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ABSTRACT 
A robust optimization of an automobile valvetrain is 

presented where the variation of engine performances due to 
the component dimensional variations is minimized subject to 
the constraints on mean engine performances. The dimensional 
variations of valvetrain components are statistically 
characterized based on the measurements of the actual 
components. Monte Carlo simulation is used on a neural 
network model built from an integrated high fidelity valvetrain-
engine model, to obtain the mean and standard deviation of 
horsepower, torque and fuel consumption. Assuming the 
component production cost is inversely proportional to the 
coefficient of variation of its dimensions, a multi-objective 
optimization problem minimizing the variation in engine 
performances and the total production cost of components is 
solved by a multi-objective genetic algorithm (MOGA). The 
comparisons using the newly developed Pareto front quality 
index (PFQI) indicate that MOGA generates the Pareto fronts 
of substantially higher quality, than SQP with varying weights 
on the objectives. The current design of the valvetrain is 
compared with two alternative designs on the obtained Pareto 
front, which suggested potential improvements. 

INTRODUCTION 
An automobile valvetrain (Figure 1) is a high-speed cam-

follower mechanism responsible for synchronizing the intake 
and exhaust of gases in cylinders of an internal combustion 
engine. The dimensional variations of the valvetrain 
components cause undesired deviations of engine performance 
from the design specifications. While tightening dimensional 
tolerances of each component decreases the performance 
variations, it also increases the manufacturing cost of the 
component. It is therefore desirable to understand the trade-offs 
between the performance variation and the component 

manufacturing cost, thereby tightening the tolerances of only 
the components that have a large influence on the performance 
variations, while maintaining the desired level of mean 
performances. 

The conventional robust optimization approaches 
formulate this type of problem as a minimization (or 
maximization) of an objective function combining measures of 
mean performances, performance variations, and 
manufacturing cots, typically as a weighted sum of these 
measures [1-4]. A trade-off curve (Pareto front) of these 
measures can be generated by the multiple optimization runs 
with different weight values.  However, the generation of a 
Pareto front with sufficiently large number of points can be 
very inefficient, since one point in a Pareto front requires an 
optimization run with certain weight values. Further, the 
obtained points can be too unevenly spread to understand the 
trade-offs since the weight can only indirectly control the 
spread of points. Finally, the method severely suffers when the 
Pareto front is concave viewing from the utopia point [5,6,7]. 

This paper aims at demonstrating the effectiveness of a 
multi-objective genetic algorithm (MOGA) [8-15] in 
generating Pareto fronts for a robust optimization problem of 
an automotive valvetrain, where the variation in engine 
performances and the production cost of components are 
minimized subject to the constraints on mean engine 
performances. Based on the measured statistics of dimensional 
variations in valvetrain components, Monte Carlo simulation is 
used on a neural network model of a high fidelity valvetrain-
engine model, in order to obtain the mean and standard 
deviation of three measures of engine performances: 
horsepower, torque and fuel consumption. 

Using the newly developed Pareto front quality index 
(PFQI) that quantifies the closeness to the utopia point and 
overall spread of the points in a Pareto front, the results by 
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MOGA are compared to the Pareto fronts generated by a 
sequential quadratic programming (SQP) with varying weights 
on the objectives. The comparisons indicate that MOGA 
generates the Pareto fronts of substantially higher quality than 
SQP, with the same number of function evaluations. According 
to the obtained Pareto front, the original design of the 
valvetrain is found to be sub-optimal and different scenarios for 
improvement is discussed.  

 

 
(a)    (b) 

 
Figure 1. Typical automotive valvetrain. (a) components and 
(b) motion. 

RELATED WORK 

Robust Optimization in Engineering Design 
The robust optimization problem is usually solved by using 

an aggregate objective function to capture both maximum 
performance and minimum performance variation due to 
variations in the design variables. The calculation of the 
performance variation typically requires direct sampling of 
variables with Monte Carlo simulation or the approximation of 
the performance function and the distribution of the design 
variables.  

Gu et al. [1] presented a response-surface based safety 
optimization and robustness process using regression and Latin 
hyper cube sampling methods. They employed a Monte Carlo 
simulation based stochastic simulation method along with a 
sequential quadratic programming approach to solve the 
reliability based design optimization model for robust system 
parameter design. Lee and Park [2] formulated a single, multi-
objective function to incorporate the mean and standard 
deviation of the original objective function to optimize a 
structural problem in a robust manner using recursive quadratic 
programming. Sunderasan et al. [3] and Su et al. [4] developed 
robust optimization methods where the objective function is a 
convex combination of the original objective functions and 
their variations. A weighting factor determines the trade-off 
between the robust optimum and the optimum where 
robustness is not considered. Messac and Yahaya [16] 
formulated the robust design optimization problem from a 
multi-objective perspective using a Physical Programming 
approach.  

While the above work treats both mean and standard 
deviation of the performances as objectives, the trade-off 
between performance variation and component tolerances 
would be of more interest when an existing baseline design is 
to be improved for robustness.  Considering such scenarios, 
this paper formulates the problem as minimization of 
performance variation and manufacturing cost (as a function of 
component tolerances) subject to the constraints on shift of the 
mean performance from the baseline values.  

 Multiobjective Genetic Algorithm  
 Zitler and Lother [8] compared different multi-objective 

evolutionary algorithms (MOEA) where the extended 0/1 
knapsack problem is taken as a basis and introduces Strength 
Pareto Evolutionary Algorithm (SPEA). Shim et al. [9] 
introduced Pareto-based continuous evolutionary algorithms 
for multi-objective optimization problems having continuous 
search space. Tan et al. [10] developed a GUI based 
multiobjective evolutionary algorithm toolbox which is freely 
available. Horn et al. [11] introduced a nitched Pareto genetic 
algorithm to tackle multi-objective optimization problems 
incorporating Pareto domination in the selection operation and 
nitching to maintain diversity. An extensive discussion on 
MOGAs and suggestions on customized forms of MOGAs for 
a variety of applications can be found in [12]. One such 
algorithm, non-dominated sorting genetic algorithm (NSGA) 
[13], is used in this paper. 

Due to the stochastic nature of the algorithm, Pareto fronts 
generated by MOGA can be different in each run with varying 
qualities. However, very few researchers have proposed metrics 
to measure the quality of the Pareto fronts. Wu and Azarm [15] 
introduced one such metric called the inferiority index, which 
requires rather complicated calculation. The Pareto front 
quality index (PFQI) proposed in this paper quantifies the 
quality of a set of points in a Pareto front in terms of their 
closeness to the utopia point and overall spread in a simple 
intuitive manner, and will be used to compare different sets of 
Pareto points. 

HIGH-FIDELITY VALVETRAIN-ENGINE MODEL 

Simulation Models of Valvetrain-Engine Dynamics  
This study is conducted on the valvetrain system of a Ford 

Duratec 2.5L V6 SI engine, released in 1994. The engine has a 
maximum power output of 125 kW at 6250 rpm and 220 Nm of 
torque at 4250 rpm and is used in the Mercury Mystique, Ford 
Contour and Ford European Mondeo. Its specifications are 
listed in Table 1, and the photos of its valvetrain assembly and 
camshaft are shown in Figure 2.  

The main function of the valvetrain system is to control the 
flow of intake and exhaust gases by opening and closing the 
valves, which is obtained by transforming the rotational 
camshaft motion into linear motion of the valve. A valvetrain is 
a complex and nonlinear dynamic system due to the existence 
of lash, part deformation by dynamic forces, and uncertain 
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hydraulic pressure. In order to accurately predict the valve 
motion, commercial software GT-Vtrain [17] is used to a build 
a lumped-parameter dynamic model of the Ford Duratec 
valvetrain.  Figure 3 shows a schematic of the valvetrain 
model, and Figure 4 shows the required input parameters, some 
of which will be regarded as design variables during 
optimization. 

 
 

Table 1. Specifications of Ford Duratec engine. 
 

Displacement [cc] 2544 
Bore [mm] 82.4 
Stroke [mm] 79.5 
Compression ratio  9.7:1 
Cylinder Arrangement V6 
Angle btw two banks [of cyl. deg.] 60 
Firing orders 1-4-2-5-3-6 
Valve gear type Chain driven, dual 

overhead camshaft 
Number of Valves 24 
Fuel injection Multi-point sequential  
Rated power/Speed [kW/rpm] 125/6250 
Max torque/Speed [Nm/rpm] 220/4250 

 
 
 

 
       (a)      (b) 

Figure 2. photos of valetrain components of Ford Duratec 
engine. (a) valvetrain assembly and (b) cam shaft. 

 
 
 

 
 

Figure 3. Lumped parameter dynamic model of a valvetrain 
by GT-Vtrain [18]. 
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Figure 4. Input parameters of the valvetrain model. 
 
 

 
Figure 5. Engine model constructed in GT-Power [18]. 
 

The engine system simulation is constructed using GT-
Power software tool [17]. The high fidelity simulation is based 
on one-dimensional gas dynamics to represent the flow in the 
piping, and the thermodynamic in-cylinder model augmented 
by sub-models for specific engine phenomena such as 
combustion, heat transfer and emissions. The major 
components of the engine system are air cleaner, throttle body, 
intake and exhaust manifolds, cylinders, valves, injectors and 
catalyst converters, which are illustrated in Figure 5. The main 
outputs of the engine model relevant for this study are 
horsepower, torque and fuel consumption.  The model 
constants were calibrated based on experimental data obtained 
from the engine set-up at the W. E. Lay Automotive Laboratory, 
University of Michigan.  Figure 6 illustrates the agreement 
between the simulated and measured pressure in the cylinder 
after calibration.  The ability of the simulation to accurately 
predict the overall engine system behavior, including its 
sensitivity to variations of valve timings, was confirmed 
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through comparisons against a comprehensive set of measured 
engine process parameters.  

The valvetrain model is integrated to the engine model in 
order to simulate the effect of dimensional variations of the 
valvetrain components on the engine performances. The Ford 
Duratec engine has a variable intake system in which one of the 
intake ports, called the secondary port, is only effective at 
engine speeds higher than 3500 rpm. The cam profiles 
generated at the end of the valvetrain simulation are fed into the 
engine model. Figure 7 illustrates the integrated high fidelity 
valvetrain-engine model.  
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Figure 6. Comparison of measured and predicted cylinder 
pressure. 

 

 
Figure 7. High fidelity valvetrain-engine model. 

Statistical Model of Dimensional Variations 
To statistically characterize the dimensional variations of 

the input parameters in Figure 4, a number of intake and 
exhaust valvetrain components are measured using a coordinate 
measurement machine (CMM). The measurement data are 
collected for the following subset of the input parameters due 
to their high sensitivity to the engine performances: 

 
• Valve mass (VM) [g] 
• Valve stem length (LVS) [mm] 
• Valve stem diameter (VD) [mm] 
• Cam maximum lift multiplier (LM)  
• Cam lift duration angle (ANGD) [deg] 
• Cam lift beginning angle (D0) [deg] 
 
As shown in Figure 8, the value of VM is strongly dependent 
on the values of LVS and VD (Figure 8 (a)(b)), and the value of 
LM is weakly dependent on the value of ANGD (Figure 8 (c)). 
The linear regression provides the following relationships: 
 

2 2
VM 1 2 338.504836 (LVS)(VD) LVS (VD)k k kµ = − + + +  (1) 

VM 0.076739769σ =  (2) 

VM VMVM ( , )N µ σ=  (3) 
 
where 5

1 7.3 10k −= × , 5

2 6.7 10k −= × , 5

3 0.2 10k −= × . Similarly for 
LM, the multiple linear regression model provides: 
 

LM 0.8483 + 0.3035 ANGD µ =  (4) 
LM 0.004117422σ =  (5) 

LM LMLM ( , )N µ σ=  (6) 
 
Equations 2 and 5 show the standard error terms which are an 
estimate of the standard deviation of least squares point 
estimate. The rest of the dimensions are regarded as 
independent.  
 
Table 2. Statistics of measurement data of independent 
parameters. 
 

parameter mean (µ) std. dev. (σ) 
LVS [mm] 115 0.03 
VD [mm] 5.9 0.01 
ANGD [deg] 0.5 0.003 
D0 [deg] 0 2 

 

Neural Network Model of Engine Simulation Model 
Since the model in Figure 7 requires 18 valvetrain 

simulation runs followed by an engine simulation run to obtain 
one output, the calculation of performance variation using the 
model would be computationally very expensive. Accordingly, 
a surrogate model of the simulation is built using a feed 
forward neural network trained by one step secant 
backpropagation [18,19], available in MATLAB Neural 
Network Toolbox. 
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Figure 8. Correlation of measured data. (a) valve mass (VM) 
and valve stem diameter (LVS), (b) valve mass (VM) and 
valve stem length (LVS), and (c) maximum cam lift and cam 
lift duration angle (ANGD).  R in each figure is the residual. 
 

 
Figure 9. Range of independent parameters and factor 
levels for sampling training data of neural network model. 

 

The training data (pairs of the inputs and outputs of the 
simulation model) is sampled by using the five-level full 
factorial design of the four independent parameters in Table 2. 
Training of the neural network and subsequent optimization 
was performed at the engine operating condition of 3000 rpm, 
full load. As illustrated in Figure 9, each parameter is assumed 
to vary within the range [0.975µ-3σ, 1.025µ+3σ], and each 
factor level is defined as the range equally dividing this into 
five. At each factor level, a value is uniformly sampled in the 
corresponding range. The values of the dependent input 
parameters are calculated using the regression models 
(Equations (1) and (2)).  The five-level full factorial design 
with the four parameters gives the total of 625 training data, 
each consisting of 72 inputs (4 parameters for 18 valves) and 3 
outputs (horsepower, torque, fuel consumption).  Two sets of 
such 625 data (independently sampled) are produced using the 
high fidelity simulation and subsequently used to train the 
neural network.  Figure 10 shows the horsepower output for 50 
random unseen inputs, using the trained neural network model 
and the simulation model. The outputs of the neural network 
model match very well with the corresponding ones from the 
simulation model.  

 

 
Figure 10.  Horsepower output for 50 random inputs, using 
neural network model (dotted line) and original simulation 
model (solid line).  

ROBUST OPTIMIZATION OF VALVETERAIN SYSTEM 

Design Variables 
The mean and standard deviation of the four independent 

parameters in Table 2, valve stem length (LVS), valve stem 
diameter (VD), cam lift duration angle (ANGD), and cam lift 
beginning angle (D0) are selected as design variables for robust 
optimization of the V6 engine valvetrain system. Table 3 shows 
the upper and lower bounds of the design variables 
(corresponding to both intake and exhaust valvetrain 
components) considered in the following examples. The ranges 
are set such that sampled values of the input parameters by 
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Monte Carlo simulation do not fall outside the ranges for which 
the neural network model was trained. 

 
Table 3. Lower and upper bounds of design variables.  

 
Design  var. Lower Bound Upper Bound 
µLVS        113.5 117 
µVD       5.78 6.02 
µANGD    0.46 0.55 
µD0          -7 7 
σLVS      0.005 0.1 
σVD       0.001 0.05 
σANGD    0.0005 0.01 
σD0        0.1 2 

Objective Functions and Constraints 
Considering a scenario where an existing baseline design is 

to be improved for robustness, the problem is formulated as 
minimization of performance variations and manufacturing 
costs subject to the constraints on the mean performance 
measures. The variations of the engine performance measures 
(f1) are computed by Monte Carlo simulation applied to the 
neural network model:  

 
HP T FC1  = f σ σ σ+ +  (7) 

 
where subscripts HP, T, FC indicate horsepower, torque, and 
fuel consumption, respectively. The manufacturing cost f2 is 
calculated by summing the inverses of the coefficients of 
variation (σ/µ) of LVS, VD, ANGD and D0 (simply 1/σ for 
D0, since mean of D0 is zero) [20]:  
 

LVS VD ANGD

LVS VD ANGD D0

2

1
 = f

µ µ µ

σ σ σ σ
+ + +  (8) 

 
Finally, the constraints on the mean performance measures are 
given as: 
 

HP

T

FC

70 [kW]

160 [Nm]

285 [g/(kW-Hr)]

µ

µ

µ

≥

≥

≤

 (9) 

 
In the following examples, these constraints are formulated 

as the third objective function f3 by summing the corresponding 
penalty terms:  

 
3 HP T FCmax{0, 70 } max{0,160 } max{0, 285}f µ µ µ= − + − + −  (10) 

 
Note that  f3 = 0 if all constraints are satisfied.  

Multiobjective Genetic Algorithm (MOGA) 
Multiobjective genetic algorithms (MOGA) are an 

extension of genetic algorithms that do not require multiple 
objectives to be aggregated to one value, for example, as a 
weighted sum.  Instead of static aggregates such as a weighted 
sum, MOGA dynamically determine an aggregate of multiple 
objective values of a solution based on its relative quality in the 
current population, typically as the degree to which the solution 
dominates1 others in the current population. The following 
examples use non-dominated sorting genetic algorithm 
(NDSGA) [6], where the quality of a solution is measured in 
terms of the number of solutions dominating it in the current 
population, as outlined below: 
 
1. Create a population P of n chromosomes (an encoded 

representation of design variables) and evaluate their 
values of objective functions.  

2. Rank each chromosome c in P according to the number of 
other chromosomes dominating c (rank 0 is Pareto optimal 
in P). Store the chromosomes with rank 0 into set O. Also, 
create an empty subpopulation Q. 

3. Select two chromosomes ci and cj in P with probability 
proportional to n-rank(ci) and n-rank(ci). 

4. Crossover ci and cj to generate two new chromosomes ci’ 
and cj’ with a certain high probability. 

5. Mutate ci’ and cj’ with a certain low probability. 
6. Evaluate the objective function values of ci’ and cj’ and 

store them Q. If Q contains less than m new chromosomes, 
go to 3. 

7. Let P P Q← ∪  and empty Q, Rank each chromosome in 
P and remove m chromosomes with lowest ranks from P.  

8. Update set O and increment the generation counter. If the 
generation counter has reached a pre-specified number, 
terminate the process and return O. Otherwise go to 3. 

 
Since the design variables in Table 3 are continuous variables, 
real-coded chromosomes are used - a chromosome is simply a 
vector of design variables in Table 3.  Accordingly, the two 
crossover methods known as effective for real-coded 
chromosomes, heuristic crossover and quadratic crossover, are 
adopted in the step 4 above. In the following, f = (f1,f2,..,fn) 
denotes a vector-valued objective function to be minimized and 
r is a uniform random number in [0,1]. 

Heuristic crossover creates n children from two parent 
vectors, where each child is an “extension” of the better parent 
in the descend direction of the corresponding objective 
function. For each objective function fi, two parent vectors x1 
and x2 create a child vector yi by randomly picking a point 
along the descend direction: 

 

                                                           
1 For a vector-valued function f = (f1,f2,..,fn) to be minimized, a point x 

dominates y if fi(x) < fi(y) for all i = 1,2,…,n.  
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1 2 1 1 2

2 1 2

( ) if ( ) ( )

( ) otherwise
i i

i

r f f

r

− + <
=

− +





x x x x x
y

x x x
 (11) 

 
Quadratic crossover [21] creates n children from three 

parents, where each child is the optimizer of the quadratic 
approximation of the corresponding objective function. For 
each objective function fi, three parent vectors x1, x2 and x3  can 
create a child vector yi with the j-th component yij as:  

 

if 0
2

otherwise

ij

ij

ijij

ij

b
a

ay

z
=

− >






 (12) 

 
where zij is some projection of x1j, x2j, or x3j in the direction of 
the decreasing objective function, and aij and bij are the 
coefficients of the quadratic and linear terms in the quadratic 
approximation of fi near x1j, x2j, and x3j:  

 

( )

3 1 2 1

3 2 3 1 2 1

2 1

2 1

2 1

( ) ( ) ( ) ( )1

( ) ( )

i j i j i j i j

ij

j j j j j j

i j i j

ij ij j j

j j

f x f x f x f x
a

x x x x x x

f x f x
b a x x

x x

− −
= −

− − −

−
= − +

−

 
 
   (13) 

 
Further details of quadratic crossover are given in [21]. 

Mutation in the step 5 is done as a uniform mutation: 
 

( )jy lb ub lb r= + −  (14) 
 
where lb and ub are the lower and upper bounds of the the j-th 
design variable. If a variable yj after crossover and mutation is 
out of bounds, it is simply rounded to the nearest boundary 
value to maintain the feasibility. 

PARETO FRONT QUALITY INDEX (PFQI) 

Definition 
The set O returned at the termination of MOGA in the 

previous subsection contains the non-dominated solutions that 
the algorithm had encountered before termination. Due to the 
stochastic nature of the algorithm, however, the contents of O 
are likely different in each run and so are the qualities of 
resulting Pareto fronts. To quantitatively assess the 
performance of MOGA runs, the Pareto front quality index 
(PFQI) is introduced. PFQI quantifies the quality of points in 
the Pareto front in terms of 1) their closeness to the utopia point 
and 2) the range and 3) the evenness of the spread, thus 
providing effective global assessment of the Pareto front. 

Let fi
min and fi

max be the lower and upper bounds of the i-th 
component of a vector-valued objective function f = (f1,f2,..,fn) 

to be minimized, and PF be a set of N points in a Pareto front 
normalized with fi

min and fi
max:  

 
min

max min
ˆ ˆ{ | ; 1, 2, }

j
j jPF j N

−
= = =

−
…

f f
f f

f f
 (15) 

 
where fmin = (f1

min, …, fn
min) and fmax = (f1

max, …, fn
max). Let us 

define the n extreme points in the objective function space as: 
 

min min max min min

1 1 1( , ..., , , , .., ); 1, ...iext

i i i nf f f f f i n− += =f  (16) 
 
Note that the utopia point fmin and the i-th extreme point iextf  
becomes the origin (0,…,0) and the i-th unit vector 
(0,..,0,1,0,…,0) in the normalized objective function space, 
respectively. Then, the closeness of the points in PF to the 
(normalized) utopia point can be given as the average distance 
to the origin:  

  

1

ˆ jN

C
j

d
N=

= ∑
f

 (17) 

 
and the range of the points in PF  can be measured as the sum 
of the distances between the (normalized) i-th extreme point 
and the point  in PF that is closest to it. 

 

{1,.., }

1

ˆ ˆmin i

j N

extj
n

R
i

d
n

∈

=

−
= ∑

f f
 (18) 

 
Similarly, the evenness of the spread of the points in PF can be 
measured as the maximum distance to between two 
neighboring points in PF: 

 

( )
{1,.., },{1,.., }

ˆ ˆmax min
k N k jj N

k j

Ed
∈ ≠∈

−= f f  (19) 

 
Finally, the Pareto front quality index (PFQI) is simply defined 
as the sum of dC, dR, and dE:  

 

R ECPFQI d d d= + +  (20) 
 
Note that, according to the formulation small PFQI values 
indicate better quality Pareto fronts.  

Example 
To illustrate the calculation of PFQI according to 

Equations (15)-(20), let us consider a simple Pareto front 
shown in Figure 11, consisting of points A, B and C in a two-
dimensional normalized objective function space.  The 
coordinates of points A, B, and C are (0.25,0.75), (0.25,0.50), 



 8 Copyright © 2003 by ASME 

and (0.75,0.25), respectively. As described earlier, the origin O 
is the utopia point, and two unit vectors (1,0) and (0,1) 
correspond to the extreme points of the first objective (denoted 
as E1) and the second objective (denoted as E2). From Equation 
(17) we have: 

 
1

(OA+OB+OC) 0.7134
3Cd = ≈  (21) 

 
Since C is the closest to the extreme point E1 and A is the 
closest to the extreme point E2, Equation (18) gives: 
 

1 2

1
(E C+E A) 0.3536

2Rd = ≈  (22) 

 
From Figure 11, B is the closest to A, A is the closest to B, B is 
the closest to C, hence: 
 

 max(AB,AB,BC) BC 0.5590Ed = = ≈  (23) 
 
Therefore, the PFQI value for the Pareto front in Figure 11 is 
given as: 
 

0.7134 0.3536 0.5590 1.626R ECPFQI d d d= + + ≈ + + =  (24) 
 

 
 
Figure 11. Example Pareto front within normalized space of 
two objective functions, consisting of 3 points A, B, and C. 

RESULTS 

Pareto Front Generation by MOGA 
The results of the robust optimization of the valvetrain 

system are provided in this section. The Pareto fronts generated 
by MOGA are compared to the ones by SQP with varying 

weights on the objectives, using the Pareto front quality index 
developed above. The following results are obtained with the 
software implemented on MATLAB. 

For MOGA, three types of tests runs are performed with a 
population size of 100 and the maximum numbers of 
generations being 20, 40 and 60. Each test is repeated until the 
total number of function evaluations becomes approximately 
2500, 5000 and 7500, and the mean and standard deviation of 
the resulting PFQI are calculated. Table 4 lists the values of 
MOGA parameters.   

For SQP, a weighted sum of two objective functions f1 
(Equation 7) and f2 (Equation 8) is used as the single objective 
function, with five different values of weights in Table 5, where 
the values assume f1 and f2 are normalized to vary within [0,1]. 
For each set of weights w1 and w2, SQP runs are repeated 20 
times to obtain 100 solutions, from which non-dominated 
points are extracted to calculate one PFQI value. Since SQP 
never successfully terminates by satisfying the optimality 
criteria, the maximum number of function evaluations is 
imposed to force the termination of the algorithm. Accordingly, 
three PFQI values are obtained by the results with 2500, 5000 
and 7500 function evaluations.   

 
Table 4. MOGA parameters for test runs. 

 
Mutation probability 0.01 
Crossover probability 0.9 
Population size 100 
Max. # of generations 20, 40, and 60 

 
Table 5. Weights for two normalized objectives f1 and f2 for 
SQP runs.  

 
# 1 2 3 4 5 
w1 0.7 0.6 0.5 0.4 0.3 
w2 0.3 0.4 0.5 0.6 0.7 

 
Tables 6-8 show the statistics of PFQI by MOGA with the 

heuristic crossover (GAHX) and the quadratic crossover 
(GAQX), and the PFQI value by SQP, with 2500, 5000, and 
7500 function evaluations, respectively.  An example of Pareto 
front for each number of function evaluations are shown in 
Figures 12-14.  Three observations can be made from these 
results: 

 
1. Validity of the definition of PFQI: The visible 

improvements in the shape of Pareto fronts by GAHX and 
GAQX over 2500, 5000, and 7500 function evaluations are 
successfully captured as the corresponding decrease in the 
mean values of PFQI.  Conversely, the visible deterioration 
of the shape of Pareto fronts by SQP is also well captured 
as the increase in the PFQI values.  

 
2. Superiority of GA over SQP in Pareto front generation: 

For the same number of function evaluations, GA with 

O: utopia point 
E1: extreme point  
of the 1st objective 

E2: extreme point of  
the 2nd objective 

1 

1 

0 

A 

B 

C 
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either crossover methods clearly generates higher quality 
Pareto front than SQP, particularly in terms of the number 
and the spread of the points in the Pareto front. Between 
two crossover methods, the quadratic crossover performed 
slightly better than the heuristic crossover in terms of both 
mean and standard deviation of PFQI values.  

 
3. Effect of the number of function evaluations on Pareto 

front quality:  Since MOGA never loses the good points 
encountered during the iteration, its performance tends to 
improve with more function evaluations as indicated both 
in the mean and standard deviations of PFQI values in 
Tables 6-8. On the other hand, SQP may move to a worse 
point with more function evaluations, for example, as 
indicated by the deterioration of Pareto front by SQP in 
Figure 14 as compared to the one in Figure 12. 
Consequently, the PFQI for the SQP runs with 7500 
function evaluations is higher than the one obtained with 
2500 function evaluations. However, a caching mechanism 
similar to MOGA could be implemented between multiple 
SQP runs to remedy this situation.  

 
Table 6. PFQI values with 2500 function evaluations. GAHX 
and GAQX stand for MOGA with the heuristic crossover the 
quadratic crossover, respectively. 

 
 µ σ 

GAHX 0.73074 0.15232 
GAQX 0.66368 0.11843 
SQP 0.95126 

 
Table 7. PFQI with 5000 function evaluations. 

 
 µ σ 

GAHX 0.70804 0.12788 
GAQX 0.57512 0.11078 
SQP 1.0047 

 
Table 8. PFQI with 7500 function evaluations. 

 
 µ σ 

GAHX 0.59464 0.12035 
GAQX 0.50054 0.10949 
SQP 1.2399 

 

 
Figure 12.  Pareto fronts with 2500 function evaluations. 
GAHX and GAQX stand for MOGA with the heuristic 
crossover the quadratic crossover, respectively. 

 

 
Figure 13.  Pareto fronts with 5000 function evaluations. 

 
Figure 14.  Pareto fronts with 7500 function evaluations. 

utopia point 

utopia point 

utopia point 
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Examination of Pareto Optimal Designs 
Figures 12-14 show the Pareto fronts of the performance 

variation and manufacturing cost is a simple convex curve. The 
high curvatures near the utopia point in the Pareto fronts 
indicate the following basic trend: 
 
• Reducing the performance variations from high to medium 

values can be done with almost no increase in the 
manufacturing cost. 

• Reducing the performance variations from medium to 
small values can cause a significant increase in the 
manufacturing cost. 

 
Figure 15 shows the point (852.59, 3630.9) corresponding 

to the current valvetrain design in Table 2 computed by the 
high-fidelity valvetrain-engine model, and two potential 
alternative designs (Alt-1 and Alt-2), relative to the best Pareto 
front by GAQX with 7500 function evaluations.  The location 
of the current design suggests that there is room for 
improvements with respect to the definition of the present 
objective functions. By better allocating the tolerances and 
shifting the means of the design variables, for instance, the 
same level of the engine performance variations can be attained 
at a lower manufacturing cost (Alt-1). Alternatively, at the same 
manufacturing cost, it is possible to attain less variations of the 
engine performance (Alt-2). The values of the design variables  
for these alternative designs are shown in Table 9. Figure 15 
shows the outputs of the alternative designs obtained by the 
neural network model (NN) and by the high fidelity valvetrain-
engine model (VE). The proximity of corresponding points 
obtained by the NN and the high-fidelity VE model 
demonstrates the validity of the approach based on the use of 
the surrogate model for generating Pareto fronts. 
 
Table 9.  Values of design variable for alternative designs. 

 
Design  Var. Current Alt-1 Alt-2 
µLVS        113.5 117 117 
µVD       5.78 5.78 5.78 
µANGD    0.46 0.55 0.55 
µD0          0 -7 -7 
σLVS       0.03 0.09339 0.066 
σVD       0.01 0.00644 0.0051 
σANGD    0.003 0.00273 0.0005 
σD0        2 0.1 0.1 

 
 While the two alternative designs are identical with respect 
to the mean values of the design variables, they allocate 
different tolerances to achieve the respective engine 
performances. In both cases, the tolerances for VD, ANGD and 
D0 are tightened, whereas the LVS tolerance is loosened. 

 
Figure 15.  Performances of the current valvetrain design 
and two possible alternative designs (Alt-1 and Alt-2) 
obtained by the neural network model (NN) and by the high 
fidelity valvetrain-engine model (VE). 
 
From the viewpoint of valvetrain mechanism, the loosening of 
the valve stem length (LVS) could be interpreted as the effect 
of hydraulic lash adjustors to compensate for these variations. 
The tightening of the tolerances for the stem diameter required 
by Alt-1 or Alt-2 is mild. In contrast, the large tightening in 
cam lift duration angle (ANGD) and cam lift beginning angle 
(D0) tolerances indicate that their effects on reducing the 
variations in engine performances offset the resulting increases 
in the manufacturing cost.  The fact that the mean D0 value 
converges to a lower bound shows that for given conditions 
advanced phasing of cams leads to better performance. 
 Table 10 lists measures of engine performance (i.e., power, 
torque and fuel consumption) for the alternative designs, 
obtained by the neural network and the high fidelity valvetrain-
engine models.  The results in the table indicate good 
agreement between the neural network model and the 
valvetrain-engine model that was previously validated against 
experimental measurements.  The alternative designs are in fact 
superior to the current design with respect to all engine 
performances in both mean and standard deviation, although 
the improvements in mean performances are minute since they 
are regarded as constraints rather than objectives. 
 
Table 10. Engine performances of current design and 
alternative designs. 
 

Power (kW) Torque (N-m) Brake Specific 
Fuel Consumpt. 

 

µ σ µ σ µ σ 
Current 77.41 4.343 185.38 2.128 278.9 4.139 
Alt-1 by NN 79.40 3.345 190.20 1.549 271.64 3.428 
Alt-1 by VE 78.41 3.527 190.22 1.689 271.65 3.893 
Alt-2 by NN 78.91 1.557 190.29 0.806 270.76 1.737 
Alt-2 by VE 77.56 1.789 189.42 0.993 274.93 1.934 

 

Alt-2 by NN

Alt-1 by NN

utopia point 

current design 

Alt-1 by VE

Alt-2 by VE 
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 While the two design alternatives on the obtained Pareto 
front clearly suggested potential design improvements, a 
caution must be taken in interpreting the results in Table 9. 
Since Equation (8) simply sums the inverses of coefficients of 
variation of all design variables, the resulting value does not 
account for the relative difficulties of manufacturing processes 
that affects variables. For example, tightening the tolerance of 
VD by turning could be far easier than tightening the tolerances 
of ANGD by cam surface grinding or D0 by shrink-fit 
assembly. Although weights can be given to each term in 
Equation (8), obtaining reasonable weight values may not be 
straightforward, since the manufacturing cost of a part depends 
on many factors such as the type of processes and the volume 
of production.   

SUMMARY 
The multi-objective optimization framework offers a 

means to compare design alternatives by providing trade-offs 
between multiple objectives. In this paper the multi-objective 
robust optimization of an automotive valvetrain is presented 
using multi-objective genetic algorithm (MOGA). To 
objectively access the quality of Pareto fronts generated by 
MOGA, the Pareto front quality index (PFQI) is developed that 
quantifies the closeness to the utopia point and the range and 
evenness of the spread.  

The results confirmed the validity of the PFQI for capturing 
the overall quality of a Pareto front, and also revealed 
substantial benefits of using multi-objective Gas, both in terms 
of the quality of the generated Pareto fronts and the required 
computational resources. On the other hand, SQP with varying 
weights failed to capture the while Pareto front since the even 
spread of weights do not usually correspond to the even spread 
of points in the Pareto front [5,6,7]. Further, the stochastic 
nature of the objective functions and constraints severely 
hindered the effectiveness of the gradient-based approach 
resulting in sub-optimal points.  

From an engine design viewpoint, the obtained Pareto front 
captured a trade-off between the cost of manufacturing and the 
variations of the engine performances. This allows the designer 
to efficiently examine multiple Pareto optimal designs among 
which a desired design can be selected by considering the 
maximum allowable engine performance variation and/or 
manufacturing cost. The results indicates the variation of the 
engine performance can be reduced by tightening tolerances of 
the cam profile, both its beginning angle and the duration, and 
by relaxing the tolerance of the valve stem length, which can 
offset the increase in the manufacturing cost due to tighter cam 
tolerances. 
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