-hoc construction, which is independent of
the particular Langlands-parameter at hand, in the sense that it is the same
construction for all parameters of the same kind. In [Kall4], the author gave
a reinterpretation of the construction of DeBacker and Reeder using the work
of Langlands and Shelstad [LS87, §§5,6] on L-embeddings of maximal tori into
the L-group of G. The upshot is that the Langlands parameter ¢ can be factored
as the composition of a Langlands parameter ¢g : Wr — ©S for the torus S
and an L-embedding L : £S — LG. Moreover, it was shown in loc. cit. that in
the setting of tamely-ramified supercuspidal parameters, there is an essentially
unique choice for L'j, and that y is the character corresponding to the parameter
¢s. The same uniqueness is also true in the case of real discrete series L-packets
and is implicit in the work [Shel0] of Shelstad. The new phenomenon occur-
ring in the setting of epipelagic L-packets is that the L-embedding ' ceases
to be unique. In fact, when the maximal torus S is tamely-ramified, there are
always 2™ choices of tamely-ramified L-embeddings j, for a certain usually
non-zero natural number m depending on S, and each two choices differ by
a sign. In the case of epipelagic parameters, the number m is always positive
and L is the depth of the parameter. The question is then to choose the correct
signs. What is interesting is that there is no universal choice that works for
all epipelagic parameters — the signs depend on the arithmetic data encoded
in the particular parameter ¢. That this is the case for GL,, is visible in the
work of Bushnell and Henniart [BHO5b]. Inspired by that work, and led by
the constraints imposed by endoscopic transfer, we give a simple and explicit
construction of the L-embedding ©j : £S — LG, which relies on the use of
Langlands’” A-constants [LanArt, Thm. 2.1]. The role of choosing the correct
L-embedding in our construction is somewhat parallel to the role of the recti-
fying character in the work of Bushnell and Henniart. This parallel is however
not entirely direct, because unlike in the case of GL,, there is no “naive” con-
struction in our case. Rather, the construction can be performed only after a
choice of an L-embedding has been made.

We now come to the second new phenomenon occurring in our construction.
It concerns the grouping of representations into L-packets. Each constituent
of our L-packets is constructed, just like in the case of discrete series repre-
sentations of real groups and of depth-zero supercuspidal representations of



p-adic groups, from a pair (S’, x’) of a maximal torus S’ C G and a character
X'+ 8'(F) — C*. In the case of discrete series representations of real groups,
as well as in the case of depth-zero supercuspidal representations of unrami-
fied p-adic groups, an L-packet is formed by considering all G(F')-conjugacy
classes of pairs (S’, x’) in the stable conjugacy class of the pair (5, x) that was
obtained from the Langlands parameter ¢. While we can clearly perform the
same construction in our setting, the result will in general not be an L-packet,
and this is reflected in the character relations from the theory of endoscopy.
The failure of these relations leads to the definition and study of a new sign
invariant associated to a maximal torus S’ C G. This sign invariant takes
the form of a function, which assigns to each absolute root of S’ the number
+1 or —1. This sign invariant appears to be interesting in its own right. For
example, it provides a refinement of the Kottwitz sign e(G) associated to the
reductive group G [Kot83]. The invariant can be used to construct a character
egr : S'(F) — C*. In order to obtain the correct L-packet, one has to take the
representations corresponding to the pairs (S, x’ - €s), for all G(F')-conjugacy
classes of pairs (', x') in the stable class of (S, x). It may be worth pointing out
that, contrary to the case of the L-embedding ©j : 'S — LG, the characters eg
do not depend on the Langlands-parameter ¢ or the character x constructed
from it. Rather, they only depend on the particular torus S’

Both of these phenomena came initially as a surprise to us. In [Kal13SW], we
studied the L-packets of epipelagic representations of depth } for split, abso-
lutely simple, simply-connected groups G with Coxeter number h. In that situ-
ation, neither of the two phenomena appears. We believe that it is the simply-
connectedness that is chiefly responsible for this. For example, in the study of
the group GL,, both phenomena need to be addressed. As we have indicated,
the main cue for their resolution came from the theory of endoscopy. Thus,
stability and endoscopic transfer are not just properties that our L-packets sat-
isfy. Rather, they are the main guiding light in their construction. For this, the
character formulas of Adler-Spice [AS10] provided essential information.

While the results of this paper pertain exclusively to epipelagic representations,
we believe that the methods developed here can be applied to the construction
of the local Langlands correspondence for a much wider class of Langlands pa-
rameters, namely supercuspidal parameters which map the wild inertia sub-
group into a unique maximal torus. In fact, a large part of the constructions of
this paper can be performed in this generality and we have tried to organize
our exposition in a way that facilitates this generalization. The corresponding
L-packets will likely consist of the so-called toral supercuspidal representa-
tions. We expect that both the sign invariant, as well as the method of con-
struction of the L-embedding j, will play a role in the construction of these
L-packets when the corresponding torus is not unramified.

We will now describe in more detail the individual results of this paper. After
fixing notation in Section 1 we review some known results in Section 2 that will
be used throughout the paper. In particular, in Section 2.3 we use arguments
from the works of Adler [Ad98] and Yu [Yu01] to show that certain pairs (.5, x)
of a maximal torus of G and a character of S(F') lead to the stable vectors con-
sidered in [RY14] and hence to epipelagic representations. Section 3 is devoted
to the definition and study of the sign invariant associated to a pair (G, S) of
a connected reductive group G defined over a local field and a maximal torus
S of G. The invariant depends only on the G(F')-conjugacy class of S, but in
general it changes when we pass to a different rational class within the stable
class of S, and in particular when we transfer S to an inner form of G. The



initial definition we give of the invariant is straightforward and elementary,
yet in order to study it we find it more convenient to provide a cohomologi-
cal interpretation. With this interpretation at hand we then give a formula for
how the invariant varies within a given stable class, and from this we conclude
that one can recover the Kottwitz sign e(G) from the invariant of any maximal
torus of G (Proposition 3.2.2). The main technical burden of this section is the
proof of the vanishing result 3.3.1, which is crucial for the proofs of stability
and endoscopic transfer in the later sections.

Having established the necessary results on the toral invariant, we move in
Section 4 to the first main goal of this paper — the construction of the local Lang-
lands correspondence for epipelagic representations. In [RY14, §7] Reeder and
Yu single out a class of Langlands parameters which they believe should corre-
spond to the class of epipelagic representations of G under the local Langlands
correspondence, whenever G is an absolutely simple and simply connected
tamely ramified p-adic group. Their main motivation for this prediction is the
formal degree conjecture of Hiraga-Ichino-Ikeda [HII08] and its reformulation
given in [GR10]. In the paper at hand, we consider any tamely-ramified re-
ductive p-adic group G and a class of Langlands parameters for it which gen-
eralizes the one given in [RY14, §7], under the restriction p t 2m, where % is
the depth of the parameter. The precise conditions we impose on the param-
eters are Conditions 4.1.1 in Section 4.1. To a Langlands parameter satisfying
these conditions, we explicitly construct in Section 4.1 a finite set (L-packet) of
epipelagic representations of G. Here is a brief summary of the construction:
Let F' be a finite extension of the field Q, of p-adic numbers, and let W be its
Weil group and I its Galois group. Let G be a connected reductive algebraic
group defined over F' and split over a tamely-ramified extension of F'. Let G be

the complex Langlands dual group of G, and let “G = G x W be the Weil-form
of the L-group of G. A Langlands parameter ¢ : W — LG satisfying Condi-
tions 4.1.1 normalizes a unique maximal torus 7" of G, and hence provides an

action of W on T which extends to an action of I'. The complex torus T with
the new I'-action is the complex dual of a torus S defined over F. In Section
4.2 we construct an L-embedding L : 'S — LG of the L-group of S into the L-
group of G. The construction of ©'j is based on Langlands’ A-constants [LanArt,
Thm. 2.1]. These constants are Gauss-sums formed from additive characters
on certain finite fields, and the necessary additive characters are extracted from
the parameter ¢. The L-embedding ©;j provides a factorization ¢ = Lj o g,
with pg : W — LS a Langlands parameter for S. Let x5 : S(F) — C* be the
character corresponding to ¢ 5 under the local Langlands correspondence for
tori. The torus S comes equipped with a stable conjugacy class of embeddings
[7] : 8 = G. For each embedding j : S — G in this class, j(.5) is a maximal torus
of G and j.x - €; is a character of it, where ¢; is the character of j(S)(F') con-
structed in Section 3.6 from the toral invariant of j(.S). The pair (j(5), j«Xx - €;)
gives rise to an epipelagic representation 7; of G(F) as explained in Section
2.3. The L-packet on G corresponding to ¢ is then the set of representations 7,
for all embeddings j in the stable class [j]. All the details of this construction
are given in Section 4.1, except for the construction of the L-embedding 7,
which is given in Section 4.2. The reason for this separation is that the argu-
ments in 4.1 are fairly general and we believe they will apply with little or no
modification to much more general classes of Langlands parameters. On the
other hand, Section 4.2 is quite specific to the parameters at hand, and while
we believe that a similar approach will work for other classes of parameters,
the specific formulas will most likely be different.



It would be interesting to compare the material in our Section 4.1 with that in
[RY14, §7.2,57.3], where the authors consider the special case of an absolutely
simple, simply-connected group G' and under the same assumptions on the
residual characteristic of F' construct a Langlands parameter starting from an
epipelagic representation. Their construction is quite different from ours, as
it relies on the invariant theory of graded Lie algebras and moreover goes in
the opposite direction. It would be interesting to see how our construction
in Section 4.1, when specialized to absolutely simple and simply-connected
groups, relates to the one in [RY14].

After the L-packets have been constructed, the next step, taken up in Sec-
tion 4.3, is to parameterize their constituents in terms of the centralizer S, =

~

Cent(y, G). We do this using the language of representations of extended pure
inner forms based on Kottwitz’s theory of isocrystals with additional structure
[Kot85], [Kot97]. Thus, rather than considering an individual group G and a
Langlands parameter for it, we consider all extended pure inner forms G® of a
given fixed quasi-split group G and all representations of G*(F'). The necessary
notions from [Kall4] are recalled in Section 2.4. Crucial for the parameteriza-
tion is the fact that our L-packets satisfy Shahidi’s tempered packet conjecture
[Sha90] — when the quasi-split group G is endowed with a Whittaker datum,
the L-packet on G contains a unique generic constituent (Proposition 4.1.5).
The parameterization itself takes the form of a commutative diagram

Irr(S,) ————1I, (0.0.1)

| |

X*(Z(@)F) — B(G)bas

The set II,, consists of equivalence classes of quadruples (G, ¢, b, ), where
(€,b) : G — G® is an extended pure inner twist of the fixed quasi-split group
G, and T is an epipelagic representation of G*(F). The set Irr(S,,) consists of
the equivalence classes of irreducible algebraic representations of the complex
algebraic group S,. The left vertical arrow is given by taking central characters,
while the right vertical arrow is given by sending (G°,¢,b) to b. The bottom
horizontal arrow is Kottwitz’s isomorphism [Kot85, Prop. 5.6]. The top vertical
arrow is the bijection we construct.

The remainder of Section 4 is devoted to the proof of two conjectural properties
for our L-packets — the formal degree conjecture of Hiraga, Ichino, and Ikeda
[HII08], and the compatibility with central and cocentral characters [Bo77, §10].
In the course of proving the latter in Section 4.5 we provide a new construction

of the character of G(F') associated to a parameter W — Z (@), and of the char-
acter of Zg(F) associated to a parameter W — “G. The original constructions
of these objects [Bo77, §10] required auxiliary choices. We use the cohomology
of crossed modules and the cohomological pairings for complexes of tori of
length two from the work of Kottwitz and Shelstad [KS99, App. A] to provide

canonical constructions of these objects which do not rely on auxiliary choices.

The second main goal of this paper is to prove that our L-packets satisfy the
conjectural character relations of the theory of endoscopy. The first main result
in this direction is Theorem 5.2.1: For any inner twist £ : G — G’ of the quasi-
split group G, put

SO, =e(G) Y Ox,



where the sum runs over the constituents of the L-packet on G’ for the param-
eter . Then Theorem 5.2.1 asserts that and if v € G(F) and ' € G'(F) are
related strongly-regular semi-simple elements, then

SOy.c (V) =504 4.6(7)

This statement contains as a special case the assertion that the function SO, ¢ ¢
is stable. The second main result is the endoscopic transfer. Let (H, s, n) be an
extended endoscopic triple for G. In particular £ is an L-embedding “H —
L@G. While this is not the most general case of endoscopy, one can easily reduce
to it by passing to an extension of G whose derived group is simply connected,
so it will in fact suffice to treat this case. Fixing a Whittaker datum for G,
there exists for each extended pure inner twist (£,b) : G — G° a canonical
normalization A of the Langlands-Shelstad absolute transfer factor [Kall4, §2].
Let » : W — LG be an epipelagic Langlands parameter which factors through
Epas ¢ = no py. We then have the L-packet IL,,, ;q 7 on H(F) and define
the endoscopic lift to G® of the stable character SO, iq i by the formula

L 50, 0" = Y ARTAHEE
H om,id, H\Y ) = v DGb(’)’b)2

YHEH (F)s /st

5@¢H,id,H(’YH)~

On the other hand, we define the s-stable character of the packet IL, ;, on G*(F)
by
0L, =e(G") > trp(s)Onr,.
pelr(S,)
p—b

Here the map p — 7, is the top horizontal map in the commutative square
(0.0.1), and the map p — b is the composition of the left vertical and lower
horizontal maps. Then Theorem 5.4.1 asserts that

e GY 3
Lifty S0, .ia,1(1") = 05,(1"),
provided we assume that the residual characteristic of F is not too small.

The proof of these two theorems is based on the work of Adler-Spice [AS10]
on the characters of supercuspidal representations, the works of Waldspurger
[Wal97], [Wal06], and Ngo [Ngo10] on endoscopy for p-adic Lie-algebras, as
well as a recent result of Kottwitz on the comparison of Weil constants and ep-
silon factors. The restriction on the residual characteristic comes from the fact
that the proof uses a suitable extension of the locally defined logarithm map.
It may be possible to remove, or at least significantly weaken, this restriction
via the use of the maps e, used by Adler-Spice, since their character formu-
las, as well as all other ingredients in the proof, are in fact valid without the
restrictions we impose. We have not tried to pursue this.

The final main result of this paper is the comparison of our construction, ap-
plied to the group GL,, with the local Langlands correspondence for GL,, es-
tablished by Harris-Taylor [HT01] and Henniart [He00]. This is done in Section
6, where we use the work of Bushnell and Henniart [BH05b] to show (Theorem
6.3.1) that our construction provides the correct result for the group GL,,(F),
and, since we have already proved the transfer to inner forms, also for the
group GL,, (D) for any division algebra D. The main part of the comparison is
to show that the L-embedding we construct in Section 4.2 differs from the “tra-
ditional” L-embedding that may be used in the special case of GL,, precisely
by the rectifying character of [BHO5b, Thm 2.1]. While the use of Langlands’



A-constants in Section 4.2 was inspired by the work of Bushnell and Henniart,
this comparison result is still not entirely obvious, the reason being that our
constructions apply to a general group and thus cannot reference the “tradi-
tional” L-embedding available for GL,,, and moreover our constructions have
a very different structure from that of the rectifying character for GL,,.
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1 NOTATION

Throughout the paper, F' will denote a p-adic field, i.e. a finite extension of
the field Q, of p-adic numbers. We will write O for the ring of integers, pr
for the maximal ideal, kr for the residue field — a finite field of cardinality ¢
and characteristic p. We fix an algebraic closure F of F and denote by F* the
maximal unramified extension of F contained in F of F. Let 'y, Wg, Ir, Pr
denote the Galois, Weil, inertia, and wild inertia groups of F/F. When the field
is clear from the context, we may drop the subscript /. On the other hand, if
E/F is a finite extension, we will denote by I'(E// F) or I/ r the relative Galois
group, and will use the analogous notation for the other groups associated to
the extension E//F.

The letters G, H, J will often denote algebraic groups, while the Fraktur letters
g, b,j will denote their Lie-algebras, and g*, b*,j* their duals. Given an alge-
braic group G, we will write Zg for its center, and A¢ for the maximal split
torus inside of Z¢. For an element v € G, we will write Cent(v, G) or G” for
the centralizer of v in G, and G, for its connected component. Given a ring R
over which the algebraic group G is defined, we will write G(R) for the set of
R-points of G. It will sometimes be convenient to reuse the symbol G also for
the set of points of GG over an algebraically closed field that is understood from
the context (e.g. it may be F if G is defined over F).

If G is a connected reductive group defined over I, we will denote by B4 (G, F)
the reduced Bruhat-Tits building of G(F). Given z € B*4(G, F) we will write
G(F), for the stabilizer of z for the action of G(F) on B4(G, F), and given a
non-negative real number r we will write G(F'), , and G(F), .+ for the corre-
sponding Moy-Prasad filtration subgroups [MP96] of G(F'),. In particular, the
parahoric subgroup at « is G(F'); o, and its pro-unipotent radical is G(F') 4.
We will also use the notation G(F),, .. to denote the quotient G(F),,./G(F)y,s,
as was done in [YuO1]. Similar notation will be used for the Moy-Prasad lattices
inside the Lie-algebra g(F).

We will make frequent use of local class field theory and of Langlands’ cor-
respondence for tori over local fields. We normalize these correspondences



following Langlands’ article [Lan97]. In particular, uniformizers of non-archi-
medean local fields will correspond to the Frobenius automorphisms of their
maximal unramified extension.

2 PRELIMINARIES

The purpose of this section is to recall some material from [RY14], [GLRY12],
and [Yu01], which is relevant to our situation. Let G be a connected reduc-
tive group defined over F'. We assume that G splits over a tamely ramified
extension of F'. Let g be the Lie-algebra of G.

2.1 Parahoric subgroups, Moy-Prasad filtrations, and invariant theory

Let y € B™4(G, F) be a rational point of order e ([RY14, §3.3]). Assume that
p 1 e and let E/F*" be the smallest extension of order e. Then the group G
splits over E and y is a hyperspecial point in B4(G, E) [RY14, §4.2]. Choose a
uniformizer w € E. This choice provides a character

C:Tpypu — pe(F"), o w lo(w),
where p.(F'"*) denotes the subgroup of roots of unity in F'* of order e.

Let G, = G(E)y,0.0+ and g, = g(E)y0.0+- Then Gy is a connected reductive
group defined over kr and g,, is its Lie algebra. For each r € 17, multiplication
by w™¢" provides a G,-equivariant isomorphism

Q(E)y,7’:r+ - gy'
The point y is preserved by I' g pu, and we have [g(E)y ]2/ 7" = g(F“)y rips-

Moreover, the action of I' g/ -u on g(£) 0 descends to an algebraic actionon g, .
The above isomorphism restricts to an isomorphism of kp-vector spaces

g(Fu)y,r:rJr - 957

where g denotes the ¢-isotypic eigenspace for the action of I'g/pu. Further-
more, we have

([Gy]FE/Fu )O = G(F")y00+-
The fact that y is stable under Frobenius provides a kp-structure on both the
reductive group G, and its Lie-algebra g, and we have

(Gy]"#7)° (kp) = G(F)yo0r:  8(F)yrry = 5 (kr).

Note that the same discussion applies equally well to the dual g* of the Lie-
algebra g.

We now recall a few notions. Let H be a reductive group over some alge-
braically closed field and let V' be a rational representation of H. Let K be the
kernel of this representation. We call a vector v € V stable if

[Stab(v, H) : K] < 0.

We call a vector in Lie(H ) or Lie* (H) regular semi-simple, if its connected cen-
tralizer for the (co)-adjoint action of H is a maximal torus, and strongly-regular
semi-simple, if its centralizer is a maximal torus. These two notions coincide in
many cases, but not always, as for example over fields of small positive char-
acteristic.



Proposition 2.1.1. An element X of ggr or g;;(r is a stable vector for the action of
(1Gy)F=r#)® if and only if its inclusion into g, or g, is regular semi-simple and the
action of U pu on S = Stab(v, G,) is elliptic, i.e. X, (S)'e/r* = X,(Z(Gy)).

Proof. The proof is the same as for [GLRY12, Lemma 5.6]. O

2.2 Generic characters

In this section we will recall the notion of generic characters. It was defined in
[YuO1, §9], generalizing an earlier definition of Kutzko for GL,,. We will fur-
thermore provide a characterization of generic character which will be useful
later.

Let S C G be an elliptic tamely-ramified maximal torus, let s be its Lie-algebra.
and let r > 0. A character x : S(F) — C* is called generic of depth r if it
satisfies two conditions. First, it must restrict trivially to S(F),,. If that is the
case, then using the Moy-Prasad isomorphism

MPS : S(F)r;r+ — 5(F)T:’l‘+

it gives rise to a character on s(F), /s(F'),4. This is a finite-dimensional kp-
vector space and its dual is given by s*(F)_,.(_)4. Thus, given a non-trivial
character ¢ : kp — C*, there is a unique element X € s*(F')_,,(_,)4+ such that

X(Y) :¢<X7Y> VY€5(F)TT+
The kp-line spanned by X is independent of the choice of .

Let E/F*" be the splitting extension of S x F". There is a non-zero element
z € F such that zX € s*(E)q.o4. The kp-line I, spanned by zX depends nei-
ther on the choice of z nor on the choice of v, and is thus canonically associated
to x. We can embed s* into g* as the 1-isotypic subspace of g* for the coadjoint
action of S. More precisely, the natural surjection g* — s* which is dual to the
embedding s — g becomes an isomorphism when restricted to the 1-isotypic
eigenspace for the coadjoint action of .S on g*. In this way, I, becomes a line
inside g*(E) 0.0+, where z is the point of B<d(G, F) corresponding to S [Pr01].
This quotient is isomorphic to the kg-points of the dual Lie algebra of the re-
ductive kg-group G(E); o:0+. The second condition that x must satisfy in order
to be called generic is that the line [, be strongly-regular semi-simple, i.e. that
its centralizer in G(E), 0.0+ for the coadjoint action be a maximal torus.

We can now give the following characterization of generic characters.
Lemma 2.2.1. Let x : S(F) — C* be a character trivial on S(F),, and non-trivial
on S(F),. Let E/F be the splitting extension of S and N : S(E) — S(F') the norm
map. Then x is generic if and only if the following conditions hold:
1. For each root o € R(S, G), the character
EX/EY —C*, z= x(N(a¥(2))
is non-trivial.

2. The stabilizer of x o N : S(E), — C* in Q(S, G) is trivial.
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Proof. We fix a non-trivial character ¢ : kp — C* and let X € s*(F)_,.(_)4 be
the unique element such that x(y) = ¥(X,MPg(y)) forally € S(F),..+. If eis
the ramification degree of E//F, then one computes for y € S(E),.,+

Since p { e, the character ¥ : kg — C*, x> ¢(e - try,, /. (x)) is non-trivial.
Letw € E be a uniformizer and o € R(S, G). For = € p,/p’" one has
X(N(aV(1+12))) = ¥(X,da"(2)) = V(" X,da" (w "2)).

The line in 5™ (E)¢.0+ spanned by w” X is the line canonically associated to x,
and it is regular if and only if (w” X, da¥ (1)) is a non-zero element of kg for all
a € R(S,G). This is equivalent to the non-triviality of the linear form

kg — kg, u = (WX, daY (u))

and this in turn is equivalent to the non-vanishing of the character of p%,/p,"
provided by the right-hand side of above equation (in the variable x). Thus the
first condition in the statement of the lemma is equivalent to the regularity of
the line /.

Given that, the second condition is then equivalent to the strong regularity of
l,, because for a given w € (S, G), the equality ¥(X,Y) = ¥(X,"Y) forall Y’

1

is equivalent to the equality X =" X.

O

2.3 Construction of a map (S, x) — 7s

Let S C G be a tamely ramified maximal torus defined over F' and let x :
S(F) — C* be a character. We assume that this data has the following proper-
ties.

Conditions 2.3.1.

1. The image of Ir in Aut(S) is generated by an elliptic regular element.

2. If e is the ramification degree of the splitting extension of S, then x restricts
trivially to S(F') 2 and non-trivially to S(F)1.

3. The character of S(F')1 /S(F)2 induced by x is generic.

Given this data, an epipelagic supercuspidal representation of G(F') of depth
1 can be constructed as follows. The torus S acts on the Lie algebra g of G and
decomposes it as

g=s5Gn

where s is the Lie algebra of S and and n is the sum of all isotypic subspaced
on which S acts non-trivially. This direct decomposition is defined over F'. Let
y € B4(G, F) be the unique point corresponding to the embedding j [Pr01].
Then we have for all real numbers r we have

9(F)yr =8(F)yr ®n(F)y,,.

11



The character y provides a character on

using the above decomposition. Since this character is invariant under the con-
jugation of S(F) on G(F), 1 and its restriction to S(F). agrees with x, we
obtain a character

X:S(F)G(F), 1 —C, (s,9) = x(s)Xo(9)-

Y

We put r = % and V = g(F")yrrt. Then V is a vector space over kp with a
kp-structure and V(kp) = g(F)y,r.r+. Moreover, we have V* = g*(F"), _,.o.

Proposition 2.3.2. Let ¢ : kp — C* be a non-trivial character, and let X : V(kp) —
kr be the unique linear form such that Xo = & o X\. Then

1. X is a stable vector for the action of G(F")y y.,+ on V".

2. The stabilizer of X for the action of G(F),, on V" is precisely S(F)G(F)y .

Proof. The first statement follows immediately from Proposition 2.1.1 and the
genericity of x. We set out to prove the second statement.

Recall that r = 1, let X € s*(F)_, be a lift of \, and let g € G(F),. Put
Y = Ad(g)X. Since
V*(kF) = g*(F)x,—r:O

the coadjoint action of g fixes A precisely when X —Y € g*(F')¢. Our goal is to
show that in this situation g € S(F')G(F'), .. This requires several steps.

Lemma 2.3.3. Let t be a positive element of 17Z. Then the map
g (Ad(h) - 1)X
is an isomorphism of finite groups

G<F>z,t N g*(F)m,tfr
G(F)atr - S(F)at 0 (F)a(t—ry4 + 5 (F)at—r

Proof. Itis known that the image of the given map belongs to g*(F'), ;—» [DRO09,
Appendix B.5]. Since both sides are kp-vector spaces of the same dimension,
thus finite abelian groups of the same order, it will be enough to show that the
map is an injective homomorphism. We have

(Ad(WR") —1)X = Ad(W)Ad(K)X — Ad(K)X + Ad(h)X — X
= AdW)[(AA(R") — 1)X] + (Ad(K) — 1)X
(Ad(K") = )X + (Ad(R) — 1)X

12



where the last equality holds because, due to the positivity of ¢, the coadjoint
action of G(F), ¢ on the quotient g*(F), (;—y).(t—r) is trivial. To show injectiv-
ity, we consider the following diagram

G(F)m,t 9*(F)m,t,_7-
G(F)a,t+S(F)a,t 9*(F)z,(t—r)-tj‘ﬁ*(F)x,t—r
MP
9(F)a,t

(), t++5(F)a,t
N

9(E) et 9" (E)atr
(), t++5(E)z,t 0" (E) e, (t—r)++5* (E)z,t—r
et ,wfe(tfr)
Q(E):c,O:CH— HH[H7X}_X g*(E)w,0:0+
s5(E)o.0+ s*(E)o.0+

The inclusions come from the standard vanishing result in Galois cohomology,
and the pairing [] is the action of a Lie algebra on its dual, i.e. the differential of
the coadjoint action. The regularity of X in g*(E), 0.0+ implies that if [X, H] €
§*(E)o.0+, then H € s(E)¢.0+, which shows that the bottom map is injective.

O

Lemma 2.3.4. Assume that X —Y € g*(F), s + s*(F)o, where s € 1Zxq. Then
there exists h € G(F), s+ such that X — Ad(h)Y € g*(F)y.s+ + 5% (F)o.

Proof. Write X —Y = Zy + Zy with Z; € ¢g*(F),,s and Z; € s*(F)o. By the
preceding lemma, choose h € G(F), s+ such that

(Ad(h™) —1)X € ~Zy + g*(Fast + 5 (F)s.
Then we have

X —Ad(h)Y = Ad(h)Ad(R )X —Y]
AW [(AA(R) = D)X + Z1 + 2]
Ad(h)[g*(F)w,er +5*(F)0]

m

The lattice g*(F)4,s+ is preserved by Ad(h), while for an element Z € s*(F)g
we have
Ad(h)Z = (Ad(h) = 1)Z + Z € g*(F) .oy + 5 (F)o.

Lemma 2.3.5. There exists h € G(F),,, such that Ad(h)Y € s*(F)_,.

Proof. If Y € s*(F)_, there is nothing to prove. Otherwise, let s be the largest
element of 1Z for which X — Y € g*(F),,s + *(F)o. Since X — Y € g*(F)a.0,
s1 > 0 is positive. Applying the preceding lemma, we obtain h; € G(F), s+
such that X —Ad(h1)Y € g*(F)y s+ +5"(F)o. Inductively we obtain a sequence
hi € G(F), ., r with the property that

X —Ad.(h;€ chp_q - hl)Y S g*(F)I,S+% +5*(F)0.

13



Let h be the limit, for ¥ — oo, of the sequence of partial products py, = hy ... hy.
Then we have
X — Ad(h)Y € s*(F)o.

O

We are now ready to complete the proof. Recall that X € s*(F')_, is generic,
g € GF)y, Y = Ad(g)X,and X — Y € g*(F),,0. Choose h as in the above
lemma, and put Y’ = Ad(h)Y. Then Y’ € s*(F)_, and

X-Y' =X-Y - (Ad(h) - 1)Y € g*(F),..

We claim that w = hg € S(F). Indeed, since both elements X and Y’ be-
long to s*(F) and are regular, w belongs to the normalizer of S in G(F'),. We
want to show that its image w in the Weyl group (S, G) is trivial. Since y is
a special vertex in B4(G, E) and E splits S, the Weyl group Q(S, G) projects
isomorphically to the Weyl group of G, g(kg). The elements wX and wY” have
the same image in g; z(kg), and this image is strongly-regular. The statement
follows. O

Let ar)
TSy = C-inds(F)G(F) X

According to [RY14], this is an irreducible supercuspidal representation of depth
1

Fact 2.3.6. The representations wg, , and msg, y, are isomorphic if and only if the
pairs (S1, x1) and (Sz, x2) are rationally conjugate.

We now want to recall a result of DeBacker and Reeder from [DR10], per-
taining to the genericity of the representation 7g,. Assume that G is quasi-
split. Choose a non-degenerate G-invariant bilinear form () on g(F) and an
additive character ¢ : FF — C*. Let (B,1p) be a Whittaker datum. Write
B =TU and g = t® u & u, where U is the unipotent radical of the Borel sub-
group T-opposite to B. There exists a regular nilpotent element E_ € u(F)
such that (X, E_) = v¢p(exp(X)) for all X € u(F). Furthermore, there
exists a regular semi-simple element Y € s(F) such that for all ¢ € S (F)é,

xs(t) = (Y, MPs(t)).

Proposition 2.3.7 (DeBacker-Reeder, [DR10]). The representation s y is (B, ¥p)-
generic if and only if Y belongs to the Kostant-section associated to E_.

We remark that, while the statement of this result [DR09, Prop. 4.10] requires
that S be an unramified torus and its point in B4(G, F) be a vertex, the result
holds without that assumption and the proof remains the same.

2.4 Isocrystals and inner forms

We briefly recall some material from [Kot85], [Kot97], and [Kal14], which will
be used in the construction of L-packets and the study of their endoscopy.
Let L be a completion of F'*. Then L = L ®p«. F' is an algebraic closure
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of L. In [Kot85], [Kot97], Kottwitz defines and studies the set B(G) of iso-
morphism classes of isocrystals with G-structure. It can be defined cohomo-
logically as H'(Wp,G(L)), which is the same as the set of Frobenius-twisted
conjugacy classes in G(L). To such an object b, Kottwitz defines its New-
ton homomorphism v, : D — G(L), which is a group homomorphism de-
fined up to conjugation, and D is the pro-diagonalizable group whose char-
acter module is the trivial I'-module Q. Kottwitz shows that the natural map
HY(T',G(F)) — H*(Wg,G(L)) is injective and its image is precisely the set of
b with 1, = 1. The (often larger) set for which v, factors through the center Z
of G is called the set of basic G-isocrystals, denoted by B(G)pas. Kottwitz shows
that every element of B(G)p,s gives rise to an inner form of G.

We now consider the pullback diagram

E(Gv Z) - Zl(WF7 G(Z))bas

z! (F7 [G/Z] (F))(—> Zl(WF7 [G/Z] (z))bas

Since the lower horizontal arrow is injective, so is the upper. Moreover, one
can define [Kall4, §2.1] an equivalence relation on E(G, Z) so that the square
remains cartesian after passing to equivalence classes at all four corners. In
doing so, the lower horizontal map becomes bijective, and thus so does the
upper. The upshot is that (G, Z) allows us to select “nice” cocycles in each
cohomology class in B(G)pas.

Let S C G be an elliptic maximal torus. Then we can also form the set E(S, Z).
Just as in the case of G, it embeds into Z! (W, S(L)) (we can omit the subscript
bas now, as it has no effect for tori). We claim moreover that, also as in the
case of GG, the map E(S,Z) — B(S) is surjective. We need to show that the
map H(T, [S/Z](F)) - H' (W, [S/Z](L)) is bijective, which was tautological
for the basic elements for G/Z, but it is not so here. It is nonetheless quite
immediate — the image of this map is the subset of b for which v is trivial.
However, v, can be interpreted as an element of X..(S/Z)'' ® Q, and since S is
elliptic, X.(S/Z)" = {0}.

An inner twist of G is a map § : G — G’ which is an isomorphism of algebraic
groups defined over F, and for which ¢ ~1o(€) € Inn(G)for every o € I'. Given
two semi-simple elements v € G(F) and 7' € G'(F), we say that v and + are
stably-conjugate (or related), if there exists g € G such that {(Ad(g)y) =7'. An
extended pure inner twist is defined to be (§,b) : G — G/, where { : G — G’
is an inner twist, b € E(G,Z), and £ 'o(¢) = Ad(p(b)(o)) for all ¢ € T. If
two semi-simple elements v € G(F) and v’ € G'(F') are stably-conjugate, then
there exists an equivalent extended pure inner twist (¢/,b') : G — G’ such
that {'(y) = v and ' € B(G,). In that situation, we will give b’ the name
invy(7y,4), or if b is understood, just inv(y,+’). This element allows one to
define compatible normalizations of transfer factors [Kal14, §2.2].

3 ON TORAL INVARIANTS

3.1 Definition of the toral invariant

Let G be a connected reductive group defined over alocal field £, and let S C G
be a maximal torus defined over F'. This section will be devoted to the study
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of a certain invariant of the pair (S, G). Consider the set R(S, G) of roots of
S. The Galois group I' of F" acts on this set. Following [LS87], we will call an
orbit of this action symmetric, if it is preserved by multiplication by —1. Oth-
erwise, we will call the orbit asymmetric. We will also need to pay attention to
the action of the inertia subgroup I C I' on R(S,G). A given I'-orbit O de-
composes as a disjoint union of I-orbits, and one has the following dichotomy:
Either all I-orbits contained in O are stable under multiplication by —1, or none
is. In the first case, we will call O inertially symmetric, and in the second case
inertially asymmetric. We will say that a root @ € R(S, G) is (inertially) sym-
metric/asymmetric, if its I'-orbit has this property. The sets of symmetric resp.
inertially symmetric roots will be denoted by R(S, G)sym resp. R(S, G)insym-

Given a root a € R(S, G), one has the subgroups
I, = Stab(a,T) and iy =Stab({o, —a}, T).

Onehas [y, : I'y] = 1if ais asymmetric, and [I'y,, : I'y] = 2 if o is symmetric.
Analogously, we have the subgroups I, and I, of I with [I, : I,] being
equal to 1 resp. 2 when « is inertially asymmetric resp. symmetric. Let F,, and
Fy, be the subfields of F fixed by ', resp. I'y,. Then « is symmetric if and
only if F, /F, is a quadratic extension, and is inertially symmetric if and only
if this extension is ramified.

The toral invariant that we are going to study in this section is a function
[ R(S, G)sym — {£1},

which is defined as follows: Let & € R(S,G) be a symmetric root. The 1-
dimensional root subspace g, C g corresponding to « is defined over F,, and
we may choose a non-zero element X, € go(F,). Let7 € 'L, \T,. Then 7X,
is a non-zero element of g_, (F,), and

[Xo, 7Xo]

f(Xa) = H,

is thus a non-zero element of F,,. Here H, € s(F},) is the coroot corresponding
to . One checks right away that f(X,) € FY,, and that changing the choice
of X, multiplies f(X,) by an element of F}, which is a norm from F,. Let
Ko @ F¥, — {£1} be the non-trivial character which kills all norms from F,. It

follows that X 7]
ary TA

is independent of the choice of X,,. This is the invariant that will be the subject
of this section. In the case where F' = R, this invariant is well known - a
symmetric root « is then customarily called imaginary, and it is further called
compact if f(«) = —1, and non-compact otherwise.

The following simple observation is sometimes useful.

Fact 3.1.1. The function f : R(S, G)sym — {£1} is I'-invariant.

Since this invariant is associated to the pair (G, S), we will sometimes denote it
by f(a,s)- Itis clear that f(g s) = f(G.4,5.4)- On the other hand, it is important to
note that this invariant is sensitive to both the group G and the torus S - if S'is
replaced by a stably-conjugate torus, or if G is replaced by an inner form, then
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the invariant will in general be different. We will study some of this behavior
in the next subsections.

Before we begin with the study of the invariant f( ), it will be useful to recall
another notion from [LS87] which we will heavily use. A gauge on R(S,G)
is a function p : R(S,G) — {1} with the property that p(—a) = —p(a). A
choice of positive roots on R(S, G) determines a gauge, but not all gauges arise
in this way. If p, ¢ are two gauges, then there exists a sequence of gauges p =
Do, P15 ---,Pn = ¢ such that for each i = 0,...,n — 1, the gauges p; and p;;1
disagree on a single pair {, —v} of roots. In other words, p;(«) # pit1()
implies @ € {7, —7}.

3.2 A cohomological interpretation

The sign f(«) associated to a € R(S, G)sym can be given the following coho-
mological interpretation. Let S, be the 1-dimensional anisotropic torus defined

over F, and split over F,,. Thus, S, (F) = T~ witho € Ty, acting as
oa(z) = (o)),

where £, is now viewed as a character on I' ., via local class field theory. The
inflation-restriction sequence and Hilbert’s theorem 90 imply that the inflation
map

H'(T+0/Ta, Sa(Fa)) = H (T1a, Sa(F))

is an isomorphism. On the other hand, we have the isomorphism
Hl(ria/rm Sa(Fa)) = FLo/N(FS)

given by evaluating a 1-cocycle of '+, /T', with values in S, (F,) = F} at the
non-trivial element of I' ., /T',. Composing the inverse of the first isomorphism
with the second and then with the character «,, we obtain an isomorphism

KN HY (T iy, So(F)) — {£1}.

Proposition 3.2.1. Let X, € g (F)and X_, € g_o(F) be such that [X,, X _,] =
H,, with H, € s(F,) the coroot corresponding to c.. Consider the map

O'ngla

fCOh(Xa) Tya — FX, o> X

Then we have
L (X ) = f(X0)
2. f"(Xa) € Z'(Pia, Sa(F)).
3. The cohomology class f"(a) of f<"(X,) is independent of the choice of X,

and its image under k" is equal to f(a).

Proof. We note first that f°"(X,,) is well-defined, because 0 X,,-1,, is a non-zero
element of g, (F) for each 0 € T'y,. Moving to the first part in the above list,
forall o € T, we have

0Hy-14 = Ha,
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and hence applying o € I' 1, to the equation

[XJ*1a7 Xfafla}
H, .

1=

we obtain
[0Xg-10,0X_5-14]
ocH,-1,
[F" (Xay 0) Xa (X0, 0)X ]
H,
fCOh(Xm U)fCOh(Xfav o).

We now turn to " X,) € Z'(I'+q, So(F)). For this, let o, 7 € T',,. Then

UTXT—lo.—la
Xa
O'TX.,-710710¢ O'ngla
O’Xg—la Xa

X 1

fCOh(Xa, 0_7_) _

TX7_71071Q o fCOh(XavT) ,0 € Iy
Xafla N fCOh(XfaaT) ,O0 € Fia AN Fa

and using the already proved first part, we see that in both cases we have

d (X;}) = 00 (/" (Xa, 7).

We now come to part 3. If X, = cX, for some ¢ € FX, then X_, = ¢ 1X_,,
and hence we have (X, 1,) = 04(c)0 X, 14. This implies that f(X,,0) =
c o, (c) f(Xa, o), showing that the class of f(X,,) is independent of the choice
of X,. Now let X, € go(Fo). Then f(X,) is the inflation of an element of
ZYT+a /T, Sa(F,)), and thus

KM (FMN@) = Fa(fN(Xa,T))
forany 7 € 'y N I'y. But

FN (K ) = 5 = 7 (Xa)

and hence
Ha(fCOh(Xa7T)) = "foz(f(on)) = f(a)
O

As a first application of the cohomological interpretation of f(«), we obtain a
description of the behavior of f(«) under stable conjugacy.

Proposition 3.2.2. Let (G,S) and (G',S") be two pairs consisting of a connected
reductive group and a maximal torus thereof, both defined over the local field F'. Let
& : G — G’ be an inner twist which restricts to an isomorphism S — S’ defined over
F. Then
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fier,s1(&@) = fia,9)(@) - Ka(Mt,a),

where for each o € R(S, G)sym, Nt,« 15 the image of t, = £7t9¢ € HY(F, Su)
under

HY(F, Sp) —E> HY(Fio, Spg) —2> H (Fia, Sa) -

2. Iftis the image of A\ € H=Y(E/F, X.(Sy)) under the Tate-Nakayama isomor-
phism, then
Falia) = (~1) 2rermae 70,

3. We have
11 fosn@=e@e@) [ fasla).

QER(S,aG/)Sym/F QGR(S;G)SWH/F

Proof. Choose X, € go(F). Then the first claim follows from part 3 of Proposi-
tion 3.2.1 and the following computation.

UgXofloz _ 5(5_105)0-)(0*104

[ 5)(EXa, 0)

£X, €X,
Eale O (Xa,0)Xa
- iy

= (5_1U§)f(cg:h3)( ,0).

For the second claim, the functoriality and compatibility with connecting ho-
momorphisms of the Tate-Nakayama isomorphism gives the diagram

HY(F,S) $>1T{1(Fi0”,5’) — % > H'(Fi4,Sa)

| ] |

“UB/F, X.(8)) — % H™Y(B/Fi, X.(8)) == H™ ' (Fia/Fa, 1)

| T T

(X (S)rltor ———— [X*(S)Fia}tor Z/2Z

The left horizontal arrow on the bottom is given by

W= Y o'

o€l /T1a

and the right horizontal arrow on the bottom is given by

(1] = (s ).

This proves the second claim. For the final claim, let us first reduce! to the case
that S is an elliptic torus. For this, we let M and M’ be the centralizers of the
maximal split subtori of S and S’ in G and G’ respectively. Then M and M’
are Levi subgroups of G and G’, and the inner twist £ restricts to an inner twist
§: M — M'. Moreover, we claim that R(S, G)sym = R(S, M )sym. Indeed, we
have R(S, M)sym = R(S, G)sym N R(S, M), and it will be enough to show that
R(S,G)sym C R(S, M). For this, note that any o € R(S, G)\ R(S, M) belongs to

!1 thank Loren Spice for alerting me about this reduction argument.
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R(S, N), where N is the unipotent radical of a parabolic subgroup of G defined
over F and having M as a Levi-factor. Then —a € R(S, N), where N is the
unipotent radical of the parabolic subgroup M -opposite to NM, and since N
is F-invariant and R(S, N) N R(S, N) = (), we see that « cannot be symmetric.
This shows R(S, G)sym = R(S, M )sym. It is clear that f(c g)(a) = f(a,9)(a) for
all & € R(S, M)sym. The same is true for the pair (S’, G’). According to [Kot83,
Prop, part(6)], we have e(G) = e(M) and e(G') = e(M') and the reduction to
the case S elliptic is now complete.

From now on we assume that S is an elliptic maximal torus. We need to show
that
H Ka(Nt,a)
a€R(G,S)sym /T

is equal to e(G)e(G’). In view of the first part of this proposition, we may
assume that G is quasi-split. Using the second part, we see that the above
product is equal to (—1) raised to the power

Z Z (A oa).

a€R(G, S)sym/r o€l'/T1q
On the other hand, the Kottwitz sign e(G”) [Kot83] is given by taking the image
of £717¢ under the map

HY(F, Soa) —2> H2(F, Z(Gyo)) —2 H2(F, Gl T2 x|

where p denotes half the sum of an arbitrary set of positive roots. Dual to the
above sequence we have the sequence

H'(F, X*(Sa)) <2— HO(F, X*(Z(Gs.))) <2— H(F, )

The character exp(2miinv) : H(F,G,,) — C* corresponds to the element 1 €
HO(F,Z). Thus the character on H!(F, S,q) given by the first sequence is equal
to the image of 1 under the second sequence. This image is represented by the
element op — p of Z'(F, X*(S,q)). We want to compute the paring of the class
of this cocycle with £719¢. This pairing is given by

exp(2riinv((op — p) U (€717€)).

But we are assuming that £717¢ = (A\UFundg /r), where Fund g/ denotes the
fundamental class of E/F in H?(F,G,,). Thus

exp(2miinv((op — p) U (£719¢)) = exp(2miinv((op — p) U (AU Fundg,r))
— exp@rilE: F]" ((op— p) UN)

= exp(2mi[E : F]7Y( Z a((c " p—p),\))

o€l (E/F)

= exp(2mi{—p,\))
= (=1)N

What remains to be shown is that in Z/2Z we have the equality

(2p,A) = Z Z (N oa).

a€R(G,S)sym /T 0€TE /T +a
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Recall that 2p is the sum of an arbitrary choice of positive roots in R(S, G). For
any gauge p : R(S,G) — {£1}, let

Ry= > B

BER(S,G)
p(B)=+1

It is clear that for two gauges p, ¢, we have R, = R, in X*(5)/2X*(S). If we
take p to be the gauge for which R, = 2p, and ¢ to be a gauge which is constant
on every asymmetric orbit of I" in R(S, G), then we see that (2p, \) = (R, \)

and moreover
Ry= Y B

BER(S,G)sym
q(B)=+1

The reason that the above sum runs only over the symmetric roots is that if an

asymmetric root is g-positive, then so is its entire orbit, but the sum over that
orbit is zero due to the ellipticity of S. It is now clear that in X*(S)/2X*(S) we

have the equality
Z Z a=R,.

a€R(G,S)sym /T 0€TE /T 10

3.3 A vanishing result

The purpose of this section is to prove the following vanishing statement for
the toral invariant f : R(S, G)sym — {#1} when F is a non-archimedean local
field.

Proposition 3.3.1. Assume that the action of I on X*(S) is tame and generated by a
regular elliptic element. Then f(c) = 1 for all inertially asymmetric o € R(S, G)sym.

We will first prove a weaker result which holds under a more general hypoth-
esis.

Lemma 3.3.2. In the situation of Proposition 3.2.2, assume that the action of I on
X*(S) is elliptic. Then for all inertially asymmetric oo € R(S, G)sym, we have

f(G/,S/)(fOé) = f(G,S) ().

Proof of Lemma 3.3.2. According to Proposition 3.2.2 it is enough to show that
for any set of representatives X C I for the quotient I'/T'y,, we have

ZU@EQQ,

ceX

where () is the span of R(S, G) in X*(S). It is clear that this statement is inde-
pendent of the particular choice of X. Moreover, the choice of X is equivalent
to the choice of a gauge on the orbit O of I" through a. By assumption, each
I-orbit inside of O is asymmetric. Thus, we may choose a gauge p : O — {£1}
which is constant on each [-orbit. Then the above sum takes the form

> 2B

0€O/I Be€o
p(o)=+1

The inertial ellipticity of S implies that the inner sum is always zero. O
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Before proving Proposition 3.3.1, we need a preparatory lemma.

Lemma 3.3.3. Assume that the action of I on X*(S) is tame and generated by a reg-
ular element. Let o € R(S, G)sym be inertially asymmetric, and let I be the splitting
field of S. If X, € go(E), then

fa) = (—1)@e(*" Xar)

forany T € 1o N\ Tq.

Proof. Since X, is fixed by I, the 1-cocycle f coh(X,) is the inflation of an ele-
ment of Z'(T'1.o/T'g, Sa(E)). According to Proposition 3.2.1, f(«) is the image
of f"(X,) under the isomorphism

Inf

Hl(rta/ra75a(Fa)) — H1<Fia/rE’ SQO(E))

|

FEN(ES)

Ra

{1}

We are assuming that « is inertially asymmetric, and hence F,,/F., is an un-
ramified extension. Thus, the composition of the vertical map and the lower
horizontal map sends a class [z] to

(_1)valpa (z(1)) ,
where 7 is the non-trivial element of Iy, /T',. To prove the lemma, it will be
enough to show that in fact the full isomorphism H'(T'+,, /T g, Sa, (E)) — {£1}

sends a class [z] to
(_l)valg(z(r))’

where 7 is now any element of I'y , \. T',. The regularity of the I-action implies
that the extension E/F, is unramified. Thus, we know that the isomorphism
takes the desired form on 1-cocycles inflated from Z'(I' 1, /T4, So(F,)). What
we need to show is that the above displayed expression is independent of the
choice of 7 and of the representative z within its cohomology class.

To see independence of 7, let ¢ € T',. Since H'(I'y /T g, So(E)) is trivial, we
can choose ¢ € S, (E) = E* such that 2(¢) = ¢~ !7¢c. Then

valp(z(10)) = valg(2(7)" (¢t - 7¢)) = valg(2(7)).
To see independence of the representative z, let c € E*. Then
valg((c™! - ¢)z(1)) = valg((c- "¢) ™) + valg(2(7)) € valg(2(1)) + 2Z.
O

Proof of Proposition 3.3.1. The first step in the proof will be to replace S by a
convenient torus in the quasi-split inner form of G. We may assume without
loss of generality that G is simply connected. Let Gy be the quasi-split inner
form of G, and let (Tp, By, { Xo }) be a splitting of Gy. Let ¢ : Go — G be an inner
twist such that £(T;) = S. For o € T, let wg(o) € Q(Ty, Go) be the image of
£719¢ € N(Ty, Go). Thenwg € Z1(T, Q(To, Go)). We are going to choose a-data
for R(S,G). Recall that a-data is a I-equivariant function a : R(S,G) — F"
such that a(—a) = —a(«). It is enough to specify a on a set of representatives
for R(S,G) /(T x {£1}). We fix such a set, and for o belonging to it, we set a(«)
as follows:
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1. If o is asymmetric, we put a(a) = 1.

2. If o is symmetric but inertially asymmetric, we choose an element of
Ker(Tr : kp, — kr,,) and let a, be its Teichmiiller representative.

3. If « is inertially symmetric, then we choose a uniformizer w € F, such
that w? € Fy,, and put a(a) = w.

One checks easily that this provides a valid a-data for R(S, G). We transport
this a-data via £ to a-data for R(Ty, Gy) for the action of I' on that set given by
wg(o)o. For w € Q(Ty, Gy), let n(w) € N(Ty, Go) be the Springer lift of wg(o),
and let z5(0) € Ty be given by

zs(0) = I 8@,
B>0
(ws(0)) ~8<0

where 5 > 0 means § € R(Ty, By). It is then shown in [LS87, §2.3] that
ns(o) == zg(o)n(ws(o))

is an element of Z'(F, N(Tp, Gy)). Since H'(F, Gy) = 1, we may choose g € Gy
such that g19g = ng(o). Then Sy := Ad(g)Tp is a maximal torus of Gy which
one easily checks is defined over F'. Applying Lemma 3.3.2 to the inner twist
£oAd(g7") : Gy — G we see that it is enough to compute f(, s,)(Ad(9)¢ ' a).

To lighten the notation, we now assume that G = Gp and S = Sp. Let ap €
R(Ty, Go) be such that Ad(g)ag = . Let Xy € go,(F) and X_o, € ga, (F) be
such that [Xo,, X_a,] = Ha,- Then fM(a) € HY(Fiq4, Sa) is the class of

n5(0)0 X (ws(o)o)ao

fCOh(Xaov O’) = Xao

We are going to choose X, in the following way: Choose w € (T, G) such
that w™'ay € A(Tp, By) and set X, = n(w)(Xyy-14,)- It is then known [SGA3,
Exp. XXXIII, §6], that forall 0 € ',

n(ws(g))JX(ws(o)a)—lao = EaXao ,

with ¢, € {£1}. Thus

fCOh(Xao’ o) = ap(zs(0))és.

Now let E be the splitting field of S. Any ¢ € I'g fixes all elements of the
pinning { X, }aeca(1,B,), and hence it also fixes X,,. Moreover, ng(c) = 1. It
follows that f"(X,,) € ZY(T'+o/Tr, Sa(FE)). According to Lemma 3.3.3, we

have
fla) = (_1)ValE(fCOh(X007‘r)) — (_1)valE(ao(Is(T)))

forany 7 € 't o \T's. Recalling the definition of x5 (7), we arrive at the formula

fla) = (=1)%, where (= > valg(a(8)(an, BY).
(ws(‘r[;j)qlﬁ<0

Recall that 8 > 0 means 8 € R(Ty, Byg). From now on, it will be more con-
venient in terms of notation to sum over roots for S instead. Thus, let B :=
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Ad(g)Bo. Then B is a Borel subgroup of G (not necessarily defined over F')
containing .S, and we have

¢= Z ValE(a(/B))<a76v>7
B>0
T718<0

where now 3 > 0 means § € R(S, B). According to our choice of a-data, we
have
1 ,If=—1I8

0 ,else

valg(a(f)) = {

Thus we obtain

¢= Z <O‘>Bv>'

B>0

r=18<0

18=—1I8
Lemma 3.3.4. For any gauge p : R(S,G) — {£1}, let
b= Y. (apY).

p(B)=+1

p(r 1B)=-1
18=—I8

Then for any two gauges p, q, we have (—1)% = (—1)%.

Proof. We have

(1) = H (=1)f>F")

p(B)=+1
p(r '8)=-1
Ip=—1Ip

[T (p@wi8)

p(B)=+1
Ip=—1I8

)(aﬁv)

We notice that each factor in the above product remains unchanged if we re-
place 3 by —f. This allows us to rewrite the product as

a,BY
I (o)™
{8,—BYER(S,G)/{£1}
1p=—1p

As already remarked, we may assume without loss of generality that there
exists v € R(S,G) such that if p(8) # ¢q(f) then 8 € {~,—}. If Iy # —1I~,
then ¢, = (,, so assume Iy = —Iv. Each pair of roots {3, —3} provides the
same contribution to (—1)% and (—1)%, except possibly the pairs {v, —v} and
7{7, —7}. These pairs can either be distinct, or equal. If they are equal, that is,
if 7y = £, then p(y)p(7~1) = q(7)q(71v) and thus (-1)% = (—1)%. If on
the other hand the pairs {7, —v} and 7{v, —v} are distinct, then (—1)% (—1)%
is equal to
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1

The two exponents are negatives of each other, because 7"« = —a, and hence

above product is equal to

(p(m)p(flv) ) o
g(r7)a(r17) '

Our assumption that the pairs {v, —v} and 7{v, —v} are distinct now implies
that neither of 7y and 77!~y can be equal to £, and thus the fraction reduces
to 1. O

Returning to the proof of Proposition 3.3.1, the Lemma we just proved implies
that

fla) = (~1)¢
for any gauge p : R(S,G) — {£1}. We now choose p as follows. First consider
the subset of R(S, G) given by

{5 € R(S7 G)|<Oé, 5V> # ONIB = 7Iﬂ}
On this subset, we set
p(B) = sgn(a, B),
while outside of this subset, we choose p arbitrarily. For this gauge we have
p(r™'8) = sgnfa,77'8Y)
= sgn(ra, ")
= sgn(—a,8Y) = —p(f).

flo) = (-1 = 11 (-0 = T (-nfes.
{B,—B}eR(S,G)/{£1} B8>0
18=—1I8 I16=—18
According to [Bou, Ch. VI, §1, no. 10, Prop. 29], we have ) 550 BY = 2pY with
(a, 2pV) € 27, thus
flay= TT (-,

B>0
Ip#-1p

One checks immediately that the above product is equal to
a, > By
< p(B)=+1 >
Ip#—-1p

for any gauge p : R(S, G) — {£1}. We now choose a gauge p which is constant
on each asymmetric [-orbit in R(S, G). Then we have

>, B= > B

I (v =(-1
p(B)=+1
I6#—1p

p(B)=+1 0€R(S,G)/I B€o
IB#—1IB p(0)=+1
0#£—o

The ellipticity of the inertial action now implies that the inner sum is zero for
each o. O
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3.4 Relation to the Weil constant

We continue to assume that F' is a non-archimedean local field. Consider the
root space decomposition of the Lie algebra of G

g=son, 0= P g
a€R(5,G)

Let B be an N(S, G)(F)-invariant symmetric bilinear form on n(F), and ¢ :
F — C* a non-trivial additive character. Then we can consider the Weil-
constant vy, (n(F'), B) [Wal95, §VIII].

Lemma 3.4.1. We have the equality
Yp(n(F), B) = 11 fc.9)(@)ka(Ba)Ar, /Fen (Yo trE, jFy )
a€R(S,G)eym/T

Here X is the Langlands A-function [LanArt, Thm. 2.1] (see also [BHO5b, §1.5]), and
B, € F[, is the number B(X,,Y,) where X, € go(Fa) and Y, € g_o(Fy) are
any elements with [X,,Y,] = Hy.

Proof. We have a decomposition of vector spaces defined over F'
n= @ no, where np = @ o
O€eR(S,G)/T acO

Hence

wm(F),B)= J[ wo(F),B).
OER(S,G)/T

If O is asymmetric, the space np (F') is B-isotropic, and thus vy (no (F), B) = 1.
If O is symmetric, then choosing a root e € O and an element X, € g, (F,) we
obtain an isomorphism of F-vector spaces

F, — np(F), x = Z o(xX,).
c€l'/Ty

The pull-back of B to F;, under this isomorphism is equal to
(@, y) = trpy, pl(@T(y) + y7(2)) B(Xa, 7Xa));
where 7 € T'y, \ Ty, and hence
Yoo (F), B) = 75 (Fa, (2, y) = (27(y) + y7(2))),

where ) : Fy, — C* is the character z Y(trp,, /p(B(Xa,7Xa) - 2)). The
calculation in the proof of [JL70, Lemma 1.2] shows then that

w,(no(F), B) = /\Fa/Fia (@

To complete the proof, we note that B(X,,7X.) = f(g,s)() B, and then use
the properties of the Langlands constant. O

Corollary 3.4.2. Let £ : G — G’ be an inner twist. Let B be a symmetric Ad-
invariant non-degenerate bilinear form on g(F'), and let B’ be its transfer to g’ (F’) as
in [Wal95]. Then

Y (8(F), B)yy (¢ (F), B) = e(G)e(G).
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Proof. Let S be an elliptic maximal torus of G. We may replace ¢ by a G-
conjugate so that S’ = £(S5) is a maximal torus of G’ defined over F, and
& : S — 5 is an isomorphism defined over F. The claim now follows from
Lemma 3.4.1 and Proposition 3.2.2. O

3.5 A result of Kottwitz on e-factors

This is a convenient place to review a recent result of Kottwitz on the relation-
ship between Weil-constants and epsilon factors. In this subsection only, we
assume that F' is any non-archimedean local field, without assumptions on its
characteristic or its residual characteristic, and denote by F a fixed separable
closure of F. On the space n introduced in the last section one can define a
canonical N (9, G)-invariant F-valued quadratic form. Namely, on each plane
go @ g_q it is defined by the rule

[X,Y]
H,

(X,Y) —

This assignment is unchanged if we replace a by —«, and on the space n, which
is the direct sum of these hyperplanes for all {o, —a} € R(S,G)/{£1}, we
take the sum of the individual forms defined above. One sees easily that this
quadratic form is I'-equivariant, and hence defines an F-valued quadratic form
on n(F). We will call this form can. Kottwitz’s result then is the following.

Theorem 3.5.1. Let T' be a minimal Levi in the quasi-split inner form of G. Then
(X" (S)c = X (T)c, ¥) = e(G)yp(n(F), can),

where e, is the Langlands normalization [Tat77, §3.6] of the e-factor of the degree-0
virtual T-representation X*(S)c — X*(T)c.

Combining this Theorem with Lemma 3.4.1, we obtain the following Corollary.

Corollary 3.5.2. Let T be a minimal Levi in the quasi-split inner form of G. Then

(X (S)e - X (De, ) =e(G) [ fes(@Ar re.Wotre, r..).
a€R(S,G)sym/T

3.6 The character associated to the toral invariant

We continue to assume that F' is a non-archimedean local field and assume now
moreover that the residual characteristic of F' is not 2. Using the toral invariant
f(a,s) we will define a character

ef: S(F) — C*.

For this, we first give for each o € R(S, G) a character ¢, : F* — C* as follows.
If o is asymmetric, we take e, = 1. If a is symmetric and inertially asymmetric,
then we consider the group kf, /ky, . Thisis a cyclic group of even order, and
we take on it the unique character which sends any generator to f(g g)(a). We
then inflate this character to Oy, and take ¢, to be its unique extension to F
which restricts trivially to F}',. Finally, if « is inertially symmetric, we take the
unramified character on F given by e, (z) = f(g,s)(a) %= (@),

27



The set of characters {e,| @ € R(S,G)} obtained in this way satisfies the as-
sumptions of [LS87, Cor 2.5.B] and thus gives rise to a character ¢ of S(F).

In order to state the next lemma, we introduce the following language: We say
that the root values of v € S(F') are topologically semi-simple (resp. unipo-
tent), if for all & € R(S, G), the element o(y) € F is topologically semi-simple
(resp. unipotent). See also [AS08, A.4].

Lemma 3.6.1. Assume that the action of I on X*(S) is tame and generated by a
regular elliptic element. Then for every v € S(F') whose root values are topologically
semi-simple, we have
ef(y) = H fa,s)(a@).
a€R(S,G)eym/T
a(y)#1

For every ~y whose root values are topologically unipotent, we have e;(vy) = 1.

Proof. Following the argument of the proof of [LS87, Lemma 3.5.A], we see that

er(v) = 11 O R [ N G

QER(S,G)asym /(T x {£1}) A€R(S,G)sym/T

for certain elements v, 0 € F*. According to the choice of ¢, the first prod-
uct vanishes. Moreover, by Proposition 3.3.1, the second product runs only
over inertially symmetric orbits. To evaluate that product, we need to describe
the element 6. For this, we consider the exact sequence
1 F ixa Fx 1-7 Fx 1+7

[e3 [e3

X
Fia7

where 7 € 'L, \T',. The element a(7y) € F. belongs to the kernel of 1+ 7 and
we let 6, € F be any element which maps to a(y) under 1 — 7.

If () is topologically unipotent, then so is 6%, but then e, (§%) = 1. This shows
the second claim. If a(vy) is topologically semi-simple, then since F, /Fy, is
ramified, this means that a(y) € F,. Belonging to the kernel of 1 + 7 then
implies a(y) € {£1}. If a(y) = 1, we may take 6* = 1, and if a(y) = —1, we
may take 0* = w, where w € F} is a uniformizer such that w? € Fy,. Then we

see that
ea((sa) — f(G,S)(a) va(rY) 7é 1 )
1 ,else

It follows that

er(v) = H fa.s)(@).

DLGR(S,G)insym/F
Applying again Proposition 3.3.1, we see that this expression is equal to the
right hand side of the claimed equality. O

4 CONSTRUCTION OF EPIPELAGIC L-PACKETS

4.1 Construction of L-packets

We now assume that G is quasi-split. Let G be the complex dual group of G. Let
us recall what data this entails (see also [Kot84, §1]). First, G comes equipped
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with an action of the Galois group I' by algebraic automorphisms. Furthermore
there exist splittings (T, B, {X,}) and (T,B,{X4v}) of G and @ respectively,
which are fixed by the action of I', and an isomorphism of I-modules X, (T') —
X*(T)) which identifies the B-simple coroots with the E—simple roots. For any
other two T-fixed splittings (T, B{X1}) and (T*, B',{X.,}) there exists a
unique isomorphism X, (7') — X *(fl) induced by the one for T and T. The
splittings themselves are not part of the data of G, but the compatible system

~

of isomorphisms X, (T) — X*(T) is.

Let G = G x W be the Weil-form of the L-group of G. We consider Langlands
parameters
@ : Wp — LG R

which are subject to the following conditions:

Conditions 4.1.1.
1. T = Cent(p(Pr), G) is a maximal torus of G belonging to a -fixed splitting.
2. The image of o(Ir) in QT,G) x I is generated by a regqular elliptic element.

3. Ifwel ﬁ *, where m is the order of the reqular elliptic element, then p(w) =
(1, w).

We will call such Langlands parameters epipelagic. In this section we are going
to construct to each epipelagic Langlands parameter ¢ and each inner twist
¢ : G — G’ apacket I, ¢ o of epipelagic representations of G'(F'). We will
argue that I, ¢ o depends only on the é—conjugacy class of ¢.

Let S be the Galois-module whose underlying abelian group is the complex
torus T' and whose Galois action is provided by

¢ : Wp = N(T,G) x Wg — QT,G) x W — Autyg(T).

It is clear that this action factors through a finite quotient of W, and this quo-
tient is the Galois group of a finite tamely ramified extension K/F. Let S be

the algebraic torus defined over F' whose complex dual is S. The splitting field
of Sis K.

In Section 4.2 we are going to construct a é—conjugacy class of embeddings
Lj: LS — LG. These embeddings will be tamely ramified, in the sense that
Lj(1,w) = (1,w) for all w € Pp. Given this conjugacy class, there exists an
element j in it satisfying the following:

Conditions 4.1.2.
o Lj(S) =T.
o The following two group homomorphisms are equal:

)

Wr N(T,G) x Wp ——= Q(T,G) x Wg

L

Wr —2> 8§ 5 Wy —2> N(T,G) x Wi —— Q(T,G) x Wg
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These properties imply that the image of Lj contains the image of ¢, and thus
we obtain a factorization

p="jopse;

The local Langlands correspondence for tori attaches to g 1 ; a character
Xsrj:S(F)—= C*.

The character x5 . ; depends on the choice of *j within its (A?—conjugacy class.
The dependence is as follows.

Lemma 4.1.3. Let jy, L jy : S — LG be G-conjugate and satisfy Conditions 4.1.2.
Then Ljy = Ad(n)Lj; for an element n € N(T,G) whose projection to (T, G) is
fixed by 51 (T). If h € Q(S, G)(F) is the element with

Lji o Ad(h) = Ad(n) o “j,

then
XS,Ljs = XS,Lj OAd(h_l).

Proof. The first claim follows directly from the fact that both Zj; satisfy Condi-
tions 4.1.2. For the second, we compute

Ljiopsey, =0 ="js0pgr;, =Adn) jiopsr;, ="jio @(h) O PS5 Ljys
from which we conclude that
XS,Ljs = XS,Lj o Ad(h71).
O

Lemma 4.1.4. For every choice of ©j within its @—conjugacy class, every inner twist
& : G — @, and every admissible embedding j : S — G’ of S into an inner form G’
of G, the pair j. (S, x s,z ;) satisfies the Conditions 2.3.1.

Proof. The first item in 2.3.1 is immediate, the second follows directly from the
second item in 4.1.1. For the third, we note that since the restriction of 'j to Pr

is trivial, the third item in 4.1.1 implies that ¢ » ; restricts trivially to I F# * The
claim now follows from [Yu09, §7.10].

We now come to the fourth condition in 2.3.1. According to Lemma 2.2.1, we
must analyze the character xgz; o N, where N : S(E) — S(F) is the norm
map and E/F is the splitting extension of S. The Langlands parameter of this
character is g  ;|w,. Note that since ©j is tamely ramified, the restrictions of
@s,r; and ¢ to wild inertia coincide. For any oY € RY(S,G) = R(S, CA?), the
character xg ;o N o a” is given as the composition
B W wg S § 2 o

and its non-vanishing on U}, is equivalent to the non-vanishing of the restric-
tion of a" o g r; to wild inertia. This is implied by the first item in Conditions
4.1.1. Moreover, the statement that no Weyl element stabilizes x o N|g(g), is

equivalent to the statement that no Weyl element stabilizes the restriction of
g r; to wild inertia, which also follows from the first item in Conditions 4.1.1.

O
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Now fix an inner twist £ : G — G’ and an L-embedding Lj : S — LG. For
every admissible embedding j : S — G’, we obtain the pair j,(S, xsz;) of a
maximal torus of G’ and a character on it, and this pair satisfies Conditions
2.3.1. Let¢; : S(F) — C* be the pull-back along j of the character €; on jS(F')
defined in Section 3.6. By Lemma 3.6.1, the pair j.(S, xs,z; - ¢;) also satisfies
Conditions 2.3.1. We let

5,05 = Tju(Sixs ;€5)

be the irreducible supercuspidal representation of G’ (F') given by the construc-
tion in Section 2.3. According to Lemma 4.1.3, we have for any h € Q(S, G)(F')
the relation

T L joAd(h) — TdoAd(h),Lj" (4.1.1)

We now set
Hy e.cr

to be the set isomorphism classes of 7; - ;, where j runs over the set of rational
classes of admissible embeddings j : S — G’, and 'j : £S — LG is a fixed L-
embedding in its @-Conjugacy class. The above relation shows that changing
the choice of ©j has no effect on the set I, ¢ v. Furthermore, the set II,, ¢ ¢
remains unchanged if we replace ¢ by Ad(g)y for any g € G. For if we at the
same time replaced ©j by Ad(g)’j, the two changes cancel. Thus, we may as

~

well write Ilg ¢ ¢/, where ® = Ad(G)e.

This completes the construction of the sets Il ¢ o, apart from the specification
of the G-conjugacy class of L-embeddings S — “G. We will turn to this
matter shortly, but first we want to show that our packets satisfy Shahidi’s
generic packet conjecture [Sha90].

Proposition 4.1.5. Fix a Whittaker datum (B, ¢g) on G. Then the set Ilg ¢ contains
a unique (B, )-generic constituent.

Proof. Choose a representative ©j : ©S — LG within its G-conjugacy class, and
choose a representative j : S — G within each rational conjugacy class of ad-
missible embeddings. The set of pairs {j.(S, xsz;)} is a set of representatives
for the rational conjugacy classes in a single stable class. For each j, the charac-
ter ¢; is trivial on S(F")o. Thus the set of pairs {;. (S, xs,2; - €j]s(F),, )} s still
set of representatives for the rational conjugacy classes in a single stable class.
Recall from the discussion preceding Proposition 2.3.7 that we can associate to
each pair j, (S, xs,z; - €;) an element Y; € js(F) which describes the restriction
of ju(xszj - €) to jS(F)o4. Then the set {Y;} also forms a set of representa-
tives for the rational classes in a single stable class. The claim now follows from
Proposition 2.3.7. O

4.2 Construction of the L-embedding ©j : LS — LG

We maintain the notation that ¢ : Wr — LG is a Langlands parameter sat-
istying Conditions 4.1.1, £ : G — G’ is an inner twist, and j : S — G’ is an
admissible embedding of the torus S constructed from ¢ in the previous sub-
section into G'.

Associated to j is a canonical @—conjugacy class of embeddings j : S — Gof
complex algebraic groups. In [LS87], Langlands and Shelstad have described a
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procedure which provides a G-conjugacy class [£j] of L-embeddings £j : S —
L@ extending j. However, the construction of [%}] requires the choice of aux-
iliary data, which they call x-data. Different choices of x-data lead to different
@—conjugacy classes [L'j], and in our construction this would lead to different
characters xg v, hence to different representations 7;. In this subsection we
will describe the correct choice of y-data.

Recall that Wr and Ir denote the Weil group and inertia group of F'. For con-
venience, we will drop the subscript F'. We consider the action of W on R(T, G)
given by ¢. Let o € R(T', G) and put

W, = Stab(W, «) Wiq = Stab(W, {a, —a}).

Denote the fixed fields for the action of these groups on F by F,, and F. Then
F,/Fy, is an extension of degree at most 2. A set of y-data is a set {xa|o €
R(S,G)}, where each x,, is a character

Xo : FS — C*,

and such that the set {x,, } satisfies the conditions of [LS87, §2.5]. The most im-
portant of these conditions is that x,, be trivial on Ng_ /p,  (F3) (this is slightly
stronger than the original condition, but it is what we will use).

If o is asymmetric, we are forced to take x, = 1. If a is symmetric but inertially
asymmetric, then F, /Fy, is unramified, and there exists a unique unramified
character y, satisfying the imposed condition. If « is inertially symmetric,
and if we require that y, be tamely-ramified (unramified is not an option any
more), then there are exactly two characters satisfying the imposed condition.
It is between these two that we need to choose, and we will use the arithmetic
information encoded in ¢ to do so.

It will be enough to specify the character on an arbitrary uniformizer w € F,
since these elements generate the multiplicative group F*. To that end, con-
sider the restriction of ¢ to the wild inertia subgroup P. Its image belongs to
T. Composing this restriction with the root a we obtain a homomorphism.

%)

PcC 1474 T —%>Cx.

It can be shown that this homomorphism extends to W, and hence provides
by local class field theory a homomorphism

o Up, — C*.

By assumption on ¢, this homomorphism is trivial on UZ . Using the uni-
formizer w, we obtain a character

S X

r—wr+1

baw t kp, —————=Up, /U,
With this, we define

on(w) = >‘F(Y/Fj:{1 (ga,w)_1>

where ) is the Langlands A-function [LanArt, Thm. 2.1] (see also [BHO5b, §1.5]).
This concludes the construction of characters x,, : £ — C*.

Lemma 4.2.1. The set {xo| a € R(T,G)} just constructed is a set of x-data for the
action of W on R(T, G) given by .
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Proof. Leta € R(T,G) and o € . We need to show the following points

® XYoo =Xa!
® Xoa = Xa oo~ 1

o x| X is equal to the character corresponding to the extension F, /Fy,, by
local class field theory.

All of these points are obvious when the extension F,, /F4, is either trivial or
unramified, so we focus on the case when this extension is ramified. First,
replacing a by —a replaces &, by £;!, hence &, ., by &, ., o (x — —z), and hence

multiplies Ap, /. (£51,) by ( ) Thus we obtain

o) = () xalo)

q
ond point follows from the fact that o provides an isomorphism of extensions

Fo/Fio = Foa/Fysq which transports &, ., t0 €sq,0. and from Fact 3.1.1. For
the third point, we must show that x,, restricts to the Legendre symbol on the
Teichmiiller representatives in O} , and kills —w? for each uniformizer w. The
first claim follows from the fact that multiplying w by the Teichmiiller repre-
sentative of u € k,_replaces by &, ., by €a..(u-), while the second is equivalent

to the claim that x, (w?) = (_Tl)

But it is known that )\%a JPe. = <;1>, and the first point follows. The sec-

4.3 Parameterization of L-packets

Our goal in this section is to provide a parameterization of the packets Il ¢ ¢
from Section 4.1 in terms of G in accordance with the local Langlands conjec-
ture. As has already been observed by Vogan [Vog93], the notion of an inner
form is not rigid enough to allow for such a parameterization. This necessitates
a rigidification of this notion. In other words, we must endow an inner form
with additional structure and consider two inner forms as different if their ad-
ditional structures differ, even if the underlying inner forms are the same. We
will use the concept of extended pure inner forms, originally due to Kottwitz
[Kot85, Kot97]. We refer the reader to [Kall4] for an exposition of this notion,
as well as the related notions of rational and stable conjugacy across extended
pure inner forms.

The first step towards a parameterization is to replace the sets Ilp ¢ with the
single set Ilg consisting of equivalence classes of quadruples (G, £, b, ) where
(€,b) : G — G’ is an extended pure inner twist (in particular ¢ : G — G
is an inner twist), and 7 € Ilg g». The notion of equivalence of quadruples,
which is explained in [Kal14], is such that if we fix an extended pure inner twist
(€,b) : G — GY, then the subset of Il consisting of elements corresponding to
that extended pure inner twist is precisely the set Iy ¢ » discussed in Section
4.1.
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For each ¢ € ® we have the diagonalizable group S, = Cent(y, G). Given
0,0 € ®, there exists ¢ € G with Ad(g)e = ¢', and this element provides
an isomorphism Ad(g) : S, — S,. This isomorphism is independent of the
choice of g, because S, is abelian. Thus we obtain a system {S,},cs of diago-
nalizable groups together with transition isomorphisms, and we call it S3.

In this section we are going to construct, given a Whittaker datum (B3, 5) for
G, a canonical bijection
X (S@) — 1.

Fix ¢ € ®. Choose any L-embedding “j : £S — L@ within the G-conjugacy
class determined in Section 4.2 and satisfying Conditions 4.1.2. It provides a
character xgr; : S(F) — C* as in Section 4.1. It provides furthermore an
isomorphism of diagonalizable groups

(S Cent(yp, @)

Composing this isomorphism with the Kottwitz isomorphism we obtain an
isomorphism

X*(Cent(p, G)) — X*(57) = X.(S)r — B(S). (4.3.1)

According to Proposition 4.1.5 we can find an embedding j, : S — G in the
stable class dual to [Fj], such that the representation Tjo,xs 1, 1S the unique

generic constituent of the packet IL, i4 .

~

Given p € X*(Cent(p,G)), let b, € E(S, Z) be any element mapping in B(S)
to the image of p under (4.3.1). We use jj to further map b, to E(G, Z). Let
¢, : G — G" be the corresponding inner twist. Then j, := £, 04 : S — G’ is
an embedding defined over F', and we obtain the representation

Tp 1= 7ij
of the group G'(F).
Proposition 4.3.1. The map
P (G",6p, by, my)
provides a well-defined bijection
X*(Sp) — Ilp

which is independent of the choice of ©j within its é-conjugacy class.

Proof. The fact that the equivalence class of the quadruple (G, ¢,,b,,7,) de-
pends only on the image of b, in B(.S), and hence only on p, follows from the
same argument as in the proof of [Kall4, Lemma 3.3.2] and will be taken as
proved. We will now show that, for a fixed ¢, the map X*(S,) — IIs con-
structed above is independent of the choice of Lj within its conjugacy class.
Applying Lemma 4.1.3 we see that any other L-embedding is of the form Zj o

=

Ad(h). This latter L-embedding then gives rise, according to the same lemma,
to the character ygz; 0o Ad(h™') = Ad(h).xs, ;. We now have

[]0}*(5’ Xs,Lj " 6jo) = []0 © Ad(h)]*(sa XS’,Ljof%a(h) : 6jo)
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and we see that changing £j to Lj o Ad(h) has the effect of changing jo to
joAd(h). One sees immediately that the element b, associated to p remains
unchanged, and then so does the quadruple (G%,&,,b,, 7).

We have just shown that the map X*(S,) — Ils depends only on ¢, and not
on the choice of £j. The fact that it is bijective follows from Fact 2.3.6 and the
fact that B(S) classifies the rational conjugacy classes of embeddings of S into
the extended pure inner forms of G.

Finally, we claim that the system of maps X*(S,) — Ils we have constructed
for each ¢ € ® provide a well-defined map X*(Sg) — Ilg. This means that for
any two ¢, ¢’ we have the diagram

X*(5,)

N
-

X*(S,

IIs

where the diagonal maps are given by the above construction, and the vertical
map comes from the transition isomorphism S, — S,.. To that end, let g € G
be such that Ad(g)p = ¢'. If S and S are the I'-modules associated to ¢ and ¢’
in the construction in Section 4.1, then Ad(g) provides an isomorphism 549
If Ljx : LS — LG is an embedding satisfying Conditions 4.1.2 with respect
to ¢, then Ad(g)%jx is one satisfying these conditions with respect to ¢'. In
particular, we have g = Ad(g)ps. The claim now follows.

O

44 Compatibility with the formal degree conjecture

Fix an inner twist £ : G — G’. In this section we will show that the L-packets
II¢ o satisfy the formal degree conjecture of Hiraga-Ichino-Tkeda [HIIO8]. Let
us briefly recall the statement of the conjecture. Let ¢ : F — C* be a non-
trivial character, and let i/ /4 ., be the Haar measure on G'(F')/A(F) defined
in [GG99]. Here A is the maximal split torus in the center of G. Then the
conjecture states that for each 7 € Il¢ ¢/,

(1,7)
S5

d(m; perjag) = 17(0, Ad o @, ).

Here, the left hand side is the formal degree if 7 relative to the given Haar
measure. On the right hand side, Ad denotes the representation of “G on the
vector space Lie(G)/Lie(Z(G)"), and (s, Ad o p, 1)) is the y-factor of the Wp-
representation Adoy. The group SE, is the component group of the intersection
of S, with the subgroup of G which is dual to G/A. Finally, (1, 7) is the value at
1 of the character (-, ) of an irreducible representation conjecturally assigned
to . Since in our case the relevant finite group is abelian, this quantity is
always equal to 1.

The main result of this section is the following.
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Theorem 4.4.1. The L-packet Il ¢ satisfies the formal degree conjecture.

Proof. We will first compute the right hand side. Recall that by definition,

L(1—s,VY)

’7(87 ‘/vw) = E(vaﬂﬁ) L(S V)

The representation Ad being self-dual, we see

_ L{,Adop)
7(0,Ad o ¢,9) = €(0, Ad o WmL((LAol o)’

Lemma 4.4.2. Assume that 1 is of order zero. Then
1 ~ ~
log, [€(0, Ad o ¢, ¢)| = o (dimg — dim3" + #R/e),

where R is the absolute root system of G and e is the order of the reqular elliptic element
giving the action of inertia on T through .

Proof. We know that €(0, V,¢) = w(V)q*(V)(z=%) where w(V) is the root num-
ber (being equal to det V' (—1) when V is self-dual), and a(V) is the Artin con-
ductor. For the representation V' = Ad o ¢, the lower ramification filtration
ends at Dy = {1}, and we have

gPr=t and gPo=3'

)

according to Conditions 4.1.1. It follows that

a(V) dim([a/3"]/("/3"]) + %dim(@/gf]/ﬁ/gf])
= dim(g) — dim(3?) + #R/e

O

Let M = X,(Z/A)!. This is a finite-rank free Z-module with Frobenius action.
In fact, it is the cocharacter module of the maximal reductive quotient Z/A
of the special fiber of the Iwahori group scheme of [Z/A](F). In particular,

(M @ kp ) is the set of kp-points of Z/A.
Lemma 4.4.3. The C[Fr]-modules M @ C and 3’ /3% are dual to each other.

Proof. The F-torus Z° has as its complex dual torus 7/ Zger. Thus the C[T-
module X, (Z°)®C is dual to X, (Z/ Zge:)®C. The inclusion X, (Z) — X.(Z [ Zger)
becomes an isomorphism after tensoring with C, and we see that the dual of
the C[I']-module X, (Z)®C is3. Thus M @C, being equal to cok([X.(Z)®C]" —
[X.(Z)®C]!),is dual to ker(3; — 3r), which itself is equal to cok(G" —37). O

Lemma 4.4.4.

|L(1,Ad o ¢)| = qdim(gl/ﬁr) (M ®EX)H|—1.
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Proof. Wehave L(1,Adoy) = det(1—q¢~'Ad(x(F ))|(§/§ YA =1 Arguing
as in the proof of Lemma 4.4.2, we see (g/31)A4(¢() = (g)Po /37 =31 /37, Thus

L, Adey)™ = det(l - g~ 'Fr§!/3")
= det(q "Fr(¢Fr ' = 1)[57/3")
q dim(3'/3") | det 1:r|5I/AF - det(gFr™ ! 1|5I/AF

The second of the three factors is a product of roots of unity. The third factor
equals up to a sign det(1 — gFr~'[37/31), and using Lemma 4.4.3 we obtain

det(1 — gFr 37 /37) = det(1 — qFt|]M ® C) = (M @ kg )"

O
Lemma 4.4.5.
|L(0,Ad o )| = |Mg,|7".
Proof. We have
L(0,Adop)™" = det(1-Fr3'/3")

= det(Fr[37/3") - det(Fr~' — 137 /3")

= det(Fr[3"/3") - det(Fr — 1|M @ C)

= det(Fr[3’ /3) - |M/(Fr — 1) M|
The first factor is again a product of roots of unity. O

Lemma 4.4.6.
IS*| = | X.(S/A)r|.

Proof. We have

— . — 7T
S§"=85,NG/A=S"NG/A=S/A =Hom(X.(S/A)r,C*).

The torus S/A being anisotropic, the abelian group X, (S/A)r is finite, hence

the result. O

Combining the above results, we obtain the following expression for the right
hand side of the formal degree conjecture.

Corollary 4.4.7.
17(0,Ad o @, )| gz (@m@+dimG)+#R/e)~dimG")
5] (M| =1X. (S/A)r || (M @ Fr )P

We now turn to the computation of the formal degree. The first step is to com-
pare the Haar measure of Gross-Gan [GG99] with the one of DeBacker-Reeder
[DRO9, §5].

Lemma 4.4.8. Let vg be the Haar measure on G'(F') normalized as in [DR09, §5].
Assume that 1 has order zero and let i be the Haar measure on G'(F) defined in
[GGI9] with respect to the p-self-dual absolute value on F. Then

L dim(Q)

G =q? MG -
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Proof. We take It to be the pro-unipotent radical of an Iwahori-subgroup of
G'(F). Then according to [Gr97, (4.11)] and [GG99, §5], we have

1
—log, vol(I'*, pgr.y) = 5(Mc) + > (d - 1)dim(V,}) + rankp. G,
d>1

where

Mg =P Va(l —d)

d>1

is the motive of G (the quasi-split inner form of G’), and

a(Mg) =Y _(2d — 1)a(Vy)

d>1

is its Artin conductor [GG99, (4.3)]. Since G is tamely-ramified, so are all the
I'-modules V3, and thus

a(Mg) = _(2d — 1) dim(Va/ V).

a>1
A short computation reveals

1 . .
—log, vol(I'*, pgr ) = B ; ((Qd —1)dim(Vy) — dlm(VdI)) + rank . G.

On the other hand, we have from [Gr97, §1] the formulas

> (2d-1)dim(Vy) =dim(G) > Vyg=E  rankp.G = dim(E"),

d>1 d>1

which bring us to
1
—log, vol(I'*, pgr y) = i(dim(G) + dim(ET)).
On the other hand,
vol(IT,vg) = [I : ]+rlv01(I, vgr) = |Lie(|)(kF)|*% _ qf%dim(l),

where | is the reductive quotient of the special fiber of the Iwahori group scheme
of G'. It's dimension is equal to the dimension of E!, and the proof is com-
plete. O

We now proceed to compute the formal degree of a constituent 7 of the L-
packet I1, ¢ . This representation is of the form (Section 2.3)

~

_ _ i G ()
T=Tg ' = c—mds,(F)G,(F)wwx,

where S’ is a maximal torus of G’ which is the image of an admissible em-
bedding j : S — G, y is the point in the reduced Bruhat-Tits building of G’
determined by S’, and ¥ is a one-dimensional character of the inducing group
S'(F)G'(F)y,0+- It follows that

S'(F)G'(F)y,0+ -
deg(; HG'/A,w) = vol <A(F)y’ HGr A .
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We have the exact sequence
G'(F)yor _ S'(F)G(F)yos  _ S'(F)
A(F)o+ A(F) S'(F)o+A(F)

The final term of this sequence is a finite abelian group. Applying Lemma 4.4.8,
we see

1 dim(C G/'(F)y0 !
d . , _ 5 dim(G'/A) 1 v,0+.
eg(m; g /A,w) q- Vo 7A(F)0+ R LV

1— — 1.

—1

S'(F)
S'(F)o+ A(F)

Lemma 4.4.9. We have
G'(F)yo+ . 1
,loqu)Ol (14(F')O+’VG,/A = i(rk(M)Jr#R/e)
Proof. By definition,
vol(G'(F)y.0+:var) = |Lie(G'y) (kr)| 2,

where G’, is the reductive quotient of the special fiber of the parahoric of G’
associated to y. Thus, we have

1
—log, vol(G'(F)y04;var) = 3 dim(G'y).

Let G’k be the reductive quotient of the special fiber of the parahoric of G’ x E
associated to y. As argued in Section 2.1, we then have

]- . ’
—log, vol(G'(F)y,04;var) = 5 dim(G ny)

Using the root-decomposition of the Lie-algebra of G’g,, with respect to the
adjoint action of the reduction of S, and the fact that I acts elliptically on .S and
regularly on R(S, G), we see that dim(G’{E’y) = dim(Z) + #R/e.

On the other hand, we have —log, vol(A(F)o4,v4) = 4 dim(A). Recalling that

M is the cocharacter module of Z/A, we obtain the result. O
Lemma 4.4.10. We have
S'(F) F T X\F
= |X.(S/A] ] (M k .

Proof. The torus S’ being tamely ramified, the group S'(F)o; surjects onto
[S/A](F)o+, and we see that

S'(F) ‘:‘ [S"/AI(F)
S'(F)o+A(F) [S"/A](F)o+ |
It is known [HRO8] that

[[S"/AI(F) : [S'JA](F)o] = |X.(S/A)T,

so it remains to compute [[S'/A](F)o : [S'/A](F)o+]. This is the number of
kp-points in the reductive quotient of the special fiber of the parahoric group
scheme of S’/A. This is the connected component of the I-fixed points in the
reductive quotient of the special fiber of the parahoric group scheme of [S’/A] x
E, and its character module is M. We conclude

(15" /AN(F)o : [S'/A(F)ot] = |(M @Fr )™

and the statement follows. O
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The last two lemmas allow us to conclude
q% (dim(G’ JA)+rk(M)+#R/e)

X (S/A)E| - (M @ &p )|

deg(m; parja,p) =

Recall that M = X,(Z/A)!, and hence
k(M) = dim(Z") — dim(A) = dim(3") — dim(G").

Thus, comparing the formula for deg(r; i1/ /4,,,) above with the one in Corol-
lary 4.4.7 and noticing that X, (S/A)! = M by the ellipticity of the I-action on
S, we see that the proof of Theorem 4.4.1 will be complete once we establish
the following elementary algebraic lemma.

Lemma 4.4.11. Let I' be an extension of the finite cyclic group B by the finite group
A, and let M be a finite-rank free Z-module with T-action such that M = 0. Then

|Mr| = M| |Mp].

Proof. We have the exact sequence
0 — Mator — Ma — M — M4 /traM — 0,

where the middle map is given by the trace of the A-action. If we let M4 gree
be the maximal torsion-free quotient of M 4, we see that the B-module M4 free
is a submodule of the B-module M. Combining this with the assumption
MT = 0 we obtain H°(B, M4 free) C H°(B,M#) = 0, and since B is finite
cyclic, we obtain

Ho(B,M™) =0 = Hj (B, Mafree), ~ Vn €L
Consider the exact sequence

0— My tor = Ma — My gree — 0.

On the one hand, the above cohomology vanishing statement implies that
HI(B> MA,free) = 0, and hence

|Mr| = |Ma free,B| - [Ma tor,B- (4.4.1)
On the other hand, from H"(B, M 4 free) = 0 we obtain
|MZ| = |(Maor)®| = |Mator,B|. (4.4.2)
Next, we consider the exact sequence
0 — My free = MA — M2 /tr(M) — 0
and obtain from H; (B, M*#) = 0 the exact sequence
0 — Hy(B,M*/tra(M)) = Ma free.5 — Mfp — (M* /tra(M))p — 0.

We claim that the outer terms in that sequence have the same cardinality. To
save notation, let X = M /tr5(M). Then

|H1(B, X)| = |Hpye (B, X)| = X* /trp(X).
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The map trp : X — X is induced from the map trg : M# — M4, but the latter
map takes image in M' = 0. Thus

|Hi(B, X)| = |XP| = | X5

as claimed, and we conclude |M4 free, 5| = |M Al Combining this with (4.4.1)
and (4.4.2) finishes the proof of the lemma, and with it also the proof of the
theorem. O

O

4.5 Central and cocentral characters

In this Section we want to study how the L-packets we have constructed be-
have with respect to central and cocentral characters. We begin by giving a
reformulation of two constructions, originally due to Langlands [Bo77, §10].
The first construction assigns to any Langlands parameter ¢ : Wr — G a
character x, 7z : Z(F) — C*. The second construction assigns to any Lang-
lands parameter ¢, : Wp — L@ which factors through 7 Wr a character
Xe.,c 1 G(F) — C* which is trivial on the image of Gs.(F) in G(F') (we will
call such characters cocentral). Here Z is the center of G, and 7 is the center
of G. These constructions are related to the conjectural local Langlands corre-
spondence as follows:

e If ¢ : Wr — LG is a Langlands parameter with corresponding packet I1,,,
then the central character of each constituent of 11, is equal to x., z.

e Moreover, for any ¢, : Wr — 7 x W, one has Iy, 00 = Xe.,c @1L,.

The constructions given in [Bo77, §10], which follow Langlands’ original expo-
sition in [Lan88], proceed by replacing the group G by certain auxiliary groups.
We are going to give here a reinterpretation of these constructions that avoids
the use of these auxiliary groups. These considerations are quite general, and
are valid for any connected reductive group G defined over any local field F'
of characteristic zero. We will adopt this level of generality while giving them.
Afterwards, we will consider again the case of tamely ramified p-adic groups
and show that the above conjectural properties hold for our L-packets.

For now, let F' be a local field of characteristic zero, and let G be any connected
reductive group defined over F. The key to our approach lies in the coho-
mological pairings for complexes of tori of length 2 constructed by Kottwitz
and Shelstad in [KS99, §A], as well as the systematic use of the cohomology of
crossed modules. We were informed by the referee that the notion of a crossed
module goes back to the work of J.H.C. Whitehead. This notion, and the more
general notion of a crossed set and its cohomology introduced by Labesse, were
used in [Lab99] for the stabilization of the elliptic singular terms of the twisted
trace formula. We refer the reader to [Lab99] as well as [Mi92, App. B] for the
definition and properties of crossed modules, crossed sets, and their cohomol-
ogy. The reader might also find the overview given in [No11] useful.

The crossed modules that we will be using are [Gs — G] and [Gs. — G]. These
crossed modules are endowed with symmetric braidings: Let g,h € G and
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choose gsc, hse € Gsc whose images in G,q agree with those of g resp. h. Then
the symmetric braiding on [Gsc — G] is defined by {g,h} = g 'he!gschsc.
The braiding on [(A?sc — @] is defined in the same way. The existence of these
symmetric braidings ensures that H(F, Gs. — G) and H(Wg, Gs. — G) are
abelian groups.

A map f: T — U of tori defined over F is a crossed module in a natural way
and we can consider its cohomology groups H*(F,T — U). At the same time,
T — U it is also a complex of tori of length 2 and we can consider the Galois
hyper-cohomology of this complex. In order to do this, we need to specify in
what degrees the terms of this complex are placed. If we place 7" in degree —1
and U in degree 0, then the Galois hyper-cohomology of the resulting complex
coincides with the cohomology of the crossed module 7" — U. This will be our
convention, but we warn the reader that this convention is different from the
one used in [KS99, §A], where the complexes of tori of length 2 are placed in
degrees 0 and 1. Thus H in our notation coincides with H' in the notation of
[KS99, §A].

Proposition 4.5.1. There are canonical isomorphisms
Homes(Z(F),C*) = H'(Wp, Gy — G)

and
Homs(HO(F, Gy — G),C*) = H (Wg, Z).

Proof. Let T be a maximal torus of G that is part of a I'-invariant splitting. The
inclusions R N R R R R

[Toe = T [Zse = Z] = [Gsc = G
induce isomorphisms on Wr-cohomology. According to [KS99, Lemma A.3.A],

H'(Wg, Toe — T) is the group of characters of H'(F,T — T,q), where T is
the minimal Levi in the quasi-split inner form of G. This establishes the first
isomorphism, since the map [Z — 1] — [T — Ta,4] is a quasi-isomorphism of
crossed modules.

The second isomorphism is proved in an analogous fashion. Namely, we have
H' (W, Z) = H(Wp, T — Taq).

Let us consider the natural map from fard to the above group. It is known

[Kot84] that this map factors through (i&). Thus, according to [K599, Lemma
A.3.B], we have a canonical isomorphism

HO(Wp, T — Tag) = Homes(HO(F, Tye — T),C%).

The second isomorphism in the statement of the proposition now follows from
the fact that
Tse = T [Zse = Z] = [Gsc = G

are quasi-isomorphisms of crossed modules. O

Proposition 4.5.1 relates to Langlands’ constructions as follows: The exact se-
quence of crossed modules

-~ ~ ~

1—>[1—>G]—>[GSC—>G]—>[@SC—>1]—>1

42



induces a map
H'(Wp,G) = H'(Wp,1 - G) —» H (W, Gy — G).
On the other hand, the dual exact sequence
151=G] =[G >G] = [Goe = 1] =1
induces a long exact sequence on cohomology
1 — ker(Gse = G)(F) = Goo(F) — G(F) — H°(F,Gs. — G) — H'(F,Gy.).

Thus we obtain an injection coker(Gs.(F) — G(F)) — H°(F, Gs. — G) which
in the p-adic case is also bijective due to Kneser’s theorem on the vanishing of
H(F,Gs).

Proposition 4.5.2. The maps
H'(Wp,G) = H (Wg, Gy — G) = Homys(Z(F),C*)
and
H (Wg, Z) = Homys(H(F, Gse — G),C*) — Homgs(coker(Gee(F) — G(F)),CX)

coincide with Langlands’ constructions.

Proof. Since the proofs of the two statements are quite similar, we will only
sketch the second one. First recall the construction of x,_ «, following the ex-
position in [Bo77]. Choose a z-extension

1-D—-G—G—1.

The reader is referred to [Kot82, §1] for a review of z-extensions. Recall in
particular that D is an induced torus and the dervied subgroup of G is equal
to Gsc. On the dual side we obtain the exact sequence

1-G—>G—>D—1
and the center of G is connected and dual to the torus G /Gsc. Composing ¢,

~

with the inclusion Z(G) — Z(G) we obtain an element of H' (W, Z(G)), hence

a character on [G/Gy|(F), which we can pull back to a character on G(F). One
checks easily that this character restricts trivially to D(F'), and hence provides
a character on G(F)/D(F) = G(F), where the last equality holds due to the
cohomological triviality of D.

The claim now follows from the commutativity of the diagram

1 1

HY(Wg, Z(G)) — Homgs(G(F),C*)

H! (WF, Z(a)) I Homcts(é(F)7 (CX)

HY(Wg, D) —— Homgs(D(F),CX)

43



and the exactness of both vertical sequences, as well as the fact that when G
has a simply-connected derived group, so that we can take G = G, Langlands’
original construction coincides with the one given here. O

We now assume that F' is p-adic, G is tamely-ramified, and ¢ satisfies Condi-
tions 4.1.1.

Proposition 4.5.3. Let (S, xs,x) be the pair obtained from ¢ using any choice of
x-data X. Then

1 xs.xlz(p) = Xe.2-

2. If p, € ZY(Wp, Z) and Xs.x is the character on S(F) obtained from ¢. ® ¢
and the same x-data X, then X's x = Xo..G|s(r) ® Xs,x-

Before we go into the proof, we want to remark that the above statements make
sense. For the first one, the stable class of embeddings S — G provides a
canonical embedding Z — S, which is what is used to define the restriction
to Z(F'). For the second statement, we use again the embeddings S — G to
restrict x,,,¢ to S(F'). This restriction is again independent of the particular
embedding.

Proof. During this proof, we will identify homomorphisms Wy — G with 1-
cocycles Wp — G using the semi-direct product structure on “G. For the first
claim, we must show that the images of ¢ € H(Wp,G) = H'(Wp,1 — G)
and pgx € H'(Wp,S) = H'(Wg,1 — S) in HY(Wg, Z(Gs.) — Z(G)) under
the following maps coincide:

H'(Wg,1— S) H' (W, S — 5)
H (W, Z(Gs) = Z(G))
HI(WF,I — @) (WFv sc G)

To that end, recall that p(w) = ps x(w) - {x(w), where {x : Wp — N(f) is the
1-cocycle with Zjx (s,w) = (séx(w),w). The key point that makes everything
work is the fact that £x lifts to a 1-cocycle £ : Wrp — N (TA’SC) This follows from
the construction of Langlands—Shelstad. We can find continuous 1-cochains
¢ @ Wp = Sy and ¢; : Wrp — Z(G) such that pg x(w) = & (w) - co(w).
We have dc¢; € Z2(WF,Z(G <)), and the elements (Jc; ', c2) and (1 <p5 x) of
H'(Wg, S — S) are equal On the other hand, the element (9c; ", cy) of

H'Wp,Z (GSC) —> Z(G 7)), when mapped to H!(Wp, Gee = @), is equal to
the element (601 0(c1 - €%), c2 - €1 - €x), which, by virtue of 9% = 1, equals
(1, gO&X . gx), Wthh iS (1, (p).

The second claim follows from the fact that the map S(F) — coker(Gs.(F) —
G(F)) is dual to the map H'(Wp, Z(G)) — H*(Wr, S), as well as the fact that
<Pf97x = P2,6 D Ps x-

O
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5 STABILITY AND ENDOSCOPY

5.1 Stable and s-stable characters of epipelagic L-packets

Let ¢ : Wrp — LG be an epipelagic parameter. For any inner twist £ : G — &/,
we constructed in Section 4.1 the L-packet I, ¢ . Moreover, given a Whit-
taker datum (B, g) for G, we have constructed in Section 4.3 the compound
packet II,,, which consists of equivalence classes of quadruples (G°, &, b, ),
and a bijection

X*(Sy) =y, prs (G,6,,b,,7)).

The map II, — B(G)pas which sends a quadruple (G?, &, b, ) to the equiva-
lence class of b is surjective and its fibers are the sets I1, ¢, +. Not all of the sets
I1, ¢, however occur as fibers of this map.

“RI%

For every £ : G — G’, we can consider the stable character of the L-packet
I1, ¢ ¢, which is the function on G’(F) given by

SOue=e(G) Y O

WeHw,E,G’
The quantity e(G’) is the Kottwitz sign [Kot83] of G’.

Moreover, for a triple (G*,&,,b) and an element s € S,, we can consider the
s-stable character of the L-packet for (G?, &, b), which is the function on G*(F)
given by
se=eG) > p(5)On,.
PEX™(Sy)
p—b
The sum runs over those characters p € X*(S,) whose restriction to X*(Z (@ )
corresponds to b € B(G)pas under the Kottwitz isomorphism [Kot85, Prop 5.6].
We have
SO, ¢, = @;J).

We will now provide formulas for the functions SO, ¢ and O, , using the work
of Adler and Spice [AS10] on character values for supercuspidal representa-
tions. In order to be able to derive our formulas, we need to assume that the
residual characteristic of F' is large enough. A convenient lower bound is given
by p > (2 + e)n, where e is the ramification degree of F//Q,, and n is the small-
est dimension of a faithful rational representation of G. Under this assumption,
DeBacker and Reeder have shown in the appendices to [DR09] that the follow-
ing statements hold.

1. For every inner form G’ of G, the exponential map exp : ¢/ (F")os —
G'(F™)o4 is defined and provides a bijection which is equivariant for the
adjoint action of G'(F") as well as for the action of Frobenius.

2. There exists a bilinear form () on g’(#) which is invariant with respect
to the adjoint action of G'(F) as well as the Galois action, and such that
for any maximal torus T' C G, the element (H,, H,) is a unit in F for all
coroots H,, of T.

We will denote by log : G'(F*)o+ — ¢/ (F™)o+ the inverse of exp. Fix a character
¥ : F — C* which is trivial on pr and non-trivial on Op. Let (S, x) be a pair of
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a maximal torus of G’ and a character of S(F) satisfying Conditions 2.3.1. Then
the main result of [AS10] provides the following formula for the character of

TS, x-

Ore (1) = 20 S 0D, (), (og(rm0). (B:11)

D
&) sy s
9 ' 0gES(F)

We need to explain the notation. First v = v - 750 is a topological Jordan
decomposition modulo Z(G)° of v [Sp08]. Not every element v has such a
decomposition, but it is part of the character formula that if 4 does not have
this decomposition, then O, (v) = 0. Moreover, since S is tamely ramified,
sois Z(G)°, and thus the map G'(F)ss 0+ — [G'/Z(G)°](F)ss,0+ is surjective, so
we can always arrange that v~ € G'(F)o, which we will assume.

Next, the group J is the connected centralizer of 7 in G'. WeletY € s(F') be a
generic element for which

xs(z) =Y,z —1)

forall z € S(F)o4+. Then Y, = Ad(g)Y, and x, = Ad(g).x. The quantities D()
denote the Weyl-discriminants in the corresponding group or Lie-algebras. For
example, D¢ () denotes the square root of the product of |a(y) — 1| where «
runs over all roots of the centralizer of v in G’, while D ;(Y;) denotes the square
root of the product of |da(Yy)| where o runs over all roots of the centralizer of
Y, in J. Finally, i uy denotes the Fourier-transform of the orbital integral at
Y, in the Lie- algebra of J. The orbital integral is taken with respect to the
measure on J(F)/Cent(Y,, J)(F) which is the quotient of the measures on the
two groups normalized as in [DR09, §5.1]. The Fourier-transform is taken using
the bi-character on g'(F') given by ().

Before we state our formula, we recall a different normalization of the function
I, which is used by Waldspurger in [Wal97]. It is the function

W (X) = Dy(Y)Ds(X)ag(X).

Proposition 5.1.1. We have that S©, ¢ () is equal to

e(G")|De (y ZJ*XSL' (70) Y77 (kY log(v50)),

(%]

while ©F, ,(v) is equal to

e(G")|Des (v Z]* [xs.j - €1(30) Y (inv(jo, k), )2’ (kY, log(v>0)).

(k]

In both sums, [j] runs over the J-stable conjugacy classes of embeddings S — J whose
composition with the inclusion J — G’ (resp. J — G°) is admissible, and [k] runs
over the set of J(F')-conjugacy classes inside [j].

Proof. We will derive both formulas simultaneously. Consider for a moment
©;, ;- Its definition involves a sum over the set {p € X*(S,)[p — b} and the
map p — m, constructed in Section 4.3. The latter map was constructed from
a choice of a Whittaker datum (B, 1), and a choice of an L-embedding £ :

L§ — LG within the G-conjugacy class specified in Section 4.2. We make these
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choices. As argued in Section 4.3, this determines an isomorphism X*(S,,) —
B(S), as well as an admissible embedding j, : S — G for which 7, is (B, ¢ p)-
generic. Under the isomorphism X*(S,) — B(S), the sum over the set {p €
X*(S,)|p + b} is translated to a sum over {\ € B(S)|\ — b} where A — bis
taken under the map B(jo) : B(S) = B(G)pas- We have a bijection from the set
of admissible embeddings of S into G’ to the set {\ € B(S)|\ ~ b}, and this
bijection sends an embedding j : S — G to the element inv(jo, j). Moreover,
if p — j under the isomorphism X*(S,) — B(S), then

p(S) = <inv(.j0aj)a 5>'
We conclude that
03, = e(G*) Y _(inv(jo, j), 5)Ox, (5.1.2)
7]
where the sum runs over the set of G®(F')-conjugacy classes of admissible em-
beddings j : S — G°.

Now consider SO, ¢ o/. By construction, the set I, ¢ ¢ is in bijection with the
set of G'(F')-conjugacy classes of admissible embeddings j : S — G’, with j
mapping to 7;. Thus

S@¢ &G = G(G/)@ﬂj

We see that the formulas for ©F, , and SO, ¢ ¢ are the same apart from the
factor (inv(jo, j), s). Because of this, it will be enough to treat the case of ©7, ,,
the argument for SO, ¢ v being the same except that the factor (inv(jo, j), s)
can be set to 1 in that case.

Inserting the Adler-Spice formula (5.1.1) into (5.1.2), we see that if v € G®(F)ys
has the topological Jordan decomposition mod Z(G)° given by v = 7o - 7>0
with v50 € G*(F)oy, then O, ,(7) equals

D,y
(G I S inv(i. )9 3} 00) Do (47 i o).
¢ (5] geJ(FI\GP(F)/S(F)
g9~ "0g€JS(F)

Here 7/ = j.(x sz €5),and Y7 = jY. As [j] traverses the first summation set
and g traverses the second the composition Ad(g)j traverses the set of J(F)-
conjugacy classes of embeddings k : S — J which are G-stably conjugate to
Jjo- This set can be traversed by first summing over the set [j] of J-stable classes
of embeddings S — J which are G’-stably conjugate to j, and then summing
over the set [k] of J(F')-conjugacy classes of embeddings S — J inside each [j].
With this, we obtain that ©F, ,(v) equals

D -
e(Gh) 22 7>0 ZZ inv(jo, k), s)X" (%) Dy (Y *) iy« (log(7=0))-
(5] K]

To complete the proof, we observe that the term x*(v,) is constant in k and
depends only on j. O

5.2 Stability and transfer to inner forms

Theorem 5.2.1. Let £ : G — G’ be an inner twist, and let v € G(F);s and v’ €
G(F)ys be related elements. Then

SO,1,6(7) =SOyc.ar (7).
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Proof. Let T C G and 7" C G’ be the centralizers of v and +’. By assumption,
we may modify £ within its equivalence class so that{(y) =+'. Then& : T — T’
is an isomorphism defined over F. The element v has a topological Jordan
decomposition modulo Z(G)° if and only if 7" does, and we may assume this
is the case, for otherwise both sides of the claimed equality are zero. Let us then
choose such a decomposition v = 7y - ys0 With vo € T(F) and v~¢ € T(F)o+
and set v, = £(70) and 7Ly = &(7>0). Then ' = ~;-7% is such a decomposition
of 7. Letting J and J’ be the connected centralizers of vy and -, the map
¢ descends to an inner twist J — J’. This inner twist provides a bijection
between the stable classes of elliptic maximal tori in J and those in J’, and
this bijection restricts to a bijection j <+ j’ between the set of .J-stable classes
of embeddings j : S — J which are G-admissible when composed with the
inclusion J — G, and the corresponding set for J'. Moreover, if j <> j/, then
77 (0) =37 (0)-

Applying Proposition 5.1.1 to both G and G’, we see that we must show for
each pair of embeddings j : S — Jand j' : S — J' with j <> j’ that

(G5 Ixs,ey e )(70) DT (K'Y log(7L,))
(k']

is equal to

e(@)jelxs, - €51(00) YT (kY log(750))
(%]

The fundamental results of Waldspurger [Wal97], [Wal06], [Ngo10] reduce our
task to showing the equation

e(G )y ("(F), Nd"xs,z5 - €57](70) = e(G)rp ((F), ()dlxs,z; - €1(70)-

Applying Lemma 3.4.1 we see that

1w ('(F),0) _ 11 furrs) (@)
WO D) crragmyr (2i8)(@)

On the other hand, Proposition 3.2.2 shows

e(G") CERTNC)
e(G) H

QER(S,G)aym/T fais)(@)

Finally, Lemma 3.6.1 shows

jiej (30) _ I ferr9)(@)
g=e;(10) QER(S,G)sym~R(S,J)sym /T fais(@)
and the proof is complete. O

5.3 Descent lemmas

Lemma 5.3.1. Let J be a disconnected linear algebraic group defined over F' whose
connected component J° is reductive and quasi-split. Let v € J°(F') be an element
such that Cent(ry, J) C J°. Then mo(J)(F') acts simply transitively on the set of those
J°(F)-conjugacy classes inside the J(F)-conjugacy class of v which are defined over
F'. Moreover, every such class has an F-point.
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Proof. The first statement is obvious; we turn to the second. Let C = Ad(J(F))~.
The action of mo(J)(F) on C/Ad(J°(F)) factors through the map mo(J) —
Out(J). Fix an F-splitting of the quasi-split group J° provides a I'-equivariant
section Out(.J°) — Aut(J°) of the natural projection. Hence we obtain

£ m0(J)(F) — Out(J°)(F) — Aut(J°)(F).

For z € my(J)(F), the element f(z)v is an F-point in the J°-class Ad(z - J°)7.
O

We now let J be a connected reductive group defined over F. We assume
that for each v € J(F);s, we have fixed a decomposition v = vy - 11, with
Y0,71 € T, where T' = Cent(, J)°. We moreover assume that for any admissi-
ble isomorphism f : T' — T" of maximal tori of .J, the decomposition of f(7) is

f(vo) - f(m)-

We are now going to establish two lemmas dealing with descent to the central-
izer of vy, where 7y is the 0-part in the decomposition v = 7y - 71 of a strongly
regular semi-simple element. The first lemma provides a comparison between
stable conjugacy in J and stable conjugacy in J,.

Lemma 5.3.2. Assume that J is quasi-split. The map
p: J(F)g /st = J(F)ss/st, Y=Y

is well defined. Every stable class in the image of this map contains a point y € J(F')ss
for which J, is quasi-split. Moreover,

py Jy(Fn/st = p~ (W), 2= 2y

is a surjection, where the subscript 1 denotes all those elements v, such that yv, is
strongly-regular semi-simple and has the decomposition y - vi. Finally, the fibers of p,
are torsors under mwo(HY)(F).

Proof. For the first claim, we need to show that the map J(F);s — J(F')ss given
by sending v to v respects stable conjugacy. If v and 4’ are stably-conjugate,
say by g € J(F), then Ad(g) : T,, — T, is an isomorphism defined over F
between the centralizers of v and +’. Being admissible, it carries v, to 7, and
hence exhibits these two elements as stably conjugate.

Now let y € J(F)ss be an element whose stable class belongs to the image of
p. According to [Kot82, Lemma 3.3], we may choose y within its stable class
so that Jy, is quasi-split. To prove the surjectivity of p,, let v € J(F') be such
that ~ is stably-conjugate to y, and let g € J(F') be an element which stably-
conjugates 7o to y. Then Ad(g) : J,, = J, is an inner twist. The centralizer T’,
is a maximal torus in J,, and contains v;. Since J, is quasi-split, there exists
h € J, such that T’ := Ad(hg)T, is a maximal torus of J, defined over F, and
Ad(hg) : T, — T" is defined over F. Then 4" := Ad(hg)y belongs to J,,(F') and
has the decomposition 7' = y - 7{, where 7] = Ad(hg)y:. We see that p,(v]) is
stably conjugate to v, and this proves the surjectivity of p,.

To prove the statement about the fibers of p,, let y1,7] € J,(F)s,1 and assume
that that yy; and yv; are stably conjugate, say by g € J(F). Our assumptions
on the decomposition imply then that g € J¥(F). We conclude that the fiber
of p, through 7, is the set of F-points of Ad(JY(F))v:. The statement now
follows from Lemma 5.3.1. 0
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The second descent lemma will deal with the notion of transfer of elements
from an endoscopic group H to J. If 7o € J(F') and y € H(F) are such that y
transfers to v and H, is quasi-split, then Langlands and Shelstad show [LS90]
that H,, can be realized as an endoscopic group of J,,. In order to do that, one
needs to fix an isomorphism from a maximal torus in H,, to a maximal torus in
J+, which is admissible when considered as an isomorphism from a maximal
torus of H to a maximal torus of J. Conjugating this isomorphism by elements
of H, or J,, has no effect on the way H, behaves as an endoscopic group of
Jy. We will write =(H,, J.,) for the set of such isomorphisms of tori which
send y to o, taken up to conjugation by elements of H, and .J,,.

Lemma 5.3.3. Let H be an endoscopic group of J and S a torus defined over F. Let
j:S— Jand j% : S — H be embeddings of S as an elliptic maximal torus of J and
H, and let v € J(F);s be such that v € jS(F'). Consider the set of triples

{(v,&.3,)}

where y runs over a fixed set of representatives Y for the stable classes of preimages
of "o, chosen so that H, is quasi-split, &, runs over 2(Hy, J,,), and ji runs over
the H,-stable classes of embeddings S — H, whose composition with the natural
inclusion H,, — H is stably conjugate to j. Consider also the set

{jw 18— Jvo}

of J,,-stable classes of embeddings whose composition with the inclusion j,, — J is
stably conjugate to j. Then we claim that the map

q:{w: &3} = (v}

given by transfer of stable classes of tori from H, to J., is surjective and its fiber
through a triple (y, &y, ji' ) is a torsor under o (HY)(F).

Proof. The map g is well defined — given a triple (y,£,, j,'), we may transfer
the stable class of the maximal torus j..S of H,, to the quasi-split form of .J,,,.
Since S is elliptic for J, it is also elliptic for the quasi-split form of J,,, and
hence transfers further to J,, itself. Furthermore it is clear that g is mo(HY)(F)-
invariant.

For surjectivity, we start with j.,. Theny’ = j# 0. 1(yo) € H(F)is a preimage
of vo € J(F). There exists a unique element y € Y which is stably-conjugate
toy’, say by h € H. Then Ad(h) : H, — H, is an inner twist and there exists
W € H, such that j' := Ad(h'h) o j* : S — H, is defined over F. Finally, take
§y =Jv © Uf]fl-

For injectivity, let (y, &y, jf ) and (v, &y, j;{ ) be two triples giving rise to the
same J,,-stable class of embeddings j., : S = J,,. Then we can choose ¢, and
&, within their equivalence classes in such a way that

gy ojqfl :j% = fy’ oj;,[,
Setting s = j; '(70), this shows that y = j//(s) and ' = j! (s). But the embed-
dings j, and j!I are H-stably conjugate, while y,y’ € Y. This forces y = y'.
From this we see that j/' and j// are conjugate under HY(F), and the same
element of HY conjugating these embeddings must then also conjugate &, to

&, in order to maintain the relationship with j.,. The result now follows from
Lemma 5.3.1.

O
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5.4 Endoscopic transfer

We now fix an endoscopic datum (H, s, H, L) for G. To ease notation, we will
assume that there exists an L-isomorphism H — “H. The general case can
easily be reduced to this — one has to replace G by a z-extension as in [LS87,
§4]. Thus we may replace H by “H and assume that 7 is an L-embedding
LH — LG. We further assume that this L-embedding is tamely ramified. Fix a
Whittaker datum W = (B, ¢ ) for G. Then, for each extended pure inner twist
(£,b) : G — G® we have [Kall4, §2] the Whittaker normalization of the transfer
factor
Awp : H(F)Gs X GY(F)g — C.

We emphasize that this is the normalization which, on the group G, coincides
with the factor A} defined in [KS12]. Let " : Wr — LH be a Langlands
parameter and assume that its composition ¢ : Wr — LG with L7 is epipelagic.
Then ¢ is itself epipelagic. Thus we have the L-packets IIu ; 5 on H(F) and
I, ¢ gv on G°(F). Our goal is to show that for all v* € G*(F)s, the endoscopic
character identity holds.

Theorem 5.4.1.

S D' (7"
9¢,b(7b) = Z AW,b(’VHﬁb)W

~yHEH(F)g /st

We will use the formulas from Proposition 5.1.1, and for this we need to fix
topological Jordan decompositions mod Z(G)® for the elements involved. First,
fix a topological Jordan decomposition v* = ~§ - 4%, which is such that 1%, €
T.v(F)o4. As remarked in Section 5.2, this is possible. We endow all stable
conjugates of 4* with the induced decompositions. Moreover, for every stable
class in H which transfers to the stable class of °, we fix a representative v
and an admissible isomorphism f : T, » — T,» and endow ~ with the decom-
position of 7* transported over f. This fixes corresponding decompositions on
all elements of H(F) which transfer to ~°.

Before we set out to prove this identity, we need to recall the results of Lang-
lands and Shelstad [LS90] on descent for transfer factors. For this, fix an ele-
ment v# € H(F) which transfers to 7v°. We may modify v/ within its stable
class to assume that H,n is quasi-split. Let f : T,n — T,» be an admissi-
ble isomorphism sending v/ to 7*. Then Langlands and Shelstad show how
to produce from (H, s, H,Ln) an endoscopic datum (Hp,s,H', Ly for G:b.

0
The isomorphism class of this endoscopic datum depends only on the class
£ € E(Hyu, Gf’yb) of f. We cannot expect however that ' is an L-group of

0

H, n and thus we have to take an extension IL(J)LI of H s and an L-embedding

L -1 ﬁvé" We again assume that 7] is tamely ramified. This data pro-
vides a canonical relative transfer factor

F F b b
H,Yéi (F)Sr X H’Yé{ (F)Sr X G’Yg (G)Sr X G’Yg (G)Sr — (C
and hence a family of absolute transfer factors
H.pi(F)s: x G4 (G)sr = C,

which is a torsor under S! acting by multiplication. The main theorem of
[LS90] then asserts that one of these transfer factors, which we will denote by
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Agese ¢, satisties

AT (B 2,98 - 28 = Awp (0T 298 - 20)

forall z € ﬁygz (F)g and 2° € sz(G)sr which are sufficiently close to 7¢' and

78, where 7 € H,Ygl (F) is a fixed lift of (. In the course of our proof, we
will work with a version of the transfer factors which is missing the term Ajy.
In order to avoid confusion, we will denote these transfer factors by A. The
work of Langlands and Shelstad applies equally well to these transfer factors
and asserts ) )
AS (e 210 2") = Awa(g" - 2,70 - ).

We would like to know that this statement also holds when Z and 2z are any
strongly-regular semi-simple topologically unipotent elements. This follows
from the work of Hales [Hal93], which, even though originally written for un-
ramified groups and compact elements, applies equally well in our setting, as
we will now review.

Lemma 5.4.2. Let G be a tamely ramified connected reductive group defined over F,
(H,s,Ln) a tamely ramified extended endoscopic triple. Let v € G(F) be a strongly-
reqular semi-simple element and v = ~o - yso a commuting decomposition with o
topologically semi-simple modulo Z(G)° and = topologically unipotent. Fix a power
Q of p for which ()@ = (7o) for all roots « of the centralizer of . Then, for any
absolute transfer factor A and element v € H(F) which transfers to v and has the
compatible decomposition v = ~{ - v, we have

< 2k 2k °
ANE 197 40149 ) = A, 7).

Proof. Let us first compare A(lya]?™" 79" with A(vs,7). One sees immedi-
ately that the factors A; and Ay, are equal for both pairs ([VH]Q% , WQ%) and
(Yw,7), as they only depend on the tori 77 C H and T C G containing the
elements v/ and v, as well as the isomorphism 77 — T mapping v to v, and
this data remains unaffected when we replace the elements by their powers. It
remains to examine the factors A;; and Ayyz,. The factor Ayy is again the same
for both pairs of elements, due to [Hal93, Corollary 10.3], whose argument re-
mains valid in our setting. The factor A7y, however is different. It is a tamely
ramified character of the centralizer of v in G whose restriction to Z(G)(F) is
equal to a character Ag that depends only on G. This is the content of [LS90,
§3.5]. Thus the character defining A;;y, is trivial on any power of . More-

k k
over its values at fy(? * and ~o differ by its value at *yé’? ’ ~! but this element is
killed by all roots and hence is central. Thus we see

2k 2k 2k
A (a9 79 ) = xe(1d ) - Az (i)

Since all the other components of the transfer factor were equal at the two pairs
(lva]?”" ,v9*") and (vs,v), we conclude that

o o

2k 2 2k _
Al A% = 2608 Y - Alvas)-

The statement now follows from a second application of [L590, §3.5]. O

Proof of Theorem 5.4.1. Consider the right hand side of the claimed equality. If
the element v# does not transfer to 1°, the corresponding summand is zero.
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For any element v/ which does transfer to 7*, we have fixed a decomposition

v = Al .48 Let Y be a set of representatives for the stable classes of the

elements ¢ obtained in this way, with the property that for each y € Y, H,, is
quasi-split. Applying Lemma 5.3.2, we can write said right hand side as

. H(yz
SO S Bwalyen’) pon L SO (52)

yey z€H,(F)1/st
Applying Lemma 5.4.2, we can rewrite this as

_ o 2k Q* DH Yz
S RENENT S Awr A0 D50 ().
yey 2€H, (F)1 /st v

Taking k large enough, we can apply the Langlands-Shelstad descend theorem
[LS90, Theorem 1.6] and conclude that the above term equals to

_ D (yz
S RENENT S AR a0k D 50 (v2).
yey z€H,(F)1/st v
Recall that £ was an element of E(HVS{,G: »). This is the unique element of
o)

that set for which the pair of elements in A%{}s,fg is related. Thus the above
expression is equal to

_ esc 2k 2k DH Yz
SImEIEITY Y Al b0 ) S 50, 52),
yey 7 zeH,(F). /st v

where f now runs over the set Z(H,x, G »). The sum over z can be extended
O

to Hy(F)s/st, since for elements out51de of Hy(F); the transfer factor will be
Zero.

Applying Proposition 5.1.1 to SO, 1, see that the above expression becomes
1

_ 2k 2k
Z|7T0(Hy)(F)\ 12 Z A%szfg(yZQ 778(7%)@ )DT(I’)
yey & zEH,(F)s/st v
. _gH
> il xsen - euly) YT (B7Y, log(2))
i H [kH]

We recall that [] runs over the set of H-stable classes of embeddings S — H,
whose composition with H, — H is admissible, while [k*’] runs over the set of
H, (F)-conjugacy classes inside of each [j].

Applying [LS90, Lemma 3.5.A] to the factor A%{}sg ¢ and rearranging sums, the
above expression becomes

AT Imo(HY)( ZZ] Des,zgm - €] ()55 (10)

yey & [jH
o 2k 2k
Z A%ﬁ,slf,g( @ vio Q Z k;HY log(2)), (5.4.1)
ZEHy (F)o /st [KH]

where we have denoted by E%ﬁsg ¢ the character of Z (Gljyb )(F') which Langlands
and Shelstad call Ag. After potentially increasing k, we have

2k

esc v 2k 2k
Afese (297, (120)97) = Al (log (227, log((120) %)),
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where the factor on the right is the Lie-algebra transfer factor normalized com-
patibly with the one on the left. With this, (5.4.1) becomes

DY Imo(HY)(F)| IZZJ* X, €51 (Y) =45 (70)

yey & [
S AR, (Q*Z.Q% o (k1Y Z 542
ng g( ))ZL ( 7). (54.2)
Zehy (F)rs/st (k]

The factors Q** can now be removed, as the Lie-algebra transfer factor is invari-
ant under multiplication by squares from F'*. Let j : S — Gf’yb be the image of
0

a triple (y, ¢, j7) in the above summation set under the map ¢ of Lemma 5.3.3.
Waldspurger’s fundamental result [Wal95, Thm. 1.2] combined with [Wal97]
and [Ngol0] implies that

S Al (Zog(o) Y (kY Z)

Z ey (F)s/st [EH]

is equal to

Yoo (87 (By) ™ ZA% FY, kY ) (Y, log(72,)),

where the sum runs over the set of Gb ( )-conjugacy classes of embeddings

in the Gb -stable class of j. This, combmed with the statement of Lemma 5.3.3
shows that (5.4.2) is equal to

:desc b ( )
> i Ixs e €ul(y) | g;bj(;‘;f Z G )Z AV eGPV RY )P (kY log(72,))-
(5]

We now compare this expression with the left hand side of the equality claimed
in Theorem 5.4.1. Applying Proposition 5.1.1 to ©F, ,, we see that it is equal to

e(G")| D (v Z]* X515 - €1(10) D_{inv(jo, k), )77 (kY log(1%))-

(k]

Thus, in order to prove Theorem 5.4.1, we need to show the following equality
for each embedding j : S — G:b whose composition with the inclusion G:b —
0 0

G? is admissible.

. _ Yy (8ly) R
s g0 - €] ()05 € (V) 5ty A TV, RY)
= (5.4.3)
e(G®)jxlxs,2 5 - €](36) (Inve (o, 7). 5)
Recall here that the triple (y, &, j7) is related to j via the map ¢ of Lemma 5.3.3.

As a first step, we undo the descent of the transfer factor. Choosing an element
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z € F'* close to zero, we have

Z05 (0 AN (YY) = B (0)AN(%51Y,2Y)

= I ART ¢ (exp(2%Y ), exp(2°5Y))

= AR (yexp(2757Y), 4g exp(2%Y))

= Awy(yexp(2*"Y), 1 exp(2%jY))

= Aw(yexp(22j7Y), 70 exp(2%joY)) (inv(jo, 5), 5),

where 7o = 507~ (7§). With this, we see that Equation 5.4.3 becomes

Q Yo (8) Jslxses - €1(20)
A exp(221Y), vo exp(22joY 10° = ¢(GY)- e T
waly el 7Y )20 ep(=50 ) s,y e3m)(8)
(5.4.4)

We now need to go into the structure of Ay,;. We can choose an F-spitting
spl = (T, B, {X,}) so that the Whittaker datum W comes from spl and the ad-
ditive character ¢ : F — C* which we fixed in Section 5.1. The centralizers in
H and G of the arguments of the transfer factor are j7 S and 5,5, and jo () ~!
is an admissible isomorphism between them carrying the first argument of the
transfer factor to the second. We also need to choose a-data and y-data, which
for now we take arbitrary. Then

AW,l = er(X*(T)c — X*(TH)c, ) Ar[spl, alArrla, X]Arrr,[X]-

The reason that Ay, is missing lies in our choice of j(j H)~1 a5 the admissible
isomorphism. The element A; does not depend on the elements y exp(z?j7Y")
and 7 exp(z%jyY’) directly, but rather only on the tori containing them, which
as we remarked are j7S and j,S. Moreover, these are also the tori centralizing
the regular elements j7Y and j, Y. It follows that

Arlspl, al(y exp(zszY), Yo exp(szoY)) = Ag[spl, a (jHY7 joY),

with the right hand side as in [Kot99]. The main result of this article shows that
if spl, is a splitting whose Kostant section meets the rational class of joY and
if as a-data we take {da(joY)|a € R(joS, G)}, then

Aqlsply,a](57Y, joY) = 1.

On the other hand, recall from Proposition 2.3.7 that joY meets the Kostant
section associated to the regular nilpotent element £_ in the Lie-algebra of the
unipotent radical of the T-opposite Borel subgroup of B, which is specified by
the equation

¥p(exp(X)) = (X, E)
for all X in the Lie-algebra of the unipotent radical of B. A straight-forward
computation shows that
E_= Z<XQ,X_Q>*1X_Q,
a€A
where [X,, X _,] = H,. In other words, we have spl;, = {(Xa, X_a)Xa}.
Using [Kal13GC, Lemma 4.2], we then see that

Aqlspl,a](yexp(2257Y),v0 exp(2%oY)) = 1,
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provided we take as a-data for R(j0S, G) the expression
o = (Xa, X—a>71d0‘(joy)'

Turning to Ay, the construction in [LS87, §3.5] shows that if we take as x-
data the one specified in Section 4.2, then

] ] 2joY))
A 2 Hy 2. vy — JeXsril(exp(z"50Y)
111, (y exp(2757Y), 0 exp(27joY')) T s o] (g exp(277Y)

j*[XsﬁLj](’Y(l;)

Choosing z small enough the right hand side becomes equal to e o)

Taking all this into account, equation (5.4.4) becomes

Yo (aly) , )
eL(X*(T)e — X*(TH)e, ) —25" Arr[a, X)(y exp(2257Y), vo exp(22oY))

Yo (by)
= (5.4.5)
e(Gb) Jxei(v8)

jflﬁjH (y)

At this point, the a-data and x-data are specified, and we may compute the
term Ay;. Recall that it is defined as the product over all roots a € R(S,G) ~
R(S, H) of the expressions

e (jooé(% exp(22joY)) — 1) .

oy

We have chosen x, = 1 for asymmetric roots «, so we only need to compute
the above expression for symmetric roots. To ease notation, we will identify S
with joS via jo and suppress jo from the notation.

If a(y9) = 1, then we have

lim a(exp(z?Y)) — 1 — da(Y),

z—0 22

and since x,, has order 2 when restricted to F'*, we see that for z small enough

. <oxvoexp<z2Y>>—-1

Qo

) = XX X)) = (Ko K
If on the other hand «a(vy) # 1, then
lim a(7o exp(2?Y)) — 1= a(y) — 1,

and thus for z small enough we have

. <a(70 exp(2%Y)) — 1) . ((a(%) -1 <XQ,XQ>> |

)
aq da(Y)

The element a(yy) — 1 is a unit in F,,, because a(7y) is topologically semi-
simple. The element (X, X,) is a unit in F;, by choice of (). On the other
hand, Y is generic of depth —1/¢, and hence da(Y) ™! is a uniformizer of F.
Allin all, we see that the argument of x,, is a uniformizer, which we will call w
for short.
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We now recall the construction of x, from Section 4.2. If « is inertially asym-
metric, then x,, is the unramified character sending each uniformizer of F, to
—1, and we see

Xalw)=—-1=Ap, /p,, (Yotrp, /r).

If o is inertially symmetric, then we have

Xa (w) = )\F(,/Fia (goz}u)

Recalling the definition of ¢, ,, : kr, — C*, we see that for « € kr,, we have

ga,w(x) = XS,Lj(NFa/F(av(1+wx)))
xs,j(1+ Trp, jp(a (w)))
w(TrFa/F(av(wm)),Y>

= YTrp, rla’ (wr),Y)

7JJTI‘FQ/F( <HmY>)

= YTrp, jp(wr-da(Y) - (Xa, X_0))

= ¢TrFQ/F(x ( ( )_1>'<XavX—a>2)-

The element a(v) of Fy, is topologically semi-simple and lies in the kernel of
the norm to Fl,. Since F,/F., is ramified, the only such elements are 1 and
—1. Being non-trivial, we see that a(y) = —1, and we obtain

goz,w (l‘) = T/)TrFia/F(_Zl(Xou X—a>2)7

from which we conclude that, just like in the inertially asymmetric case, we
have

Xa (W) = AFQ/Fia (’l/)TrFia/F)'
Combining these results we see
AII = H HO&(<XOHX—C¥>) H )‘Fa/Fia(onrFia/F)a
a(yo)=1 a(yo)#1
where in both products o runs over a set of representatives for the symmetric

orbits of I' in R(S,G) — R(S, H).

Returning to the proof of equation (5.4.5), we see that combining the above ex-
pression for Ay with Lemma 3.4.1, Corollary 3.4.2, and Corollary 3.5.2, shows
that (5.4.5) is equivalent to

b
[T farus)@ T fichos)e(Gao)e(Ghy) = (Gb)M (5.4.6)
H-H, G—Goy it ejn (y)

Here the symbol H — H,, denotes the set of symmetric I'-orbits of roots of S in H
outside of H,, and the symbol G — G, has the analogous meaning. According
to Lemma 3.6.1 and Proposition 3.2.2, we have

Jve;(70) = Lolvejo (70) - e(G)e(G¥)e(Gry )e(GYy ).

Thus Equation (5.4.6) becomes

*€5¢
H feujms) (@ H fc.jos) = ]0] . E ((’Y(;) . (5.4.7)
G Gry Ji' €
That this last equation holds is implied by Lemma 3.6.1. O
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6 EPIPELAGIC L-PACKETS FOR GL,,

In this section we will show that the construction of epipelagic L-packets de-
scribed in Section 4 specializes in the case of the group GL,, to the local Lang-
lands correspondence established by Harris-Taylor and Henniart. We put G =
GL, and then G = GL, (C). Since W acts trivially on G, we will use G in-
stead of the L-group G x Wp and will regards Langlands parameters simply

as G- -conjugacy classes of admissible homomorphisms Wr — G. In order for
epipelagic parameters to exist, we must assume that p t n.

We will use the explicit description of the local Langlands correspondence for
GL,, when p { n derived by Bushnell and Henniart in [BH05a, BHO5b]. Central
to this description is the notion of an admissible pair of degree n, which is a
pair (E/F, §) consisting of a tamely-ramified extension £/ F of degree n, and a
character £ : E* — C*, subject to certain conditions. From an admissible pair,
one can construct an irreducible n-dimensional representation o, p¢) of Wr,
and an irreducible supercuspidal representation 7 g/ ¢) of GL,, (F). The first
one is obtained by taking o := Ind%?{ . For the second one, there is an explicit
construction, described in [BHO5a, §2], which uses the work of Bushnell and
Kutzko [BK93] on the classification of irreducible representations of GL,,(F").
The following is one of the main results of [BH05a, BHO5b]:

Theorem 6.0.3 (Bushnell-Henniart). Assume that E/F is totally ramified. Under
the local Langlands correspondence, the representation o (g ¢y corresponds to the rep-
resentation T(gre.u), Where pe + B — C* is a character which is explicitly given
by [BHO5b, Thm. 2.1].

The character i is called the rectifying character of the admissible pair (E/F, §).

The construction of this paper associates to a Langlands parameter ¢ : Wy —
G satistying Conditions 4.1.1 a triple (S, xs, []) where S is a tamely ramified
F-torus, [j] is a stable class of embeddings of S as a maximal torus of G, and
Xs : S(F) — C* is a character on S(F') well-defined up to Q(S,G)(F). In
the situation of G = GL,,, the set [j] consists of a single G(F)-conjugacy class.
Thus, we have in fact a pair (S, xs) where S C G is a maximal torus and xgs
is a character of S(F'). This pair is well-defined up to G(F')-conjugacy. The
representation of G(F') associated to ¢ is then the one obtained from the pair
(S, xs - €f) using the construction of Section 2.3. Here ¢; : S(F)) — C* is the
character built from the toral invariant of S in Section 3.6. In fact, as we will
show, it is a special feature of GL,, that all toral invariants are trivial. Thus, we
may from now on ignore ¢ .

The comparison of the construction given in this paper with the local Lang-
lands correspondence for GL,, will proceed in the following way. Given a pa-
rameter ¢ : Wy — G satisfying Conditions 4.1.1, let (E/F, £) be an admissible
pair such that ¢ = Ind%g ¢, and let (S, xs) is the pair constructed from ¢. The
main point is to show that there exists an isomorphism S(F) = E* which
identifies x g with & - pe. This will be shown by first obtaining in Section 6.1
a Langlands parameter ¢¢ : Wp — S for the character ¢ of EX 2 §(F), then
computing the character ys-£~! by examining its parameter g -Lpgl in Section
6.2, and finally comparing in Section 6.3 the result of this computation with the
formula for the rectifying character given in [BHO5b].
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Once this is complete, we will further show in Section 6.4 that the representa-
tion of G(F') obtained from the pair (E/F, xs) using the construction of [BHO5a,
§2] is isomorphic to the one obtained from (5, xg) using the construction of
Section 2.3.

6.1 From epipelagic parameters to admissible pairs

We are going to establish some notation which will be used subsequently and
then show how the construction in 4.1 leads to admissible pairs in the sense of
[BHO5a, BHO5Db].

Let T be the standard (i.e. diagonal) maximal torus in G. We label its coor-
dinates by elements of Z/nZ, the top left coordinate being 0, and the bottom
right n — 1. This labeling provides bijections from Z/nZ to the standard bases

of X*(T') and X, (T), and further identifies Q(f) with the group Bij(Z/nZ) of
bijections of the set Z/nZ.

Leto: Wp — Gbea Langlands parameter satisfying Conditions 4.1.1. Con-
jugating by G if necessary we may assume that Cent(p(Pr), G) is the standard

~

torus T This implies that im(¢) C N(T'). The image of the composition
We — N(T) — Q(T).
is the Galois group of a finite Galois extension K/ F'. Let us study this group.

Let F be the maximal unramified sub-extension. The assumptions on ¢ imply
that the extension K/F is tamely ramified and its Galois group is generated
by a Coxeter element, i.e. it is cyclic of order n. We choose a generator s €
Gal(K/F). Since all Coxeter elements in (') are conjugate, we can further

-~

assume after conjugating ¢ under N(T') that s is the element +1 € Bij(Z/nZ).

We claim that the subgroup (s) C I/ has a complement. Let Q" € Gal(K/F)
be a Frobenius element. We have Q'sQ'~! = s9. Let Q € Bij(Z/nZ) be the
element -q. It also has the property QsQ~! = s?. Thus Q differs from Q’ by
an element of Cent(s, (1)) = (s), and this shows that ) € I'/p. Since the
subgroups (+1) and (-g) of Bij(Z/nZ) have trivial intersection, we see that
Lr/r = (s) x(Q)

as claimed. We let E = K?. Observe that the extensions K/E and F/F are
both unramified of equal degree, namely

f = ord(g, (Z/nZ)").

K
ur
f
tr " E
F " tr
f
ur
F
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The extension E/F is the only extension of the three that is in general not nor-
mal.

Write S for the Galois-module obtained from T by twisting via ¢, and let S be
the F-torus whose dual is 5. Since X* (§ ) is a permutation Wr-module and the
stabilizer of xo, € X* (§), the basis element corresponding to 0 € Z/nZ, is Wg,
we have

S=Ind;"C*  andhence S =ResgrGy.

We consider the map
strip : N(T') — N(T)

which is the composition of the natural projection N (f) — Q(f) with the stan-
dard injection Q(T") — N(T') given by sending an element of Q(T') = S, to the
corresponding permutation matrix. One checks that the map

e i We =8, wes p(w) - strip(p(w)) !

belongs to Z1 (W, S) and hence provides a character ¢ : S(F') — C*. Via the
isomorphism S(F') = E* we may view this as a character on E*, and hence
also as a character on Wg. This character is nothing more then the image of ¢,
under the isomorphism H*(Wpg, Ind%Z(CX) =~ HY(Wg,CX).

Lemma 6.1.1. The Wg-representations  and Ind%;g are isomorphic.
Proof. This is a straightforward computation. O

According to Fact 6.4.2 and Lemma 6.1.1 our task is now to compare the charac-
ter x5 obtained from ¢ via factoring through the embedding £ jx constructed
by means of x-data (where the x-data is chosen according to Section 4.2), with
the product & - ¢, where e : E* — C* is the rectifying character constructed
in [BHO05a, BHO5b], associated to the admissible pair (E/F,¢§) .

6.2 Computation of yg - ¢ ?

Recall that the parameter ¢ for the character ys is given by ¢ = Zjx o pg. If
we write Ljy (s, w) = s x(w), then this translates to ps(w) - Ex(w) = p(w).
We conclude that the parameter for 7! - x5 is given by

strip(p(w)) - ¢(w) ™ - p(w) - Ex(w) ™! = strip(p(w)) - Ex (w) 7

As remarked in the previous section, under the isomorphism S(F') = E* the
character 7! - xg is given by the image of the above parameter under the
Shapiro isomorphism H!(W,S) = H!(Wy,C*). This isomorphism is ob-
tained on the level of cochains by restriction to W followed by composition

-~

with xo € X*(S). In other words, we have for w € Wg
Xs - € (Art(w)) = xo(strip(p(w)) - Ex (w) 7). (6.2.1)

Let (T, B,{X,v}) be the standard splitting of G. That is, B is the set of upper
triangular matrices, and {X,v} consists of the matrices in gl,,(C) all of whose
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entries are zero except for a unique non-zero entry in the upper off-diagonal.
Then we have

Ex(w) =rp,x(w)n(ow), (6.2.2)

where o, € Q( ) is the projection of p(w), rp. x : Wrp — T is a certain 1-chain,
and n(o,) € N(T) is a certain lift of o, both of which are constructed in [LS87,
§2].

Proposition 6.2.1. For any o € R(S,G), write a > 0 if a € R(S, B), and let

oY = o — Y, be the unique expression of o in terms of the standard basis of X, (S).

Then for any w € W the following equality holds
strip(p(w)) - n(ow)” H Yo (=

a>0
»la<o

In particular
Xo(strip(o(w)) - n(ow) ™) = 1.

Proof. The proof of the first statement proceeds by induction on the length of a

reduced expression of o, in terms of E-simple reflections. If the length is 1, the
statement is immediate. The general case follows from [Bou, V1.§1.no 6. Cor 2]

and the fact that a — y,, is Q(T’)—equivariant.

The second statement follows from the fact that xo(y,) = 1 for all « > 0. O

Equations (6.2.1) and (6.2.2) and Proposition 6.2.1 imply

¢! -xs(Art(w)) = xo(re,x (w)_l) (6.2.3)

for all w € Wg, and we turn to computing rp x. To lighten the notation, we
will write I instead of ',  for the Galois group of the finite extension K/ F.
Using the bijections between Z/nZ and the standard bases of X * (T T)and X, (T)
established in the previous section, the set R(T .G ) is identified with the com-
plement of the diagonal in Z/nZ x Z/nZ. Recall that S is the Galois module
whose underlymg abelian group is T and whose Galois-structure is given by

¢. Thus the set R(S, G) is also identified with the complement of the diagonal
in Z/nZ x 7./nZ, but it has a twisted action of I' = (s) x (Q). We write Z/nZ for
the set Z/nZ — {0}. The group (Q) acts on Z/nZ' with @ being multiplication
by ¢. The group (£1) acts on both sides by multiplication. The injection

n:Z/nZt = R(5,G), 2+ (0,2) (6.2.4)

is (@) x (£1)-equivariant and its image is a cross-section for the set of (s)-orbits
in R(§ ,G). In particular, it induces a bijection between the set of orbits of (Q)
on Z/nZ' and the set of orbits of (s) x (Q) on R(S,G), which restricts to a
bijection between the symmetric orbits on both sides (recall that the symmetric
orbits are the ones preserved by (£1)).

When n is even, there is a unique inertially symmetric orbit in R(S,G) (recall
this notion from Section 4.2), namely the one containing the element (0,7/2).
It corresponds to the unique symmetric orbit in Z/nZ' which is a singleton.
When n is odd, there is no inertially symmetric orbit in R(S,G) and no single-
ton symmetric orbit in Z/nZT.
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Let = C Z/nZ' be a set of representatives for the orbits of (Q) x (+1). Then we
have

rex(w) =[] r.xa(w). (6.2.5)

ac=

We will now describe rp x 4, for a given a € Z. Let I';(,) be the subgroup of T
stabilizing 17(a), and let 'y, (,) be the subgroup stabilizing the set {n(a), —n(a)}.
We have the following cases:

1. If the orbit of a is not symmetric, and (Q™) is the stabilizer of a in (@),
then
Ly@) = Tanay = (@)

A set of representatives f‘in(a) for I' /T4, (a) is given by
F:tn(a) = {s"Q!|k € Z/nZ,0 <t < m}.

2. If the orbit of a is symmetric but not a singleton, and (Q™) is the stabilizer
of the set {a, —a} in (@), then

Ty = (@) and  Tiy) = (s"Q™).
A set of representatives fin(a) for I'/T'4,(q) is given by
Diya) = {s"Q'k € Z/nZ,0 < t < m}.
3. If2lnand a = %, then

1—‘77(“) = <Q> and F:l:n(a) = <S%> ~ <Q>

A set of representatives f‘in(a) for I'/T" 1,,(q) is given by

Dy = {s*10 <k < g}

The assignment
p(Pinay - m(a)) =1
provides a gauge p : I' - {#n(a)} — {£1} on the I x {£1}-orbit of n(a). We
have
7B,X,0(W) = 8B/p.a(0w) - Tp,x,a(W), (6.2.6)

where the first term is constructed in [LS87, §2.4], and the second term in [LS87,
§2.5]. Since the image of Wg in 'k /r is generated by Q, it will be enough to
compute the value of xo(sp/,(*)) at Q.

Lemma 6.2.2. We have

-1, if(Q) - ais symmetric and not singleton

XO(SB/p,a(Q)) = {

1 , else

-~

Proof. Recall that s/, ,(0) is equal to the product of A\(—1), where A € X.(S)
belongs to the I'-orbit of 77(a) and satisfies one of the two following conditions

IA>0,07'A<0,p(\) =1,p(ct\) =1}

{(A>0,07"A>0,p(\) = —1,p(c ")) = 1}.
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The elements A > 0 in the I'-orbit of n(a) which pair non-trivially with y, are
precisely the (Q)-orbit of n(a). They never meet the first condition, because
they fail @'\ < 0. We consider the second condition. If the orbit is symmetric
and singleton, then A > 0 < p(A\) = 1. If the orbit is asymmetric, then T’
preserves p. In either case, we see that no A meets the second condition.

If the orbit of a is symmetric and not a singleton, then an element of the form
A = Q'n(a) satisfies p(\) = —1, p(Q~'A\) = 1 if and only if t = m. It follows
that xo(s5/p(Q)) = x0(@™n(a)(~1)) = ~1. A

It remains to evaluate xo(rp x,o(w)). This is where the x-data X for the action
of I' on R(S, G), chosen according to Section 4.2, enters. Let F. and F'y be the
fixed fields in K of the groups I';)(,) and T'y,(4) respectively.

Lemma 6.2.3. If (Q)) - a is either asymmetric or symmetric and not a singleton, then

Tp.x,a(w) = 1.

Proof. Let x, : FY — C* be the character associated to 7(a) in Section 4.2. If
(Q) - a is asymmetric, this character is trivial and the statement follows imme-
diately. In the second case, this is the unique non-trivial unramified quadratic
character of . We enlarge the field K if necessary to ensure it contains the
unramified quadratic extension of F;, which we call F;. Then yx,, kills the norm
subgroup N (Fy‘), and under the Artin reciprocity map W}i — F it provides
a character on W, that factors through the quotient I',, ), . We now use the
formula for r, x o from [LS87, §2.5]. In our situation all computation can be
performed in I'x/r instead of Wi r. We have for o € '/ p

m—1
A
rxa(@) = [T TI xa(vo(ura(o)))? Qn(e)
t=0 keZ/nZ

where uy, ¢ (o) is the unique element of I', ,  of the form
Q ts7FoslQs, leZ/nZ,0<s<m
and for 7 € I'p, /r the element v (7) is the unique one in I' -, /- of the form
7(s*Q™)¢, 0<e<1.

It is enough to compute 7, x,o(0) for 0 = s and ¢ = Q. We claim that in
both these cases the value x, (vo(uk,(0))) is independent of k. In the first case
one has uy ¢+(s) € Ir, /p, hence vo(ur,:(s)) = urt(s) € Ip, /r = Ip,/r, Which
belongs to the kernel of x,. In the second case one has

up(Q) =1 >0 N vo(ug(Q)) =1 ,t >0

ugo(Q) =s*Q™ ,t=0 vo(ur,0(Q)) = Q*™ =0
This shows that indeed the value x,(vo(ug,(0))) for o = s,Q is independent
of k. Then we obtain

m—1

t qk:
rpxa(0) = J] Xa(vo(uo(0))@ Erezsnzsnla)
t=0

Since n(a) belongs to the coroot lattice of Sand s € Q(S) is an elliptic element,
we conclude that r, x ,(c) = L. O
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Lemma 6.2.4. If (Q) - a is the unique symmetric singleton orbit, then for allw € Wg
we have

X0(rp,x.a(w)) = Xa(Art(w)),

where X, is the character on [ = E* associated to the root n(a) in Section 4.2.

Proof. We are in the situation 2|n and a = n/2, thus n(a) = (0,7n/2). The only
factor in the product defining r,, x ,(w) which pairs non-trivially with g is the
factor x4 (vo(ug(w)))"®), and we have

X0 (Xa(vo(uo(w)))" ) = xq(vo(uo(w)))-

Since Wg = Wg+, we have vg(ug(w)) = w. O

We are now ready to state the final formula for the character xs - £~! of E*.
Let vg be the valuation on E* which sends uniformizers to 1. We will write
sgn(q, Z/nZ) for the sign of the permutation which multiplication by ¢ induces
on the set Z/nZ. If 2|n, then 7(n/2) is a representative for the unique inertially
symmetric orbit of I" in R(§ , @). In that case we have I, = E. Let x,,/2) be
the character of E* constructed in Section 4.2 corresponding to the root n(n/2).

Proposition 6.2.5. For e € E* we have

sgn(q, Z/nZ)ve©) ,if24n

Xs & H(e) = : '
o () {sgn(q,Z/nZ)”E("‘)-Xn(n/2)(e)_1 ,if2n

Proof. According to Equations (6.2.3), (6.2.5), (6.2.6), we have

xs - € (Art(w)) = [T xo(s5/p.a(0w) - 7px.0(w) 7"

a€=

We write Z as the disjoint union

[1]
[1]

a U Zn U Zgg,s

according to whether an element a € = represents a asymmetric, a symmetric
and non-singleton, or a symmetric and singleton orbit. This is equivalent to
n(a) representing an asymmetric, symmetric but inertially asymmetric, or an

inertially symmetric orbit of T in R(S, G). Note that = is empty when 2 { n
and contains exactly one element of 2|n.

Then according to Lemmas 6.2.3 and 6.2.4 we have

vs €)= T (-0 [ xal0)™

a€Eq a€Eg

Since sgn(q, Z/nZ) is equal to the parity of the number of symmetric orbits of
even size in Z/nZ, which is equal to the number of symmetric orbits of even
size in Z/nZ', we see that the first product is equal to sgn(q, Z/nZ)"=().

O
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6.3 A comparison with the rectifying character

The purpose of this section is to prove the following;:

Theorem 6.3.1.
Xs =& pe-

Proof. If 2 { n, then the theorem follows at once from Proposition 6.2.5 above,
Theorem 2.1(1) of [BHO5b], and the well known observation of Zolotarev that
sgn(q, Z/nZ) is equal to the Jacobi symbol (g/n) if n is odd.

For the remainder of the proof, we assume 2|n. Recall that we have the ad-
missible pair (E/F, {) with the property that the Wr-representation Indwgﬁ is
isomorphic to the one given by the epipelagic parameter ¢ : Wrp — G.In par-

ticular, E/F is totally tamely ramified. Working through section 1 of [BHO5b]
we gather the following data:

l=1,Ey=E,Ey,=F,dy=[FE:F|=n,d, =1,8&) ={1},it =i, =1,d" = 1.

Let ¢r : F' — C* be a character trivial on p but non-trivial on Of. For every
tield extension K/F we set ¥k = ¢ o Tri/p. Then, for each tower L/K/F we
have the Langlands constant

e(Indf¥1z7, 1, 9x)
6(1L7 %a wL)

ALk =

Since {[r2 = 1, we can choose an element o € £ with valuation valg(a) = —1
and the property that

¢y (@) = Yp(a(z —1)).

Given any uniformizing element w € E* we put
((w, &) =wa € kg.

Since « is well defined up to multiplication by U}, this element does not de-
pend on the choice of a. Theorem 2.1(2) of [BH05b] then asserts that

pe (w) = (C(U;’O> “AE/F-

Note that both factors depend on the arbitrary character 1, but their product
is independent of ¢ .

We want to show that this formula agrees with the formula for x5 - ¢! given
in Proposition 6.2.5.

Lemma 6.3.2. Let Es be the subfield of K fixed by the subgroup {1,5%} x (Q) of
FK/F Then
>\E/F = sgn(q, Z[nZ) - >\E/E2-

Proof. The extension E/E, is quadratic and ramified, and we have (see e.g.
[BHO5b, §1.5])

AB/F = AE/By " by P
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If [E; : F]is odd, then A3, s is trivial. If [E : F] is even, then I'y/r contains

the normal subgroup {1,s%,s%, 5 }. We claim that this group preserves Fy.
Indeed, E is the subfield of K fixed by both @ and s and one sees right away
that if an element e has this property, then so does s e. Let E, be the subfield
of F, fixed by s. Then we have

-1
2 _ 12 _
>\E2/F - )\EQ/E4 - <q> .

All in all, we obtain

(B:F)
71 T2
Ap/F = <q) “AE/Es-

The lemma now follows from [DHO05, Thm. 1]. O

We conclude that

() = sgn(g, Z/nTZ) - (“"’q@) A,

and focus on the product of the second and third factors. Recall that these fac-
tors depend on the arbitrary character ¢, with {(w, £) involving ¢g = ¥F o
Trg/r, and Mg, g, involving furthermore ¢g, = ¢ o Trg, ,p. All of these char-
acters enter into the above objects through their reduction to kg = kg, = kr,
and for these reductions we have

Yp(@) = vr(nn), Ve () = vr(5o), w € kp.

We choose 9 so that its reduction satisfies ¥ p(nz) = {(wz + 1) for all z € kp.
Then by construction we have ((w, §) = 1. The following lemma completes the
proof of the theorem:

Lemma 6.3.3. With the above choice of 1, we have
AE/Bs = Xn(n/2)(w) .

Proof. According to the construction of Section 4.2, we have x,(,/2)(w)™! =

AE/E; (€aw), where &, , is the character on kg, = kg obtained as the composi-
tion

b x|

r—wr+1

ga,w : k’Fa D U}‘Q/U'}%'OK

where &, : U, — C* is dual to the homomorphism

PC w—tsT 2o Cx,

and a = n(n/2). Our goal is to show that the characters &, ., and z — &(w2 'o+
1) of kg, are translates under k?EQ.

We claim that &, : Uy, — C* is the restriction of the character on E* given by
x> &(x-x7T)

where 7 is the non-trivial element of '/ ,. Indeed, the homomorphisms
and ¢, have the same restriction to P, so &, is the restriction to U} of the char-
acter of £* given by the composition

Art~! b PE = «
EX wal T c*,
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while, according to the Shapiro isomorphism, ¢ is the character of E* given by
the composition

x Art~!

E wab £ 7 X0 ox

The claim follows from the fact that & = xo — s% - o, and s restricts to E as
the non-trivial automorphism preserving E,.

The claim implies &, ., (z) = {(w2z + 1), and the proof is complete. O

O

6.4 Epipelagic representations for GL,,

Consider an embedding j : S — G and a character y : S(F) — C* subject to
Conditions 2.3.1. The following facts are easily checked.

Fact 6.4.1. We have S(F') = E* for a totally ramified extension E/F of degree n.
Moreover, x : E* — C* is generic in the sense of Kutzko [My86, Def. 2.2.3].

Fact 6.4.2. The representation obtained from (j.S, jxs) coincides with the representa-
tion obtained from the admissible pair (E*, x) in [BH05a, §2.3].

Lemma 6.4.3. The toral invariant f;g c is trivial.

Proof. We replacing j by a G(F)-conjugate embedding we can find g € G such
that g~'7¢ is a permutation matrix for any o € I'. One then computes immedi-
ately that with respect to the standard splitting of GL,,, the element f]‘?g}"G(Xa)
is trivial. O
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