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Abstract

Design optimization of a class of plane trusses called the N-shaped truss (NST) is addressed. The parametric model of
NST presented is intended for real-world application, avoiding simplifications of the design details that compromise the
applicability. The model, which includes 27 discrete variables concerning topology, configuration and sizing of the truss,
presents a challenging optimization problem. Aspects of such challenge include large search space dimensionality, absence
of a closed-form objective function (OF) and constraints, multimodal objective function and costly CPU time per objective
function evaluation. Three implementations of general-purpose genetic algorithms (GAs) are tested for this problem, along
with a version of taboo search called reactive taboo search (RTS). In this study, the raw version of RTS exhibited better
performance than the tested versions of GA but lacks some of the GA capabilities to span the search space. A modification
of RTS that uses a population-based exploitation of the search history is proposed. The optimization results show that the
introduced modification can further improve the performance of RTS.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Truss structure optimization is a problem that is
attractive due to its direct applicability in design of
structures. Optimization of trusses can be classified
into three main categories: (i) sizing, (ii) configuration
and (iii) topology. This classification is slightly differ-
ent from that of continuum structures, given in[3]. In
the sizing optimization, cross-sectional areas of mem-
bers in the truss are design variables and the coordi-
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nates of the nodes and connectivity are held constant
[11]. The sizing problem is made even more inter-
esting and practical through restricting the choice of
truss members to a discrete set of available standard
cross-sections[19]. In configuration optimization, the
member cross-sections and connectivity (i.e. topol-
ogy) remain constant, but the nodal position locations
are the design variables. In topology optimization, the
connectivity is the objective of the optimization[2,14].
Combining the categories has also been performed.
Gil and Andreu[7] combined the configuration and
sizing problems. Deb and Gulati[5] combined topol-
ogy and sizing through real-coded genetic algorithms
(GA). A fully connected ground structure is taken as a
start, then during optimization, members having close
to zero cross-sectional areas are then deleted.

1568-4946/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
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Optimization methods applied for the truss opti-
mization problem included gradient-based methods
such as the research work of Taylor and Rossow[20]
and Kirsch[15], simulated annealing by Moh and Chi-
ang [18] in addition to genetic algorithms[3–6,14].
Analytical methods have generally been limited by
approximations that are always introduced due to the
complexity of the real-world problem that is non-linear
and often has no closed-form objective function (OF)
or constrains.

To the best of the authors’ knowledge, most of
the previous work was directed to developing op-
timization models for general trusses rather on a
“high-level,” without going deep into the design de-
tails of the truss. In this paper, a particular class of
plane trusses (N-shaped) is considered. While re-
stricted to that class of trusses, the parametric model
formulated goes deep into the design details and
combines all truss optimization categories of sizing,
configuration and topology. The optimization prob-
lem has a large search space which makes direct
exhaustive search methods totally impractical. In ad-
dition, structural optimization problems are known to
have many local optima, which encourages the use of
heuristic global optimizers. Three implementations of
genetic algorithms are tested as well as reactive taboo
search (RTS), which also seems to be an attractive
global optimizer[1]. A previous study by the authors
[13] revealed a superior performance of RTS, which
although has less capability to span the search space
than GA, is capable of efficiently nailing down the lo-
cal optima then escaping them to find news ones. This
study proposes a modification of the escape mech-
anisms of RTS to further increase its effectiveness
at finding new better optima. The obtained results

Fig. 1. Photo of actual N-shaped truss.

show improved performance when implementing the
proposed modifications. The paper starts with a re-
view of truss optimization then proceeds to describe
the parametric model of the N-shaped truss. Fol-
lowing the description of the parametric model, the
implemented GA and RTS are presented. A simple
example demonstrating the proposed modification of
the escape mechanism of RTS is presented then an
actual real-life truss is used as a benchmark problem
to compare the performance of the optimizers.

2. Parametric model of NST

2.1. Terminology

Some of the terminology used in practice for the
design of trusses is to be used in this paper. The fol-
lowing is a quick summery of such terminology:

• An N-shaped truss(NST): This is a plane truss
(Fig. 1) that has a certain general shape resembling
the letter “N”.

• Upper chord: These are all the inclined members
on the top part of the truss (Fig. 2). All upper chord
members of an N-shaped truss form one straight
line.

• Lower chord: These are all the horizontal members
on the lower part of the truss (Fig. 2). All lower
chord members of an N-shaped truss form one hor-
izontal straight line.

• Vertical members: These are (as the name suggests)
the vertical members in the truss (Fig. 2).

• Diagonal members: These are those internal in-
clined members (Fig. 2).



K. Hamza et al. / Applied Soft Computing 3 (2003) 221–235 223

Fig. 2. A typical N-shaped truss.

• Truss projection: This is the distance the truss pro-
trudes after the centerline of the carrying column
(Fig. 2).

• Bays: These are the spans between the trusses in the
top view (Fig. 2).

• End bay: This is a last bay in a building.
• Purlins: These are light members positioned across

the bays and are carried on top of the upper chord
(Figs. 2 and 3). Purlins, in turn carry the roof
cladding.

• Roof braces: These are X-shaped sets of members
(Fig. 2) that are present in some bays in order to
increase the overall structure stiffness.

• Longitudinal braces: These are sets of members
across the bays that are included to increase the
overall rigidity of the structure (Figs. 2 and 3).

2.2. Design variables

Twenty-seven variables that a designer can modify
are used as design variables in this parametric model.

Fig. 3. Longitudinal braces.
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The design variables are categorized into (i) variables
concerned with topology and configuration and (ii)
variables concerned with sizing of the truss members.
The design variables are given as follows.

2.2.1. Topology and configuration variables

(X1) This is an integer number that defines the se-
lected roof layout plan (from up to five user-
defined choices), this variable subsequently sets
the number of main bays’ lengths and end bays’
lengths. In the particular considered truss how-
ever, only one roof layout was allowed, making
this variable fixed.

(X2) This is the length of the vertical member directly
on top of the support. Normally, this variable
is continuous, but it is discretized into about
20 steps in this model to avoid the necessity
of using mixed integer/continuous optimizers.
However, discretization does not impose much
deviation from practicality, since the fabrica-
tion often favors “rounded-off” and similar
dimensions.

(X3) This is the number of purlins on top of the
truss. This normally dictates the general truss
topology, since every purlin must have a vertical
member in the truss underneath it. The space
between two purlins (or their two verticals) will
be referred to as a truss “cell”.

(X4) This is the number of subdivided truss cells near
the support. Subdividing the cells near the sup-
port (the portion which has low truss depth as
opposed to the middle part of the truss) (Fig. 3),
longitudinal braces 6 generally improves the
angle of the diagonal members which in turns
gives better distribution of the axial forces in
the members.

(X5) This is the number of truss cells, which have
reinforced diagonal members. Normally, the di-
agonals closer to the support are subjected to
higher axial loads; therefore it is often efficient
to choose a different cross-section for the first
one or few diagonal members.

(X6) This is the number of merged cells near the
middle of the truss. The purpose of merging
cells at the portion of bigger truss depth is also
to improve the angle of the diagonals to give
better stress distribution.

(X7) This is the number of verticals that are nearer
to the column and are taking a different
cross-section than the rest of the verticals. The
model also allows for two different configura-
tions of longitudinal braces to be used, thus the
longitudinal braces passing near the mid-span
(with higher depth) may be different from those
passing above the support.

(X8) This is the total number of longitudinal braces
lines across the roof (both type-1 and type-2).

(X9) This is half the number of longitudinal braces
lines close to the support (type-1).

(X10) This is the number of nodes (equal to number of
cells minus one) on type-1 longitudinal braces.

(X11) This is the number of nodes on type-2 longitu-
dinal braces.

2.2.2. Member sizing variables
X12–X27 are integer variables defining the selected

standard cross-section from the available database for
16 groups of truss members. The truss member groups
are: purlins, main truss upper chord, lower chord,
three groups of verticals, four groups of diagonals,
longitudinal braces two groups of chords, two groups
of verticals and two groups of diagonals. These vari-
ables dictate the selection of the truss members from
within a database of standard cross-sections. The
database contains 48 different choices from among
standard sizes of I-, C- and L-sections.

It should be noted that the truss members grouping
employed in this parametric model keeps the num-
ber of design variables fixed, but the number of truss
members is variable. Also, all variables being inte-
ger allows for pure-integer GA and RTS to be used
in optimization, without the loss of practicality of the
model.

2.3. Constraints

Constraint evaluation is the main costly event in
terms of CPU time. It involves generating a finite el-
ement (FE) mesh of the truss, solving the FE model
for different load cases then performing safety check
on truss members. The safety constraints involve the
following:

• Load cases include dead load, live load and wind
load. Load case combinations are dead load+ live



K. Hamza et al. / Applied Soft Computing 3 (2003) 221–235 225

load, dead load+ wind load and dead load+ live
load+ wind load.

• Mild steel members subjected to tension must not
exceed allowed under any of the load case combi-
nations.

• Members subjected to compression must not exceed
allowed compressive stress under any of the load
case combinations. Allowed compressive stress de-
pends on member slenderness.

• Bending stresses in purlins must be safe under all
load cases and also capable of carrying a specified
concentrated load in its mid-span.

• Depth of the beam cross-section chosen for purlins
should not be less than a certain portion of its length.

• Deflection under live load is not to exceed a certain
amount.

• Slenderness of all members subjected to compres-
sion is not to exceed a certain value.

• Slenderness of any member is not to exceed a certain
value.

• Purlin spacing should be within a certain range.
• Diagonal members angle from horizontal should be

within a certain range.

A good review of constraint handling approaches
is provided in[16]. In this paper, constraints are en-
forced through adaptive penalty[4]. To ensure that the
search converges to a feasible design, additional cost
is added to the objective function to make the cost
of any infeasible design more than that of the current
best feasible design. The penalty cost also depends
upon the amount of violation. Typically, the penalty
cost is high at the beginning of the search and is then
gradually lowered as better feasible designs are found.
A crucial matter for efficient employment of adaptive
penalty is to have a feasible initial design.

2.4. Objective function

In many applied cases, truss optimization is a
multi-objective process regarding issues such as
weight, cost, stiffness and natural frequencies. How-
ever, the particular class of trusses considered finds
its main domain of application in industrial and com-
mercial clear-span buildings. For such applications,
there is usually the single objective of minimizing the
overall cost. In many practical cases, the overall cost
is directly associated with the total steel weight. Thus,

for the current study, the objective is to minimize
the overall weight. Such weight includes the main
truss members, longitudinal bracing members, purlins
and estimates of all connection plates (by empirical
formulas in terms of other truss parameters).

The objective function (OF) combines the truss total
weight plus a penalty term to prevent constraints vio-
lation. There are two cases for the objective function:

• When no constraints are violated.
In this case, OF= Wt.

• When one or some of the constraints are violated.
In this case, OF= max(Wt, Wb) × CPen× CPen,

whereWt is the total weight of the considered struc-
ture,Wb the total weight of the best feasible struc-
ture encountered so far during the optimization,
CPen is a penalty constant, andIPen is the number
of truss members that violate the safety constraints.

A key implemented feature is the adaptive penalty
which aims at preventing “over-penalizing” the in-
feasible designs while making sure that no infeasible
design has a better OF value than the best feasible
encountered design.

3. Genetic algorithm

3.1. General-purpose GA

The general-purpose genetic algorithm (GA1)
tested in this paper implements variable storage as
integer variables, four crossover operators, 12 muta-
tion operators, fitness scaling, population distribution,
roulette wheel selection along with elitist selection.

Integer storage: For efficiency of storage, variables
are stored directly as integers rather than binary strings
as in[12] and are translated to their equivalent binary
strings when needed during some of the crossover and
mutation operators.

3.1.1. Crossover operators

• Binary string crossover.
• Inner crossover(adopted from real-coded GA): The

new variable values are computed as

ChildVal1= Round(α × ParentVal1

+ (1 − α) × ParentVal2);
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ChildVal2= Round((1 − α) × ParentVal1

+ α × ParentVal2).

• Outer crossover(adopted from real-coded GA): The
new variable value is computed as ChildVal1=
Round(StrongerParentVal+α(StrongerParentVal−
WeakerParentVal)) whereα in both cases is a ran-
domly generated number between 0 and 1.

• Uniform crossover[17]: In which the variables are
unchanged, but exchanged between the parents with
a 50% probability of exchange.

3.1.2. Mutation operators

• Binary bit flipping.
• Binary bit shift left.
• Binary bit shift right.
• Binary bit inversion.
• Shifting value to nearest boundary.
• New random number generation.

Another similar set of mutation operators is also
used that only act if the member fitness is below av-
erage fitness.

An overall probability for crossover and mutation is
specified for a search. For each mutation or crossover
operation of mating members, selection of which op-
erator to use is performed randomly according to an
assigned probability of use for each operator.

Fitness scaling: Linear fitness scaling is imple-
mented to give a fair survival chance for strong
population members.

Speciation: Members further away from population
average get a fitness bonus to encourage diversifica-
tion.

Roulette wheel selection: This is used for selecting
members of old population for mating and producing
new members of next population.

Elitist selection: One copy of best member in a pop-
ulation passes unchanged to the next population to en-
sure that any optimized value is no worse than the best
previously attained. And the rest of the new popula-
tion is filled by the traditional selection, crossover and
mutation.

Seeding: One feasible point is included in the ini-
tial population and rest of the population is chosen
randomly. Due to the nature of the problem, a purely
random initial population may end up with a popula-
tion of all-infeasible designs. Such an initial popula-

tion will cause failure of the adaptive penalty strategy,
as it requires knowing the OF value of some feasible
design.

3.2. GA with caching

The second implementation of GA tested in this
paper (GA2) is the same as GA1, but all evaluations of
objective function are stored. Thus, when performing
population members OF evaluation, only unexplored
regions of the search space will require the FE solution
of the truss.

By nature, OF caching is inherent in RTS and is one
of the strong points in favor of it. Therefore, history
storage is implemented into GA in order to even up the
advantage RTS has and allow for a better comparison.

3.3. GA with normally distributed initial population

RTS benefits from a good starting point, so an in-
teresting study would be to have a biased initial pop-
ulation. Thus, the third implementation of GA (GA3)
is the same as GA2, but has its all members of the ini-
tial population normally distributed about the initial
feasible design.

4. Reactive taboo search

4.1. General scheme

Reactive taboo search is a heuristic global optimiza-
tion technique that has less stochastic content than
genetic algorithm. In fact, save for a small portion
of the algorithm, it is almost completely determinis-
tic. The basic idea in taboo search[8–10] is to make
use of previously evaluated points within the search
space to direct the future sampling and prevent entrap-
ment at a local minimum by applying taboo condi-
tions. Reactive taboo search[1] proposes a scheme for
adaptively varying the way the taboo conditions are
applied based on the objective function history, thus
the search “reacts” to the objective function behavior.
Pseudo-code of RTS is given as follows:

1. Begin at a starting point.
2. Examine non-tabooed neighboring points and

move to the best of them.
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3. If new point has not been visited before.
4. Goto 2.
5. Else–If cycling is not “excessive”.
6. Put a taboo condition upon point.
7. Goto 2.
8. Else perform “quick escape” and Goto 2.

A single starting point in the search space is set
as the “current point”. RTS then evaluates the entire
neighborhood of the current point and moves to the
best point in it which then becomes the new current
point. An important feature in RTS, is that all the pre-
viously evaluated points are stored in the memory, this
leads to lots of savings in computational time when
evaluating the neighborhood of the new point. Memo-
rizing all evaluated points is costly in terms of required
storage resources since the total memory required for
the algorithm grows linearly as more points are be-
ing evaluated, however, such memorizing saves a lot
of computational time if the OF is costly in terms of
CPU evaluation time.

At the start of the search RTS, simply behaves like
a steepest descent search until it hits a local minimum.
Whereas steepest descent stops upon reaching a local
minimum, RTS continues to search the neighborhood
of the current point and move to best point within it
even if it is worse than the current point. To prevent
infinite cycling back and forth around a local mini-
mum, TS imposes a taboo condition upon the last vis-
ited point, that is, “a previously visited point cannot
be visited again until a certain number of iterations is
completed”, and such number of iterations is typically
referred to as the “taboo list length”.

In RTS, the taboo list length is adaptively changed
according to the search behavior within a minimum
and a maximum value. If the search still gets stuck in
a large basin of attraction of the objective function,
which the maximum taboo list length is not enough to
overcome, a “quick escape” is performed.

The search is typically stopped after performing a
specified number of moves or objective function eval-
uations. The best point encountered is returned.

4.2. Neighborhood evaluation

RTS performs a complete neighborhood evaluation.
Unlike the version of RTS proposed by Battiti and
Tecchiolli [1] where all variables were either zero or

one, the implemented version in this paper uses integer
values for the variables. The neighborhood is defined
as the set of points that have all their variables equal
to those of the current point except for one variable,
which is different by a value of±1. Thus, the number
of points in the neighborhood is twice the number of
variables (or less for points touching the upper and
lower limits of the variable ranges).

4.3. RTS reaction to search behavior

At each move (iteration), RTS places a taboo con-
dition on the previous point to prevent moving into
it again until some other moves are completed. The
taboo condition lasts a number of iterations equal to
the current taboo list length. RTS also keeps track of
when was each point visited, and the number of vis-
its. If a point is visited twice, the taboo list length is
increased. Thus, near a local minimum, the taboo list
length keeps increasing until it is enough to explore
regions further away. If a number of iterations pass
without any cycles occurring (visiting the same point
several times), the taboo list length is decreased.

Typically, a maximum taboo list length is specified.
It is generally not beneficial to have the maximum
taboo list length greater than the number of points in
the neighborhood, because it can lead to a situation
when all the points in the neighborhood are tabooed.
When such a situation arises, the taboo conditions are
relaxed, and the new current point is chosen as the last
visited point in the neighborhood. Thus, the tabooing
does not always prevent cycling back into the domain
of attraction of a local optimum, which occasionally
calls for executing the “quick escape” mechanism.

4.4. Quick escape mechanism

RTS senses the existence of a large basin of at-
traction in the objective function that tabooing is not
enough to overcome when the average cycle length of
going back to a previously marked local optimum ex-
ceeds a threshold value. The threshold value is speci-
fied as a fraction of the maximum taboo list length. In
the previous study[13], the threshold value was taken
as 90% of the maximum taboo list length. However,
further experimentation revealed that the 90% value
takes too long to trigger the escape mechanism. In this
study, the escape mechanism is triggered when the
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average cycle length exceeds 50% of the maximum
taboo list length.

Quick escape is performed by randomly changing
the values of some of the variables of the current point.
It is simply like re-starting the search at new starting
point, which may or may not have been visited before,
by “mutating” the current design. The point obtained
after the quick escape jump, is thus not entirely ran-
dom, but is in some sense related to the point from
which the jump is made.

4.5. Modified escape mechanism

The main reasons for using an escape mechanism
in RTS is to escape large basins of attraction and
to diversify the search into unexplored regions of
the search space. The escape mechanism described
in Section 4.4, which was proposed by Battiti and
Tecchiolli [1] can be viewed as a mutation of the
local optimum point. Such mechanism introduces an
element of randomness into RTS, which is other-
wise completely deterministic. The modified escape
mechanism follows the following steps:

1. Form a population using some of the already ex-
plored points.

2. Evolve the population in a manner encouraging an
up-hill climb.

3. Select one point of the up-hill population that is as
far as possible from the mean of the explored space
(analogous to speciation in GA).

4. Perform the same sort of mutation as in normal
escape mechanism on the selected point (instead of
on the local optimum).

The proposed modification of the escape mecha-
nism thus, serves to increase the overall randomness
of the process and encourages the escape mechanism

Table 1
Number of local optima found in the demonstrative example when employing the normal, modified and mixed quick escape mechanisms

N Number of
existing optima

Number of optima found

Within the first 5000 objective
function evaluations

Within the first 8000 objective
function evaluations

Normal Modified Mixed Normal Modified Mixed

6 64 27 48 40 34 52 59
16 65536 4 8 8 4 14 12

to jump into regions that have not been explored
before.

The underlying assumptions that justify the use of
the modified escape mechanism are as follows:

• The new optima to be found are pretty far from
the currently found ones, so moving away from the
found local optima before making the jump is better
than making the random jump from the local optima
themselves.

• The actual objective function evaluation is expen-
sive in terms of computational time, so the popu-
lation search among the previously explored points
(which does not require new objective function eval-
uations) is not too much of an added computational
expense on the overall search process whose domi-
nant computational expense is the evaluation of new
points.

Mixing both normal and modified escape mecha-
nisms is also an interesting possibility to make use of
the advantages of both.

5. A demonstrative example

A simple example involving multi global optima
is used to examine the effect of the different escape
mechanisms on the reactive taboo search capability to
find many of the optima.

The objective function is given as

minf =
N∑

i=1

x2
i .

Subject to the constraints,−5 ≤ xi ≤ andxi are inte-
gers fori = 1 toN, whereN is the number of variables.

The already known solution of this problem is that
all corner points (having all combinations ofxi = ±5)
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are global optima. The number of existing optima is
thus 2N .

Table 1shows the number of global found by RTS in
a typical set of optimization runs while implementing
the normal escape mechanism, the modified one and
a mix of both. The mixed escape mechanism simply
uses the normal escape mechanism to perform the first
escape, then the modified mechanism in the following
escape, then the normal one for the next escape and
keeps alternating the escape mechanisms.

This example represents an extreme case where all
the optima a very far from each other and thus the mod-
ified escape mechanism easily outperforms the normal
one. This may not be the case in real-life problems.
It is interesting though to see that the mixed escape
mechanism is nearly performing just as good as the
modified one. The next section examines the perfor-
mance of the different implementations of algorithms
for optimizing a real N-shaped truss.

6. Algorithms application

6.1. Truss data

Data of a real N-shaped truss is used as a start-
ing point for the optimization algorithms. The truss
data is given inTable 2. A photo of the actual truss
during erection procedure is given inFig. 1. This de-
sign (topology, configuration and sizing) is used as
the starting point for optimization. Topology and con-
figuration are shown inFig. 4. The truss member
cross-sections are given inTable 3.

Table 2
Truss data

Number of main bays 2
Building clear-span (m) 21.0
Material Young’s modulus (GPa) 207
Allowed stress (MPa) 140
Maximum slenderness

(compression members)
180

Maximum slenderness (all members) 300
Maximum deflection under live load 1/300 of span
Live load (kg/m2) 50
Wind pressure (kg/m2) 50
Dead load Weight+ 20 kg/m2

Available database contains L-sections (LPN), C-sections (UPN
and CFC) and I-sections (IPN and IPE).

Fig. 4. Truss topology and configuration.

6.2. GA parameters

Among the available tuning options for the imple-
mented GA, the following settings are chosen:

• Population size: 100, 150, 200 and 250.
• Number of generations: Unlimited, search stops

when maximum number of objective function eval-
uations is reached.

• Maximum number of OF evaluations: Tested sev-
eral.

Table 3
Chosen truss member groups cross-sections

Variable Designs

Initial Intermediate Final best

X12 CFCa 140x4 CFC 140x3 CFC 140x3
X13 2xLPNa 70x7 2xLPN 70x7 2xUPNa 65
X14 2xLPN 70x7 2xLPN 70x7 2xIPNa 80
X15 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X16 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X17 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X18 2xLPN 50x5 2xLPN 50x5 2xIPN 80
X19 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X20 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X21 2xLPN 50x5 2xLPN 50x5 2xLPN 40x4
X22 2xLPN 70x7 2xLPN 70x7 2xLPN 50x5
X23 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X24 2xLPN 60x6 2xLPN 60x6 2xLPN 30x3
X25 2xLPN 60x6 2xLPN 60x6 2xLPN 50x5
X26 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3
X27 2xLPN 50x5 2xLPN 50x5 2xLPN 30x3

Truss weight
(kg)

9903.2 6328.8 5655.3

a CFC: cold-formed C-section, LPN: standard L-section, UPN:
hot-rolled C-section, IPN: standard I-section.
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• Overall crossover probability: 0.9.
• Equal probability for different crossover operators.
• Overall mutation probability: 0.25.
• Equal probability for different mutation operators.
• Fitness scaling constant: 1.6.

Choice of the search parameters was based on prac-
tical published values and the available computational
resources. Further tuning may be possible.

6.3. RTS parameters

RTS has less tuning parameters than GA. The fol-
lowing settings are chosen:

• Number of moves: Unlimited, search stops when
maximum number of objective function evaluations
is reached.

• Maximum number of OF evaluations: Tested sev-
eral.

6.4. Results and discussion

Each of the design variables concerned with truss
member sizing has 48 possible choice options, vari-
ables concerning configuration and topology range be-
tween 3 and 20 options. The total search space (all
possible combinations of variables) is 1.58814×1037.
Practicality limits for reasonable CPU time made it

Table 4
Optimization results

No. of OF
evaluation

Objective function value

Average Best run

GA1 GA2 GA3 RTS-D’lyd RTS-Norm GA1 GA2 GA3 RTS-D’lyd RTS-Norm

500 9518 9487 9034 7780 7781 8197 7703 7534 7781 7781
1000 9346 9209 8825 6687 6688 7599 7656 7534 6688 6688
1500 9216 8973 8775 6491 6491 7599 7656 7534 6491 6491
2000 9088 8929 8759 6430 6430 7599 7656 7534 6430 6430
2500 8987 8929 8706 6430 6430 7599 7656 7534 6430 6430
3000 8866 8840 8658 6430 6430 7599 7656 7259 6430 6430
4000 8754 8616 8538 6430 6430 7270 7236 7259 6430 6430
5000 8664 8591 8463 6430 6430 7270 7236 7259 6430 6430
6000 8513 8293 8427 6430 6283 7270 7236 7259 6430 5868
7000 8436 8226 8358 6430 6152 7270 7194 7259 6430 5649
8000 8396 8115 8255 6280 6128 7174 7034 7259 5677 5649
9000 8263 7998 8150 6249 6113 7174 7034 7259 5649 5649

10000 8213 7935 7969 6249 6113 7174 7034 7259 5649 5649

preferable to limit the comparison of optimization al-
gorithms to 10,000 OF evaluations. Some reasonably
good results are obtained even though 10,000 OF eval-
uations comprise only 6.3× 10−34 of the total search
space. For moderate size trusses as the one consid-
ered in this paper, one OF evaluation consumes about
150 ms on an 800 MHz PC, which allows for making
multiple runs, each consuming about 20 min of com-
puter time.

Topology and configuration of the initial design,
an intermediate design during optimization and final
best-obtained design are shown inFig. 4. A listing
of the chosen cross-sections for truss member groups
and overall design weight is given inTable 3. The
intermediate design is shown as a demonstration of
topology change as well as sizing.

Since RTS has less stochastic content compared to
GA, ten optimization runs are used as a representative
of RTS. Twenty runs are performed for each of GA1,
GA2 and GA3 using four different population sizes
(five runs for each population size). The results of
the optimization runs performed in the previous study
[13] are summarized inTable 4and plotted inFigs. 5
and 6. The RTS runs of[13] are referred to as the
ones with “Delayed Escapes” as their escapes are not
triggered until the average cycle length reaches 90%
of the maximum taboo list length.

The results shown are for the number of new ob-
jective function evaluations, thus caching in GA2 and
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Fig. 5. Optimization progress—average truss weight in performed runs.

GA3 resulted in improvement of the performance
over the traditional GA1. Furthermore having the ini-
tial population normally distributed about the starting
point in GA3 improves the consistency of the search
(as seen in the standard deviation of the 20 runs) and
results in a quicker descent of the objective function
at the start of search. GA3 however has little or no
advantage over GA2 towards the end of the search.
Examination ofFigs. 5 and 6andTable 4also shows
an appreciably better performance of RTS over GA.
Possible reasons for RTS being better suited for the
examined optimization problem than the implemented
forms of GA are as follows.

GA relies on having several points that are dis-
tributed over the search space (population) to achieve
diversification. According to the schemata theory[12],
selection along with crossover provides intensification
by attracting the population points to zones of higher
fitness. Eventually, the whole population gets attracted
to the global optimum. In general, the intensification
properties of GA are not as good as those of local

optimizers[6]. Mutation is generally used to increase
diversification, especially when the whole population
gets too closely attracted to a certain region.

The main weakness of GA when the problem has
large dimensionality is that a moderate population size
(100–200 members) becomes insufficient to achieve
enough diversification over the search space and a suf-
ficient schemata pool. Increasing the population size
beyond certain limits is on the other hand very costly
in terms of the number of objective function evalu-
ations. Another problem that GA encounters is due
to the complexity of the constraints, which makes
GA unable to converge without seeding with an ini-
tial feasible point. Seeding itself introduces a member
which is much better than the others, thus may lead
to pre-mature convergence and thus may further de-
crease the GA efficiency.

RTS has separate mechanisms for intensification
and diversification. For intensification, RTS relies on
a local optimizer that nails down the local optimum.
Thus, finding the local optimum is fast, efficient and
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Fig. 6. Optimization progress—truss weight in best of performed runs.

has less sensitivity to large dimensionality than GA.
This accounts for the fast descent of the OF value
encountered at the beginning of the RTS search in
Figs. 5 and 6. Upon reaching a local optimum, impos-
ing taboo conditions switches RTS to diversification
by temporarily preventing the revisit of already ex-
plored points. If the taboo conditions are not enough
to escape a large basin of attraction, RTS performs its
quick escape move and “hopes” it will be enough to
escape the current basin of attraction.

It can be seen inFigs. 5 and 6as well asTable 4that
after the good start, the Delayed Escape RTS remained
incapable of finding any better designs for quite a long
period. Thus, decreasing the threshold for triggering
quick escapes in the current study from 90 to 50%
of the maximum taboo list length proved beneficial.
Thus, the threshold of 50% taboo list length is simply
termed “normal escape mechanism” and is used again
as a reference in the rest of this study inTable 5and
Figs. 7 and 8.

The fact that the normal escape mechanism of RTS
merely “hopes” that its jump falls into a better objec-
tive function basin of attraction motivates introducing
some analogies of GA into RTS in order to enhance
its diversification capabilities. The proposed modifi-
cation of the RTS escape mechanism is an attempt at
accomplishing such better diversification without ad-
ditional objective function evaluations.

As a comparison of RTS with different escape
mechanisms,Table 5 and Figs. 7 and 8show the
optimization results using the normal, modified and
mixed escape. It is observed for this type of problem
that the normal escape mechanism is almost always
better than the modified one. This may imply that the
optima are not scattered in locations far from each
other and thus there is no extra benefit in using the
modified escape mechanism. However, it is observed
that the mixed escape mechanism, which repetitively
alternates between the two types, gets the benefit of
both more diversification as well as better exploitation
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Table 5
Optimization results

No. of OF evaluation Objective function value

Average Best run

RTS-Norm RTS-Mod RTS-Mix RTS-Norm RTS-Mod RTS-Mix

500 7781 7781 7781 7781 7781 7781
1000 6688 6688 6688 6688 6688 6688
1500 6491 6491 6491 6491 6491 6491
2000 6430 6430 6430 6430 6430 6430
2500 6430 6430 6430 6430 6430 6430
3000 6430 6430 6430 6430 6430 6430
4000 6430 6430 6430 6430 6430 6430
5000 6430 6430 6430 6430 6430 6430
6000 6283 6430 6283 5868 6430 5868
7000 6152 6430 6253 5649 6430 5649
8000 6128 6430 6220 5649 6430 5536
9000 6113 6413 6173 5649 6255 5536

10000 6113 6345 6128 5649 5911 5511
12000 6075 6079 6060 5618 5638 5511
15000 6066 6042 6005 5527 5638 5511
20000 6048 6022 5914 5527 5638 5511
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Fig. 7. Optimization progress—average truss weight in performed runs.
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Fig. 8. Optimization progress—truss weight in best of performed runs.

of zones having optima that are not too far from each
other. The observed performance of RTS employing
the mixed escape mechanism inTable 5and Figs. 7
and 8seem to be better than having one of the two
mechanisms on its own.

7. Conclusions

Design optimization of a real-world class of plane
trusses is considered. A parametric model of the truss
is developed, which takes into account most of the
practical aspects for design applicability. Optimization
of the model is a challenging task since it involves
sizing, configuration and topology, large dimensional-
ity and costly objective function. Three implementa-
tions of general-purpose GA as well as RTS are tested
in improving the existing truss design that is actually
erected. While utilizing a number of objective func-
tion evaluations that is only a small fraction of the
total search space, both GA and RTS succeeded in

coming up with better designs. RTS performed better
than GA thought it has less diversification capabili-
ties, which motivated a modification to the mechanism
RTS uses to escape large attraction basins in the ob-
jective function. The modified escape mechanism is a
population-based search within the previously evalu-
ated points. The population search is directed to find
regions that have not been explored before. Since the
population search is done on pre-computed points, it
has no additional cost in terms of objective function
evaluation. The performed study shows that alternat-
ing between the normal and modified escape mecha-
nisms gives an overall better performance.
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