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Abstract

The genetic algorithm (GA), an optimization technique based on the theory of natural selection, is applied to structural topology

design problems. After reviewing the GA and previous research in structural topology optimization, we describe a binary material/void

design representation that is encoded in GA chromosome data structures. This representation is intended to approximate a material

continuum as opposed to discrete truss structures. Four examples, showing the broad utility of the approach and representation, are

then presented. A ®fth example suggests an alternate representation that allows continuously-variable material density. Concluding

discussion suggests recommended uses of the technique and describes ongoing and possible future work. Ó 2000 Elsevier Science S.A.

All rights reserved.
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1. Introduction

This article reviews and presents summary examples of the genetic algorithm (GA)-based approach to
structural optimization developed by Jakiela and associated researchers [9±12,15]. Further details and
example problems can be found in these references (from which much of this article was excerpted) and the
related theses of Chapman [8] and Duda [14]. Using an evolutionary, survival-of-the-®ttest optimization
mechanism [16,28], the GA allows designs in a population to compete against one another to serve as
parent designs. Parents then pair and mate, swapping portions of their `genetic code' to create a generation
of child designs of hopefully higher quality. After undergoing infrequent, random mutation, the child
generation replaces the original generation, and the process then iterates until an optimal design is gen-
erated.

We emphasize that we perform a topological optimization. This is in contrast to sizing and shape op-
timization. Fig. 1 shows examples of each for the design of a beam cross-section. In sizing optimization, as
shown in Fig. 1(a), the topology and a parameterized shape are held constant, while an optimal set of
parameters is found. These are commonly rectilinear dimensions. Shape optimization maintains a constant
topology but changes the shape, as shown in Fig. 1(b). Fig. 1(c) indicates that topology optimization is the
next step; new boundaries may be created. In our approach, shape and sizing optimization are byproducts
of topology optimization. Additionally, the approach described here should be contrasted with the (pos-
sibly topological) optimization of a truss structure, in which the dimensions of truss members are altered, or
the members are deleted from the structure altogether. The binary material/void elements used here are not
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intended to represent full size structural elements such as truss bars; the intent is rather that the topology
and shape emerge from an aggregation of a large number of the elements.

The next two sections provide an introduction to GAs and a review of related work. This is followed by
an explanation of how structural topologies are represented with GA chromosomes. Next, four examples,
intended to show the broad utility of the approach, are presented. A ®fth example suggests how real
number chromosome data structures could represent material with continuously-variable density. The
paper concludes with recommendations for use of GAs for structural optimization and directions for future
work.

2. Genetic algorithms

GAs are an optimization strategy in which points in the design space are analogous to organisms in-
volved in a process of natural selection. The term `genetic' is used because, along with the expected design
representation, GAs employ a coded representation of design attributes that is analogous to a chromosome
[28]. This code is commonly a character string, with each character position being analogous to a gene, and
each character assigned to a position being analogous to an allele. Organisms are generated and tested in
generations, with o�spring designs arising from parent designs. The creation of new designs for a new
generation occurs with a process that is analogous to biological reproduction. Genetic crossover allows
o�spring designs to retain traits from parent designs, and infrequent mutations possibly yield radically
improved designs, but almost always yield unsuitable con®gurations. The testing of new designs is done
with a merit function, usually tailored to take the coded representation as input. In a given generation,
designs with a higher merit are given a higher probability of creating o�spring, and perhaps surviving
themselves into the next generation.

Optimization occurs, therefore, through a process of natural selection. Designs in a given generation
group in pairs (i.e., mate), with the better designs having a higher probability of pairing. These `parent'
designs produce o�spring by genetic crossover. In `single point' crossover, a point along the coded rep-
resentations (the chromosomes) is chosen at random, and the segments of the code after the point are
swapped (see Fig. 2). Infrequent, random mutations are then performed on individual alleles within the

Fig. 1. Sizing, shape, and topology optimization [12].

Fig. 2. Crossover of two genetic algorithm chromosomes [12].
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chromosomes by changing the values. These operations yield two new codes which represent two new
designs that possess traits from both parents. In this way a new generation is created. The process then
iterates. After many generations, both the best design and the average quality should increase, because the
merit function is more likely to allow better designs to produce o�spring.

When applying GAs to engineering design domains, several points are worthy of note. In particular,
many issues related to computing the merit function a�ect the performance of the overall search. Our
examples will show cases in which design constraints are represented as penalty terms in the merit function.
If these are not carefully normalized with the actual `quality' terms of the function, the overall search can be
erratic. Other problems arise if there is a large range of design qualities for a particular generation ± the
highest-performance designs will quickly dominate subsequent generations, ®lling the populations with a
particular `breed' of a possibly suboptimal design. A local sub-optima can be avoided if large di�erences
among merit function values are attenuated during reproduction. This is often necessary in early genera-
tions.

Properly-sized penalty terms and suitable levels of ®tness value attenuation are two of the many pa-
rameters which must be speci®ed when conducting a GA-based search. In our GA-based optimization
implementation, the following parameters must be speci®ed.

Probability of crossover (PCROSSOVER): The probability that crossover will be performed between a pair of
parent chromosomes. If crossover is not performed, the parents (unmodi®ed) are treated as potential
children for the next generation.

Probability of mutation (PMUTATION): The probability that any given allele on any given chromosome will
mutate.

Fitness scaling coef®cient (CMULT): A measure of the magnitude of ®tness value attenuation. This should
be selected so that a proper number of the ®ttest members are chosen to continue into the subsequent
generation, without allowing them to dominate the generation. This typically represents the desired ratio of
the maximum ®tness in a population to the average ®tness of the population.

Population size: Number of chromosomes in each GA generation. This must be chosen with care ± too
large a population is inef®cient, while too small a population does not provide the amount of genetic
material needed to explore much of the search space.

Crossover operator: The method used to mate, or combine, two parent chromosomes to create two child
chromosomes which have attributes from both parents.

Selection scheme: The technique used to determine which chromosomes in a population will serve as
parents for the next generation.

3. Related work

3.1. Introduction

Sizing, shape, and topology optimization based upon structural considerations have been active research
areas for some time [27]. Our topological optimizations generate optimal distributions of material and void
within a discretized design domain, as opposed to optimal discrete truss structures. Several approaches to
this problem have been investigated and are reviewed here.

3.2. Homogenization-based

Bendsoe and Kikuchi [6] developed an approach based on material homogenization techniques [43]. A
design domain is discretized into small, rectangular elements, where each element contains composite
material of continuously-variable density and orientation. Each elementÕs structural properties are a
function of its material density and orientation, and are calculated using material homogenization tech-
niques. An optimality criteria method [31] is used to determine how the material density and orientation in
each element should change so that the structureÕs compliance is minimized, subject to a maximum volume
constraint.
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Several di�erent microstructure models are used when determining the compositeÕs structural properties.
Bendsoe and Kikuchi [6] introduced a microstructure comprised of microscale rectangular holes, while
Bendsoe et al. [5] studied a `Rank-2' microstructure.

3.3. Simulated annealing

Anagnostou et al. [3] developed a simulated-annealing-based [30] approach. A design domain is dis-
cretized into small elements, where each element contains material or void. No intermediate densities are
allowed. Simulated annealing is used to determine the optimal con®guration of material and void within the
domain such that the structureÕs weight is minimized subject to stress and manufacturability constraints.

3.4. Genetic algorithm

Sandgren et al. [39], Sandgren and Jensen [38] and Jensen [29] developed a GA-based approach. The
design domain is discretized into small elements, where each element contains material or void. No in-
termediate densities are allowed. The GA determines the optimal con®guration of material and void within
the domain such that the structureÕs weight is minimized subject to displacement and possibly stress con-
straints. With regard to the optimization of truss structures, Goldberg and Samtani [18], Hajela [22,23],
Rajeev and Krishnamoorthy [33], and Lin and Hajela [32] investigated cross-section sizing optimizations of
discrete-member trusses. Jenkins [24,25], Richards and Sheppard [34] and Watabe and Okino [42] studied
the shape optimization of structural members. GA-based topology optimization of discrete truss structures
was investigated by Shankar and Hajela [41], Hajela et al. [21], and Grierson and Pak [20].

Our investigations extend the work of Jensen and associated researchers, speci®cally by addressing the
following: (i) cantilevered plate topologies of high discretization, (ii) techniques for obtaining ®nely dis-
cretized topologies, (iii) techniques for obtaining families of highly ®t designs, and (iv) a variety of di�erent
structural design ®tness functions.

4. Our approach

4.1. Introduction

During our GA-based optimizations, the `®tness' of a chromosome is determined by ®rst converting the
chromosome into a topology. Then, the topologyÕs structural performance is evaluated. This is used to
assign a ®tness value to the chromosome which quantitatively describes the chromosomeÕs objective
function minimization (or maximization) and constraint satisfaction abilities.

4.2. Design representation

A two-dimensional design domain is discretized into small, square elements, where each element rep-
resents either material or void. The states of the individual elements de®ne the distribution of material and
void within the domain and therefore establish the topology. This binary, material-void design domain
results in a discrete, typically non-convex search space [3] and allows for a precise, although discretized,
topology boundary.

4.3. Converting chromosomes into topologies

Each chromosome contains one gene for every design domain element, and each gene controls the
material-void state of a particular element. To convert a chromosome into a topology, the chromosome is
mapped into the design domain, and elements controlled by genes with allele values of 1 become material
while elements controlled by genes with allele values of 0 become void. Depending on the example problem,
this mapping is done in one of two ways. Fig. 3 shows how a binary string chromosome is mapped to a
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planar design domain. Alternately, a two-dimensional binary array chromosome can be mapped directly to
a planar design domain.

4.4. Connectivity analysis

`Connectivity analysis' then sets to void all material elements in the topology which are not connected
(whether directly or indirectly via other elements ± see Fig. 4) to a speci®ed seed element. Any two elements
are considered connected if they share an edge; elements sharing only a corner are considered disconnected
(Fig. 4). Seed elements are those elements required to contain material so that they may serve as a support
boundary condition or point of load application. Connectivity analysis does not modify corresponding
chromosome allele values (i.e. the genotype) when a disconnected material element is switched to void or a
seed element is switched to material ± only the state of the design domain element (i.e. the phenotype) is
changed.

Connectivity analysis is performed principally because planar material elements connected only at a
corner cannot withstand applied torques about the corner, and can therefore lead to a topology which
cannot support various loads. Connectivity analysis is not equivalent to, nor do we perform, classical
stability or buckling analysis.

4.5. Structural analysis

The topologyÕs structural performance is then determined using ®nite element analysis. Using a ®nite
element mesh containing four triangular ®nite elements for each design domain element (yielding a ®nite
element node at each corner and in the center of every design domain element), ®nite elements corre-
sponding to void (including those corresponding to disconnected material elements switched to void by
connectivity analysis) are assigned a YoungÕs Modulus 10ÿ5 times that of ®nite elements corresponding to
material. Note that this allows a constant mesh to be used, resulting in a considerable computational
savings. Example 3 in [12] demonstrates the validity of using a constant mesh along with connectivity
analysis.

Fig. 4. Topology (a) before and (b) after connectivity analysis [9].

Fig. 3. Converting a binary string to a two-dimensional topology [9].
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4.6. Fitness calculations

A ®tness value must then be assigned to the chromosome corresponding to the topology. The ®tness will
often take into account the sti�ness and volume of a structure. We take a structureÕs sti�ness as the inverse
of the de¯ection (dmax) of a particular point of interest.

Stiffness � 1

jdmaxj : �1�

For planar structures (our interest) a topologyÕs volume is assumed to be equal to the area of connected
material in the topology.

4.7. GA parameters and runtime considerations

Unless otherwise speci®ed, the GA routines utilized random initial populations, binary-coded chro-
mosomes, single-point crossover, mutation, ®tness scaling, and an elitist stochastic universal sampling
selection strategy [4]. The probabilities of crossover (PCROSSOVER� 0.95) and mutation (PMUTATION� 0.01),
and the population size (Number of chromosomes� 30) in each example were chosen according to values
suggested by Grefenstette [19] and Schaffer et al. [40]. The ®tness scaling coef®cient (CMULT� 1.4) used was
suggested by Goldberg [16].

With the exception of where a statistical study is done (i.e. in Example 3), the results shown are from
`characteristic' runs, which are admittedly among the best from a fairly limited number.

5. Examples

5.1. Example 1 [11]: plane stress FEM model

This example describes the optimization of a cantilevered plate subject to a vertical load, applied at the
FEM node on the right hand surface 2/5 of the distance from the bottom. The design domain is shown in
Fig. 5. Three discretizations are used ± 10� 16; 15� 24, and 20� 32 grids of elements. Material `seeds'
were placed at the point of load application and points of support.

After a chromosome is mapped into the design domain and the material distribution is analyzed for
connectedness, the resulting topologyÕs ®tness is determined. A topologyÕs ®tness is equal to its sti�ness-to-
weight ratio, where `sti�ness' (S) is de®ned by Eq. (1).

To determine dmax, a ®nite element analysis is performed on the topology. dmax was set equal to the
magnitude of the displacement (vector sum of x- and y-direction displacements) of the node where the point
load was applied. The area of connected material is used as a qualitative measure of the topologyÕs `weight'.
Hence, the topologyÕs ®tness is given by

Fig. 5. Example 1 design domain [11].

344 M.J. Jakiela et al. / Comput. Methods Appl. Mech. Engrg. 186 (2000) 339±356



Fitness � 1=dmax� �
Area

: �2�

The 10� 16 gridÕs optimization was run for 225 generations, while the 15� 24 and 20� 32 grid opti-
mizations required 600 generations (all with population size 30). Fig. 6 shows the results. The topologies
have well-de®ned, solid-material outer boundaries, while the interior regions generally have a `composite-
like' internal structure comprised of equally-distributed material and void. The 20� 32 topological opti-
mization `hollowed out' several large interior holes, producing truss-like members. Chapman et al. [11] also
described a hierarchical domain decomposition technique that allows an even ®ner 40� 64 discretization.

5.2. Example 2 [9]: compliance minimization

We use the GA to minimize a cantilevered plateÕs compliance subject to a maximum volume constraint
of 25% (Fig. 7). During ®nite element analyses, all nodes along the meshÕs left-hand surface are constrained
to have zero displacement, and a downward concentrated load is applied at the middle node along the
meshÕs right-hand surface. The two design domain elements surrounding the point of load application and
the elements at the top and bottom of the domainÕs left-hand surface serve as seed elements during con-
nectivity analysis. No symmetry constraints are imposed.

Fitness calculations begin when a topologyÕs compliance is calculated, which is equal to the inner
product of the topologyÕs displacement (dmax) at the point of load application and the applied load
(FAPPLIED):

Compliance � dmax � FAPPLIED: �3�
Compliance values decrease by several orders of magnitude during optimization, creating di�culty in

selecting volume constraint violation penalty coe�cients which work well for both early and later popu-
lations. Hence, the natural log of compliance is used and the topologyÕs ®tness (to be maximized) is

Fitness � 1

ln�Compliance� : �4�

Fig. 6. Results of (a) 10� 16, (b) 15� 24, and (c) 20� 32 optimizations [11].
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The topologyÕs volume (V) is then compared to the maximum volume constraint (Vmax). If there is no
violation, the topology is assigned the ®tness value of Eq. (4). If there is a violation, the topologyÕs ®tness is
penalized 6% for every 10% volume constraint violation. The penalty is linearly attenuated according to the
current generation number, with no penalty at generation 0 and full (6%) penalty at generation 175. Hence,
the ®tness of a structure violating the maximum volume constraint is

Fitness � 1

�
ÿ generation

175
� 0:6 � V ÿ Vmax

Vmax

�
1

ln�Compliance� �5�

prior to generation 175 and

Fitness � 1

�
ÿ 0:6 � V ÿ Vmax

Vmax

�
1

ln�Compliance� �6�

after generation 175. Search was performed using hierarchical subdivision. Please see [11] for the details.
The GA-based solution is shown in Fig. 8, while Fig. 9 depicts a homogenization-based solution (using a

rectangular hole microstructure) to the same problem [36]. Care was taken that the homogenization-based
solution used the same material sizes and properties along with the same loading conditions; a di�erence
was that the ®nite element solver employed quadrilateral elements. Our GA-based solution contains 3% less
material and exhibits 12% greater compliance than RodriguesÕs homogenization-based solution.

In general, such a GA-based solution may require 10±100 times the number of function evaluations as
would be required by a homogenization-based solution. In many cases, this is a prohibitive number, and
techniques to parallelize the ®tness function evaluations or the use of approximations must be considered.
Primary advantages of a GA-based solution, on the other hand, are that it performs a global search (as
demonstrated in Example 4 below) and readily allows a variety of ®tness (objective) functions and con-
straints (as demonstrated in Example 3 below).

Fig. 8. Genetic algorithm-based solution for Example 2 [9].

Fig. 7. Example 2 design domain [9].
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5.3. Example 3 [9]: topology simpli®cation considerations

We recognize that designs such as those generated in Examples 1 and 2 will require interpretation and
simpli®cation for subsequent detail and sizing design. In addition to smoothing the edges created by the
square design domain elements, the number of holes should be reduced to simplify the structure. There are
similar concerns with homogenization-based designs, arising from the continuously-variable density (see
[7,26,35]).

One approach to this problem is to agglomerate the holes by minimizing their number. This is done by
taking the number of holes, the total hole area, total hole perimeter, and total structure perimeter (holes
plus outer boundary) into account in the ®tness functions used. Structures with fewer larger holes with only
slightly diminished performance are preferred for interpretation and subsequent detail design. A case study
of this process was performed with the design problem of Example 1 (using the 10� 16 discretization).

To drive the GA search towards topologies exhibiting both high structural performance and varying
numbers of internal holes (i.e., varying amounts of material and void element agglomeration), nine ®tness
functions were developed and used to optimize the plateÕs topology. Eight of the functions, in addition to
maximizing sti�ness-to-volume ratio, use a variety of techniques to reduce the number of internal holes.
The ninth function (Function 1) is equivalent to the standard sti�ness-to-weight ratio maximization
function used previously.

Fitness Functions
· Function 1: Maximize stiffness-to-volume ratio

Fitness � 1

Displacement �Area
:

· Function 2: Simultaneously maximize stiffness-to-volume ratio and volume-to-perimeter ratio

Fitness � 1

Displacement �Area
� c

Area

Perimeter
:

c � 0:1; 0:2; 0:4; 0:6; 0:8; 1:0; 2:0:

· Function 3: Maximize stiffness-to-volume-to-perimeter ratio

Fitness � 1

Displacement �Area � Perimeter
:

· Function 4: Maximize stiffness-to-volume-to-HoleArea ratio

Fitness � 1

Displacement �Area �HoleArea
:

· Function 5: Maximize stiffness-to-volume-to-HolePerimeter ratio

Fitness � 1

Displacement �Area �HolePerimeter
:

Fig. 9. Homogenization-based solution [36] in [9].
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· Function 6: Maximize stiffness-to-volume-to-NumberOfHoles ratio.

Fitness � 1

Displacement �Area � �NumberOfHoles� 1� :

· Function 7: Simultaneously maximize stiffness-to-volume ratio and HoleArea-to-HolePerimeter ratio

Fitness � 1

Displacement �Area
� c

Area

HolePerimeter
:

c � 0:2; 0:4; 0:6; 0:8; 1:0; 2:0:

· Function 8: Simultaneously maximize stiffness-to-volume ratio and minimize HolePerimeter-to-HoleArea
ratio

Fitness � 1

Displacement �Area
ÿ c

HolePerimeter

HoleArea
:

c � 0:05; 0:10; 0:15; 0:20; 0:25; 0:30:

· Function 9: Maximize stiffness-to-volume ratio, subject to a `maximum number of internal holes' con-
straint. The topologyÕs stiffness-to-volume ratio is penalized by a (a� 6, 10, 14, 18, 22, 26) percent for
every internal hole in addition to the b (b� 0, 1, 2, 3, 4) allowable holes. The penalty is attenuated ac-
cording to the current generation number.

Fitness � 1:0

�
ÿ a

100
� generationNumber

175
� �NumberOfHoles

�
ÿ b�

��
1

Displacement �Area
:

a � 6; 10; 14; 18; 22; 26; b � 0; 1; 2; 3; 4:

Including all parameter values (i.e., Functions 2, 7, and 8) and parameter combinations (i.e., Function
9), 54 unique ®tness functions were represented in the function suite. So that statistically-signi®cant
comparisons could be made between the functions, 10 experiment replications were conducted with each
function variant (resulting in a total of 540 optimization runs, each with di�erent random initial popula-
tions). Each optimization used a population of 30 160-gene chromosomes and was run for 225 generations.
At the conclusion of each optimization, the optimal topology was recorded, as was its sti�ness-to-volume
ratio and number of internal holes. Note that because the above ®tness functions take sti�ness to be in-
versely proportional to maximum displacement, an assumption valid only for single loading, this exampleÕs
conclusions are not necessarily valid for general loading cases.

Results of the experiment, shown in Fig. 10(a±f) (which depict the topologies found with highest sti�-
ness-to-volume ratio for each speci®ed number of internal holes), demonstrate that the GA can generate
topologies combining high sti�ness-to-volume ratio with varying numbers of internal holes.

While best sti�ness-to-volume ratio performance is obtained using Functions 1, 2, 3, 7, and 9 (statisti-
cally equivalent e�ectiveness with respect to sti�ness-to-volume ratio, see [9]), topologies with the lowest
number of internal holes are obtained using Functions 3, 4, 5, 6, and 9 (statistically equivalent e�ectiveness
with respect to reducing number of internal holes, see [9]), and topologies with the highest number of
internal holes are obtained using Function 1. Hence, Functions 3 and 9 should be used to generate to-
pologies combining highest sti�ness-to-volume ratio with highest material and void element agglomeration,
while Function 1 should be used to generate topologies combining the highest sti�ness-to-volume ratio with
the highest number of small, uniformly distributed internal holes. Fig. 11 shows the mean performance of
the 9 ®tness function groups.

5.4. Example 4 [14,15]: design space subdivision with speciation

This example shows how a speciating GA is used to distribute subsets of the evolving population of
solutions over the design space. This distribution of solutions is analogous to di�erent species exploiting
di�erent niches in an ecosystem. Additionally, we use statistical cluster analysis techniques to quantify the
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extent to which a population is speciated and use this measure to probabilistically encourage mating of
reasonably similar designs (i.e., intraspecies mating).

Goldberg and Richardson [17] suggest the use of sharing functions as a means to cause speciation.
Chromosomes share their `raw' ®tness function payo� with all other chromosomes in the entire population.
The sharing with each chromosome is inversely related to the `distance' between the pairs of chromosomes.
Distance can be computed in the genotype or phenotype space, and is used in a sharing function. Sharing
function values range from zero, for two chromosomes that are very distant, to one for two chromosomes
that have no distance between them (i.e., they are the same). Such a sharing function allows a ®tness re-
duction due to sharing with all chromosomes to be computed by summing the pairwise sharing function
values and dividing the raw ®tness value by this sum. This can be stated as follows, with x representing
chromosomes, d representing distance, and s representing the sharing function:

fitnessshared�xi� � fitnessraw�xi�Pn
j�1s�d�xi; xj�� : �7�

Fig. 10. Topologies combining high sti�ness-to-volume ratio with few internal holes [9].
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Such a shared ®tness will evolve chromosomes that cluster about peaks in numbers proportional to the
amount of ®tness function value available at those peaks. These clustered subgroups are analogous to
species exploiting ecological niches. Note, however, that reducing the ®tness in no way precludes two very
dissimilar chromosomes from being mated, so long as (reduced) ®tness is the only criterion for choosing
parents. This would be like two very di�erent species trying to mate! It has been shown that restricting
mating to similar chromosomes can improve GA performance (see, e.g., [13]), and this technique proves
useful in our practical application.

This example considers a beam supported at each end and subjected to a vertical load at its midpoint.
The design domain used was an 8� 21 discretization, as shown in Fig. 12. The lower two nodes of each end
element were constrained to have zero displacement, and the point load was applied to the node at the
center of the element at the midpoint of the beam, shown in black in Fig. 12. The goal of this optimization
was to minimize the structureÕs weight while maintaining a displacement less than the speci®ed value (dmax)
at the load point. Material properties for this example were those of steel (E� 200 GPa, v� 0.3). The size of
each element in the design domain is 1 cm � 1 cm � 1 mm thick. The magnitude of the applied load was set
to 10 kN, and dmax was 0.01 m.

Unlike the previous examples, here we employ a two-dimensional binary array chromosome, as it was
found to perform as well or better for the problem considered. First, connectivity analysis is performed to
identify disconnected material. Then, a normalized mass is computed as the percentage of (connected)
elements in which material is present. The connectivity analysis also checks to see if the point of load
application is connected to the ®xed nodes by material. If the loaded element is not connected to either
material constraint element, the structureÕs ®tness is given by (8a); if it is connected to only one material

Fig. 12. Beam design domain [14].

Fig. 11. Mean ®tness function performance [9].
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constraint element, (8b) is used. If the load point is connected to both material constraint elements, the
®tness score is calculated according to (8c) if the displacement constraint is violated and by (8d) if it is not.
These equations provide the raw ®tness score of a chromosome. When ®tness sharing is used, the reduced
®tness score is calculated as explained previously.

fitness � 5�mass; �8a�

fitness � 50�mass; �8b�

fitness � 1000ÿ 500� �d ÿ dmax�; �8c�

fitness � 1100ÿmass� 100: �8d�
In order to perform sharing-based speciation and mating restriction during evolution, a sharing function is
needed for the binary material/void representation. The sharing function we have chosen, called the Jaccard
Coe�cient (see [37, p. 143]), is applied to the genotype designs, after performing connectivity analysis.
Comparing two material/void design arrays on an element-by-element basis, ®rst determine the following
intermediate parameters:

a� number of corresponding elements that are both material,
b� number of corresponding elements, where exactly one is material.

The Jaccard similarity coe�cient is then computed as follows:

CJ � a
a� b

: �9�

Note that the coe�cient ranges from a value of zero for no material/material matches to one for an
identical material/material match over the domain.

We also use this sharing function to recognize the formation of species during the evolution and use this
information to restrict mating between excessively dissimilar chromosomes. This is done by using cluster
analysis techniques (again, see [37]) to partition the population into subsets of similar chromosomes at each
generation. The ®rst step is to compute the `resemblance' between each pair of designs. This is done by
computing the Jaccard coe�cient for each pair. The pair that is most similar (i.e., highest Jaccard coe�cient
value) is `clustered' and treated as a single entity as long as its similarity is above a chosen threshold. The
most similar pair of designs in the new set (now reduced in number by one) is found next, and the process
continues as such until no further clustering is possible.

It is possible to measure the `tightness' of a clustering by comparing the actual similarities between pairs
of designs with the similarities that were used in the clustering process. These similarities di�er, as described
above, when clusters are treated as a single point in the computation of the Jaccard coe�cient (the average
distance to the designs in the cluster is used). Intuitively, the tightness of the clustering is related to these
di�erences: how much was the data `distorted' in order to consider it clustered? An aggregate value for this
notion is provided by the Pearson product-moment correlation coe�cient, rx;y

1 (see [37]) which varies from
zero to one. Only pairs that were clustered (i.e. nearer than the threshold) contribute to the computation of
the Pearson coe�cient.

During an evolutionary optimization, the value of rx;y is monitored to determine the extent to which
sharing-based speciation has partitioned the population. Note that initial randomly generated populations
can be very well speciated (in a non-useful manner) if the chromosomes are mutually dissimilar. rx;y ,
therefore, typically drops in value in the early generations and then grows to a higher value. When niche
formation has su�ciently progressed, interspecies mating is increasingly unlikely to produce improved

1 The process we have just outlined is actually an abbreviated version of a standard clustering process as outlined in ([37, Chapter 2]).

In the complete process there is no clustering threshold and all point pairs are eventually clustered. rx;y for such a full clustering is

referred to as the `cophenetic correlation coef®cient'.
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designs. We take this into account by using rx;y as another probabilistic factor on the occurrence of mating.
After mating restriction is started, for each generation rx;y is computed with a threshold value of CJ. Each
time a pair of parents is selected, there is an rx;y% chance that this pair must be in the same species (de®ned
by CJ). If this probabilistic test fails, the pair is discarded and a new pair is chosen for testing. In this way,
the likelihood of interspecies mating decreases as rx;y increases. A typical threshold value for CJ is 0.85. In
our tests, we have initiated mating restriction after a preset number of generations (halfway through a run).
Over the second half of a run, rx;y typically ranges in value from 0.70 to 0.90.

Several GA runs were done with di�erent settings. Runs were done with no ®tness sharing or mating
restrictions and with sharing but no mating restriction. Runs with ®tness sharing and restricted mating were
also done, with populations of di�erent sizes. In each case, the GA was run for 200 generations, and
clustering was done with a threshold value of 0.85. When restricted mating was implemented, it was started
after 100 generations. Figs. 13±15 show typical results from these GA runs. Note in Fig. 15, as a result of
the sharing-based speciation, that the largest cluster is characteristic of the best designs found. Table 1
summarizes the results. Note that each entry in this table represents the average result from multiple GA
runs done with the same parameter settings.

5.5. Example 5: real number chromosomes

All of the examples shown so far have used a binary material/void representation, which has led to a
discretized and precisely de®ned arrangement of material. GAs can also operate with chromosomes made
up of real numbers [45]. Using such a representation, we have optimized structures in which the material
has a continuously-variable density. Fig. 16 shows a structural design domain made up of 144 planar
triangular ®nite elements with 85 ®nite element nodes. The density of the material is allowed to vary from
zero to one at each node and the density within elements is interpolated from the element nodal densities. A
real-numbered chromosome of length 85 was used to represent the nodal densities and a quadratic
crossover speci®cally devised for real-numbered chromosomes (see [1]) was used along with Gaussian
mutation. As all nodes of the domain were encoded, the symmetry of the domain was not exploited. The
weight of the structure was minimized subject to a displacement constraint for horizontal and vertical
loading cases.

Fig. 17 shows the results (attributable to Adewuya and Jakiela, to date unpublished) for a tensile
horizontal loading case (left) and a vertical loading case (right). Although the ®nite element edges clearly
in¯uence the solution, a continuously-variable density, like homogenization solutions, is evident.

Fig. 13. Typical result with no ®tness sharing and no mating restriction [14].

Table 1

Results of beam optimization [14]

Population size Best ®tness score Mass (%) Number of clusters

No ®tness sharing 60 1072 28 1

Fitness sharing, unrestricted mating 60 1069 31 8

Fitness sharing, restricted mating 60 1071 29 7

Fitness sharing, restricted mating 75 1071 29 10

Fitness sharing, restricted mating 90 1071 29 10
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Fig. 14. Results of GA run with ®tness sharing and no restricted mating [14].

Fig. 15. Final population of GA with ®tness sharing and restricted mating. Individuals grouped by cluster. Largest cluster represents

best characteristic design [14].
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6. Discussion

In closing, we note that because they require a large number of function evaluations, GA solutions are
computationally expensive in many cases and computationally prohibitive in some cases. Their corre-
sponding advantage is that, since they only require zeroÕth order function evaluations, they can be applied
to problems for which little is known about the nature of the design domain. Other researchers have applied
them to domains that require similarly expensive function evaluations involving physical simulation, no-
tably antenna design [2], with excellent results. We have begun to investigate techniques to reduce the
required number of function evaluations [44].

Speci®cally, with regard to structural optimization, the examples included here demonstrate both the
advantages and disadvantages of GAÕs. For relatively small problems, the GA-based solutions still require
an arguably impractical amount of computation. Still, the versatility and ease of application of a GA is
clear: the same representation and solution technique can be robustly applied to a variety of objective
functions. Our recommendation would be to continue investigating the use of GAÕs for structural opti-
mization, with emphasis on two speci®c topics. One is the acceleration or reduction of expensive function
evaluations. Parallelization of the structural analyses would allow a global search as was demonstrated in
Example 4. Approaches that use approximations to reduce the number of function evaluations, such as
response surface techniques, would be similarly useful. The other topic would be the use of GAÕs for mixed
variable optimizations. An advantage of GAÕs is that they can very easily be applied to problems with both
discrete and continuous variables. In a structural optimization context, the discrete variables could describe
high level topological changes and the continuous variables could represent more localized parameters such
as sizes and densities. In this regard, `hybridizing' a GA with other structural optimization techniques could

Fig. 16. Continuously variable density design domain.

Fig. 17. Structures generated with continuously variable density design domain. Tensile horizontal loading (left) and vertical loading

(right).
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be useful. A GA performing a discrete search, for example, could search for the best topological conditions
for a related homogenization optimization.
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