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Abstract —This paper presents a new hybrid methodology for modeling RF-MEMS switches.
This method combines the usual finite element-boundary integration (FE-BI) method for the fixed
section of the switch, and the method of moment for the movable beam. This approach is intended to
address the large 100:1 scale variation within a single computational domain, which also spans a very
small fraction of a wavelength.

Index Terms—Finite clement method (FEM), boundary integration {BI}, mecthod of moment (MOM), radio-frequency
microclectromachanicai systems (RF-MEMS)

1. INTRODUCTION

RF MEMS switches have demonstrated low on-staze inscrtion loss, high off-state isolation, and
very linear behavior [1-6]. Despite these excellent characteristics, they genesally suffer from low power-
handling capability, with most switches operating well below | W [4]. This limitation is due to the complex
interactions among electromagnctic losses, hcat transfer, and mechanical deformations within and
surrounding MEMS switches. In order to overcome this limitation, therefore, an accurate multiphysics
modeling capturing the coupling among electromagnetic, thermal and mechanical domains is desired [7).
As a first attempt towards this end, this paper presents the development of an electromagnetic model that
allows accurate material and surface modeling of intricate details within a small volume enclosing a MEMS
switch.

Fig.1 illustrates a typical RF-MEMS contact switch referred in the model development below. It
consists of a fixed-fixed micromachined beam of 100 to 600 pm long, suspended above the substzaic by a
gap of | - 3 pm. At 2 GHz, for example, these dimensions correspond to an electrical length of /1500 to
/250 and a gap of /150,000 to 4/50,000. The total size of the MEMS device is thus many times smaller
than the typical element sizes in an FEM or FDTD code (approximately 4720 to 1/10) [8,9]. Thercfore,
modeling a switch and its surrounding environment with these methods would require a large number of
unknowns and a large computational time. Computer codes which assume a larger element size may also
use simplifying assumptions which do not apply welt to such electrically small parts. Moreover, the beam
moves up and down to switch on and off. Thercfore, any modeling scheme that meshes the volume under
the beam, such as the FEM or FDTD, requires remeshing of the system for up- and down-states. Because a
regular rectangular mesh is often used, FDTD is also poorly-suited to model the deflected beam in the
down state, when the beam is no longer flat.

For these reasons, the method of moments (MOM] is preferred. However, if the switch is part of a
mote complicated system, such as a mwulti-layer reconfigurable antenna including FSS elements, finite
clement methods may be preferred to model the complex geometry and different materials in the system.
This motivated the development of & combined FE-BI and MOM presented in this paper. In contrast 10
conventional hybrid FE-BI methods [10], the present development allows for boundary integrals which are
not enclosing an FEM domain, realizing a greater flexibility to model deformed 3D surfaces in RF-MEMS
switches without introducing significant computational expense.

II. MODEL FORMULATION

In our new model, FE-BI is used for the fixed portion of the switch {§; in Fig.1) whereas MOM is
used for the MEMS beam (S, in Fig.1). A special challenge is 10 formulate the connectivity of non-
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conformal BI with the Bl bounding the FEM region. Asswming some excitation i:urrcnls(j,.M,‘). the

usual weak form of the FE-BI [8] for the fixed portion of the switch §; is given as

* _MEMS Beam {52

/,,

X
l Substrate {fixed portion 5;)

Fig.1 A typical RF-MEMS Switch
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where
. Ms, . the currents/ficlds enclosing the fix portion region (S, see Fig. 1);

. j_v‘ : the current on the MEMS beam cxternal to the FE-BI region (S see Fig. 1);

- . . . —* .
* F ;image point of source point 7 - &, wavelength number; z_: free-space impedance;

) = £ (F )x r :equivalent magnetic current;

(
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In order to solve equation (1) for MS and “73‘. , the additional set of equations is required to enforce

boundary cenditions on the MEMS beam 5,. Using MOM, this can be given as:
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Here, brick elements are used for the substrate to reduce the number of unknowns, and triangular
surface clements are applied on the MEMS beam for moce flexible modeling of 2 deformed beam surface.
Using Galerkin's methed yields the following matrix system {8];

I ¥, ¥ I3
A A 0 E, b
5 55 58, s{_J:s
A A AT E) =98] (3)
5.5 55 s
0 A= A= 0

where [AW][A”‘]_[AS"'] and [A:"x']rcprescnt the FE-BI system (1) for the fixed volume enclosed
by §,. As usual, [A""],[A'S'],[AS"J are very sparse but [A“':l is dense. Similarly, [Aj‘sl and
[AV"Y‘J arc the matrices representing the mieraction between the beam and the BI enclosing substrate.

They are dense, as is [A"':S‘ :| , a submuatrix representing the discretized MQM system (2).

1I. NUMERICAL EXAMPLES

A FORTRAN program was developed to calculate the current density along the beam and fieid
patterns inside the underlying substrate. In developing this code, special ¢arc was required to evaluate all
singular portions of the boundary integrals and their interactions [12]. Qur code is capable of handling
beams with more realistic dimensions (~i00 um); however, in order to be compared with available codes,
in the following cxamples we assume a subsirate with height=0.25cm, width=2cm, length=4cm,

and £, = 4. The working frequency is 3GHz and a current dipolc saurce was put at the center of the top

surface of the substrate carrying one ampere (0" phase).

First we considered a planc beam (up-state of the RF-MEMS switch) with length=1.5 cm,
width=1cm and gap height=0.13 cm. The beam current as compared to another FE-Bl code, AMPHIA [11]
is shown in Fig.2. Clearly the agreement is not perfect but reasonable. The main reason for the
disagreement is likely due to the ground plane under and around the substrate in this implementation,
whercas AMPHIA does not consider this ground plane.
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Fig.2 Current distribution along a plane (up-state) MEMS beam

To consider the down-state of the RE-MEMS switch, a piecewise 3-scctional linear approximation
of the curved beam model was considered, shewn in Fig. 4. The size is the same as the previous example,
with the only difference being the gap of 4, = 0.1c/n from the eenter 1o the edge. Fig. 3 shows the current
distribution along the beam without junctiens compared 1o a commercial software code HFSS. Our results
matches very well with HFSS when By 20 | 4 . and the difference also is mainly because HFSS does not
consider the infinite ground plane effect. Again. for /<« 0.11 the medeling accuracy of traditional
approaches is of issuc.
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It should be cimphasized that the computational efficiency of our method over HFSS is increased

dramaticaily duc to significantly smaller numbers of unknowns (128 bricks with 48 triangles in our method
versus | 1946 tewrahedral elements in HFSS).
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Fig.4 Pieccwise linear apptoximation of a curved

Fig.3 Curtent distribution along a curved beam (down state) MEMS beam

IV. CONCLUSION
This paper has demonstrated a combined FE-Bl and moment method approach for analyzing

MEMS structures. This new hybrid method allows for flexible and accurate modeling of the moving and
stationary portions of the RF-MEMS switches without significant computational cxpenscs. As such, it can
be cffectively integrated with mechanical and thermal medcling for a true muliphysics analysis.
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