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ABSTRACT 
A method is presented for synthesizing multi-component 

structural assemblies with maximum structural performance and 
manufacturability. The problem is posed as a relaxation of 
decomposition-based assembly synthesis  [1,2,3], where both 
topology and decomposition of a structure are regarded as 
variables over a ground structure with non-overlapping beams. 
A multi-objective genetic algorithm [4,5] with graph-based 
crossover [6,7,8], coupled with FEM analyses, is used to obtain 
Pareto optimal solutions to this problem, exhibiting trade-offs 
among structural stiffness, total weight, component 
manufacturability (size and simplicity), and the number of joints. 
Case studies with a cantilever and a simplified automotive floor 
frame are presented, and representative designs in the Pareto 
front are examined for the trade-offs among the multiple criteria. 

INTRODUCTION 
Most structural products have complex geometry to meet 

customer’s demand of high functionality with enhanced 
structural stability. However, manufacturing those products in 
one piece requires sophisticated methods of process that will 
increase the total production cost. For this reason, most 
structural products are multi-component structures: they are 
made of number of components and these components are 
assembled into the final structure. Designing a multi-component 
structural product often requires designers to decompose 
overall product geometry at some point during the design 
process. The decomposition will determine the component set 
to be assembled into the final product. 

For instance, automotive industry utilizes a handful of basic 
decomposition schemes of a vehicle taking into account of 
geometry, functionality, and manufacturing issues. However, 
those decomposition schemes are usually non-systematic and 
have remained more or less unchanged for decades. This is 
because the desired form, functionality, materials, joining 
methods and overall weight distribution of mass-production 
vehicles have not changed much for decades. However, the 
conventional decomposition schemes may no longer be valid 
for the vehicles with new technologies such as space frame, 
ultra-light weight materials, and fuel cell or battery powered 
motors, which would require dramatically different structural 
properties, weight distribution, and packaging requirements. 
This motivates the development of a systematic decomposition 
methodology presented in this paper.  

In our previous work [1,2,3], we have termed assembly 
synthesis as the decision of which component set can achieve a 
desired function of the end product when assembled together, 
and assembly synthesis is achieved by the decomposition of 
product geometry. Since assembly process generally accounts 
for more than 50% of manufacturing costs and also affects the 
product quality [9], assembly synthesis would have a large 
impact on the quality and cost of the end product. In [3], we 
proposed a systematic method for decomposing a given 
product geometry considering the structural stiffness of the end 
product, where joints are modeled as torsional springs. During 
the work, it was observed that the structural integrity (e.g. 
stiffness) of the end-product is heavily influenced by the choice 
of a particular decomposition, as well as the given topology of 
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the structure provided as an input of decomposition. This 
observation led us to a natural relaxation of the problem where 
both topology and decomposition of a structure are regarded as 
variable. This is the problem addressed in the present paper.  

In this paper, topology and decomposition of a structure 
are simultaneously optimized over a ground structure with non-
overlapping beams , for overall structural performance and 
manufacturability. As in [3], the joints between components are 
modeled as torsional springs. A multi-objective genetic 
algorithm with graph-based crossover, coupled with FEM 
analyses, is used to obtain Pareto optimal designs, exhibiting 
trade-offs among structural stiffness, total weight, component 
manufacturability (size and simplicity), and the number of joints. 
Case studies with a cantilever and a simplified automotive floor 
frame are presented, and representative designs in the Pareto 
front are examined for the trade-offs among the multiple criteria. 

RELATED WORK 

Structural topology optimization 
Structural optimization can be classified into tree 

categories: topology optimization, shape optimization, and size 
optimization [10]. Among these tree categories, topology 
optimization is considered as the most general optimization 
problem with largest design space that can produce solutions 
with no prior assumptions. As one of the topology optimization 
methods, ground structure approach was first proposed by 
Dorn et al [11]. In the ground structure approach, optimal 
substructures can be found as a subset of predefined 
exhaustive set of discrete beam elements in an extended design 
domain (i.e., ground structure). Extensive researches have been 
done to develop numerical methods for the topology design 
using ground structures: layout theory for frames and flexural 
systems [12,13], an approach using branch and bound algorithm 
[14], simulated annealing [15], and genetic algorithm [16]. More 
detailed development on the ground structure approach can be 
found in [17,18]. 

Another class of topology optimization method assumes 
structures made from solid continuum, rather than from discrete 
beams, where topology optimization problem is formulated as a 
material distribution problem within an extended design domain. 
Homogenization Design Method (HMD) is a representative of 
such “continuum-based” topology optimization methods [19], 
where material inside an extended design domain is treated as a 
composite material made of microstructures consisting of 
material and void. HMD has been applied to a broad range of 
problems including multiple loading problems [20], compliant 
mechanism design problems [21], multiple constraints problems 
[22], and topology optimization problems with composite 
material [23]. More closely related to the present work, several 
researchers investigated the homogenization-based topology 
optimization of multi-component structures [24,25,26,27]. These 
approaches, however, requires overlapping extended design 

domains for each component and each joint as a predefined 
input. 

Design for assembly and assembly sequence design 
Boothroyd and Dewhurst [28] are widely regarded as major 

contributors in the formalization of design for assembly (DFA) 
concept. In their work [29], assembly costs are first reduced by 
the reduction of part count, followed by the local design 
changes of the remaining parts to enhance their assembleability 
and manufacturability. This basic approach is adopted by most 
subsequent works on DFA. Many researchers have 
investigated the integration of DFA and assembly sequence 
planning [30, 31], where assembly sequence planning is 
proposed as the enumeration of geometrically feasible cut-sets 
of a liaison graph, an undirected graph representing the 
connectivity among components in an assembly. In order to 
improve the quality of the best assembly sequence, usually 
local design changes are made to the components These works, 
however, focus on the local design changes of a given assembly 
design (i.e., already “decomposed” product design with “given” 
topology), and have less emphasis on how to synthesize an 
assembly to start with. 

APPROACH 
This section describes our method for synthesizing multi-

component structural assemblies with maximum structural 
performance and manufacturability. Topology of a structure is 
represented as a subset of a ground structure consisting of an 
exhaustive set of non-overlapping beams (we call them basic 
members) within a given design domain. Joints within a 
structure are modeled as torsional springs, which can be placed 
only at the intersections of basic members in the ground 
structure. Joints are assumed to be less stiff than the beam 
elements and therefore reduce the overall structural rigidity.  

Topology of a ground structure can be represented by 
ground topology graph G0 = (V0, E0) with node set V0 of the 
basic members and edge set E0 of the intersections of the basic 
members (i.e., potential joint locations in the ground structure). 
Similarly, we represent the topology of a multi-component 
structural by product topology graph G = (V, E, J), a subgraph 
of G0 augmented with joint set J E⊆  specifying the location 
of joints. Using these notations, the following steps outline the 
approach: 

 
1. Given a design domain with boundary and loading 

conditions (Figure 1 (a)), define the ground structure  
(Figure 1 (b)). 

2. Construct the ground topology graph G0 = (V0, E0) for the 
ground structure (Figure 1 (c)). 

3. Using an optimization algorithm (Figure 1 (d)), obtain the 
product topology graph G = (V, E, J) that gives the best 
structural performance and manufacturability, (Figure 1 (e)). 
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4. Construct the multi-component structure corresponding to 
G (Figure 1 (f)). 

 

 
Figure 1. Outline of the approach. (a) Design domain, (b) 
ground structure consisting of basic members and potential 
joint locations, (c) ground topology graph G0, (d) optimization, 
(e) best product topology graph G (subgraphs representing 
components are annotated as C1-C3, and edges in joint set J 
is shown in dashed lines), and (f) optimal multi-component 
structure. 

Definition of design variables 
In order to uniquely specify a product topology graph G = 

(V, E, J),  two binary vectors x and y are defined as design 
variables. Topology vector x represents the existence of each 
basic member (a node in ground topology graph G0) in a multi-
component structure represented by product topology graph G: 

 
x = (x0, x1, … , xi, …, xn-2, xn-1)           (1) 

 
where n = |V0| and  
 

1 if basic member  exisits in the structure

0 otherwise                                             
i

i
x =





 

 
For a given x, therefore, node set V of G can be written as: 
 

0{ | 1}i iV n V x= ∈ =    (2) 

 
and edge set E as: 
 

0{ | { , } , },E e e u v E u V v V= = ∈ ∈ ∈  (3) 

 
In Figure 1 (e), for example, the gray nodes indicate the 
corresponding basic members with xi = 0.  

Decomposition vector y represents  the non-existence of a 
joint (in other words, the existence of a solid connection) at 
each intersection of basic members (an edge in ground topology 

graph G0) in a multi-component structure represented by 
product topology graph G: 

 
y = (y0, y1, … , yi, …, ym-2, ym-1)            (4) 

 
where m = |E0| and  
 

0 if a joint exisits in the structure at intersection 

1 otherwise                                                        
i

i
y =





 

 
Naturally, joint set J of G for a given y can be written as:  
 

{ | , 0}i i iJ e e E y= ∈ =    (5) 

 
In Figure 1 (e), for example, the edges in dashed lines indicate 
joints, i.e., the intersections with yi = 0. The value of yi is simply 
ignored if the corresponding intersection does not exist in the 
structure, i.e., if edge ie E∉ . In Figure 1 (e), the values of yi are 

ignored for the intersections corresponding to the edges in gray 
lines.  

 
Figure 2.  Multi-component structures represented by 
topology vector x and decomposition vector y. 
 

Figure 2 illustrates examples of topology and 
decomposition represented by x and y. Figure 2 (a) shows a  
one-component structure identical to the ground structure with 
8 nodes V = {n0, n1, … , n7} and 18 edges E = {e0, e1, …, e17}. In 
this case, the corresponding topology vector is x = (x0, x1, …, 
x7) = (1,1,1,1,1,1,1,1) and decomposition vector is y = (y0, y1, …, 
y17) = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1). Figure 2 (b) illustrates a 
one-component structure represented by topology vector x = 
(0,0,0,1,1,0,1,1), which can be obtained by removing basic 
members with xi = 0 from the ground structure. Since this 
structure is made of one component, the topology vector 
should be of the form y = (*, *, *, *, *, *, *, *, *, *, 1, 1,*, 
*,1,1,1,*), where symbol * means either zero or one, 
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corresponding to the ignored edges shown in gray lines. Figure 
2 (c) shows a decomposition of the structure in Figure 2 (b) into 
two components c0 and c1, represented by decomposition 
vector y = (*,*, *, *, *, *, *, *, *, *, 1,0,*,*,0,0,1,*). Since y11, y14 
and y15 are 0, corresponding edges e11, e14 and e15 are shown in 
dotted lines, indicating the existence of joints (torsional springs) 
at the corresponding intersections. 
 

 
Figure 3. Constraints for feasible topology. (a) feasible 
structure, (b) infeasible structure violating Connectivity 
Constraint 1, (c) points considered in Connectivity Constraint 
2. A: boundary condition, B: loading, and C: displacement, (d) 
infeasible topology violating Connectivity Constraint 2 (point 
A not connected), and (e) infeasible topology violating 
Connectivity Constraint 2 (point B-C not connected).  

Definition of constraints 
Topology of the structure defined by the topology vector x 

must satisfy the following constraints to avoid infeasible 
topologies as a mechanical structure: 

 
� Connectivity Constraint 1: All beams should be connected 

to at least one other beam element, i.e., product topology 
graph G should be connected (Figures 3 (a) and (b)). 
 

� Connectivity Constraint 2: The following points should be 
connected to at least one beam element (Figures 3 (c), (d), 
and (e)):  

– points at which boundary conditions are defined; 
– points at which loads are applied; 
– points at which displacements are measured for 

the evaluation of structural performance. 
 

Connectivity Constrains 1 can be formally written as: 
 

IS_CONNECTED(GRAPH(x, y1)) = TRUE  (6) 
 

where x is a topology vector and y1 is  the decomposition vector 
with all components equal to one, GRAPH(x, y) is a function 
that returns the product topology graph specified by x and y, 
and IS_CONNECTED(G) is a function that checks the 
connectivity of product topology graph G. Connectivity 
Constraint 2 can be written as: 
 

1 1 1

0
B P L P DP

BP LP DPi i i

N N N

j j j
j S j S j Si i i

x x x
∈ ∈ ∈= = =

⋅ ⋅ ≠
     
     
     

∑ ∑ ∑∏ ∏ ∏  (7) 

 
where NBP, NLP, and NDP are the number of points at which 
boundary conditions are defined, loads are applied, and 
displacements are measured, respectively. SBPi, SLPi, and SDPi are 
sets of the indices of basic members attached to the ith point at 
which boundary conditions are defined, loads are applied, and 
displacements are measured, respectively. 

Definition of objective functions 
A multi-component structure represented by a topology 

vector x and a decomposition vector y is evaluated according to 
the following four criteria: 1) stiffness of the structure, 2) weight 
of the structure, 3) manufacturability of each component in the 
structure, and 4) numbers of joints (torsional springs) in the 
structure. 

Stiffness of a structure can be measured as the negative of 
the displacement at predefined points in the structure: 
 

fstiffness = -DISPLACEMENTS(GRAPH(x, y))     (8) 
 
where DISPLACEMENTS(G) is a function that returns the total 
displacements at predefined points in the structure represented 
by product topology graph G, using finite element analyses. 

Weight of a structure can be calculated as the inner product 
of topology vector x and vector w of the weights of the basic 
members in the ground structure: 
 

fweight = •w x     (9) 
 

Manufacturability of components (to be maximized) is 
evaluated considering the total cost of producing components 
in the structure (to be minimized) represented by a product 
topology graph GRAPH(x, y). It is assumed the components are 
made from sheet metals working, whose cost is estimated as the 
cost of stamping and blanking dies. The die costs consist of die 
set cost and die machining cost, which are functions of die 
usable area Au and shearing perimeter P, respectively [29]. For 
each component, Au is  approximated as the convex hull area of 
given component and P is  calculated as the outer perimeter of 
the component. Hence, larger size of the component results in 
higher value of Au requiring larger die set with higher cost. 
Also, complex geometry of component increases P value 
accompanied by higher die machining cost. 

(a) (b) 

(c) 

  

B,C  

A 

A 

(d) (e) 
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Following equation is used to calculate manufacturability of 
a structure: 
 

fmanufac = Wau(1-Au(GRAPH(x, y)) 
+Wp(1-P(GRAPH(x, y))      (10) 

 
where Au(G) and P(G) calculate the normalized die usable area 
and normalized shearing perimeter of the components in the 
structure represented by G, respectively, and Wau and Wp are the 
weighting factors. Qualitatively, maximizing fmanufac would result 
in a structure consisting of components in smaller sizes and in 
simpler geometries.  

Components are assumed to be joined with spot welds. 
Since the cost of spot welding for a structure is proportional to 
the number of weld spots in the structure, and the number of 
weld spots in a joint is approximately proportional to the 
torsional stiffness of the joint, the welding cost is estimated by 
the sum of the rates of torsional springs [Nm/rad] in the finite 
element model of the structure: 
 

fspringrate  = SPRINGRATE(GRAPH(x, y))    (11) 
 
where TOTALSPRINGRATE(G) calculates the sum of the spring 
rates in FE model defined by graph G. 

In summary, the multi-objective optimization problem to be 
solved can be stated as follows: 
 

maximize fstiffness = -DISPLACEMENTS(GRAPH(x, y)) 
minimize  fweight = •w x  
maximize  fmanufac = Wau(1 - Au(GRAPH(x, y)) 

+Wp(1 - P(GRAPH(x, y)) 
minimize  fspringrate  = SPRINGRATE(GRAPH(x, y)) 
 
subject to 
 IS_CONNECTED(GRAPH(x, y1)) = TRUE 

1 1 1

0
B P L P DP

BP LP DPi i i

N N N

j j j
j S j S j Si i i

x x x
∈ ∈ ∈= = =

⋅ ⋅ ≠
     
     
     

∑ ∑ ∑∏ ∏ ∏  

 0 0| | | |{0,1} , {0,1}V E∈ ∈x y  

Optimization Algorithm 
Due to the multi-objective formulation (as opposed to, e.g., 

weighted sum of multiple objectives) and the complexity of the 
underlying graph partitioning problem [32], the above 
optimization problem is solved using a multi-objective genetic 
algorithm (MOGA) [4,5], whose basic steps [5] are outlined 
below: 
 
1. Create a population P of n chromosomes (an encoded 

representation of design variables) and evaluate their 
values of objective functions.  

2. Rank each chromosome c in P according to the number of 
other chromosomes dominating c in Pareto sense (rank 0 is 
Pareto optimal). Store the chromosomes with rank 0 into set 
O. Also, create an empty subpopulation Q. 

3. Select two chromosomes ci and cj in P with probability 
proportional to n-rank(ci) and n-rank(cj). 

4. Crossover ci and cj to generate two new chromosomes ci’ 
and cj’ with a certain high probability. 

5. Mutate ci’ and cj’ with a certain low probability. 
6. Evaluate the objective function values of ci’ and cj’ and 

store them Q. If Q contains less than m new chromosomes, 
go to 3. 

7. Let QPP ∪←  and empty Q, Rank each chromosome in 
P and remove m chromosomes with lowest ranks from P.  

8. Update set O and increment the generation counter. If the 
generation counter has reached a pre-specified number, 
terminate the process and return O. Otherwise go to 3. 

 
Since two design variables, topology vector x and 

decomposition vector y, are binary vectors, the components of 
x and y are simply laid out in a linear chromosome of length 
|V|+|E| as illustrated in Figure 4. 
 

 
Figure 4. Chromosome representation of design variables x 
and y, where the elements of these vectors are simply laid 
out to form a linear chromosome of length |V|+|E|. 
 

Crossover in step 4 combines “genetic materials” of two 
parent chromosomes to produce two offspring chromosomes. 
The role of crossover is to combine high-quality partial 
solutions (building blocks) in parent chromosomes to produce 
higher quality offspring [33]. Since information in x and y are 
linked in a non-linear fashion as defined in the ground topology 
graph, the conventional one point or multiple point crossover 
for linear chromosomes will not effectively preserve the building 
blocks. For this type of problem, graph-based crossover has 
been successfully applied for improved performance of GA 
[6,7,8], which is adapted to fit to our problem as described 
below: 
 
1. Draw an arbitrary crossover line L on two parent structures 

P1 and P2, and use the line to “cut” P1 into two 
substructures S11 and S12,  and P2 into S2 and S22 
(Figure 5 (a)).  

  
x0 x1 x|V|-1 

… y0 y1 … y|E|-1 

|V|  |E|  

|V|+|E| 
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2. Partition product topology graphs of P1 to two subgraphs 
G11 and G12 corresponding to S11 and S12. Do the similar 
to partition the graph of P2 to G21 and G22 (Figure 5 (b)).  

3. Assemble an offspring graph with G11 and G22, and 
another with G21 and G12. During the assembly process, 
edges between two nodes came from different parents are 
randomly assigned (Figure 5 (c)).  

4. Construct offspring structures using the assembled graphs 
(Figure 5 (d)). 

 
 

 
Figure 5. Graph-based crossover operation. (a) Parent 
structures P1 and P2 cut by crossover line L, (b) 
corresponding partitioning of P1 and P2 in graph 
representation, (c) assembly of offspring graphs C1 and C2. 
Note that in C1, edges e11 and e12 are copied from parent P1 
because nodes n3, n4, and n5 are from P1.  Edges e16 and e13 
are randomly assigned because n6 is form P2 while n4 and n5 
are from P1. (d) Offspring structures C1 and C2 constructed 
from their graphs. Both C1 and C2 have 2 components. 

 
Crossover line L is selected in the geometrical space (where 

the physical structures belong) rather than in the topological 
space (where the product topology graphs belong) to realize the 
effective preservation of smaller high-quality substructures – 
building blocks for our problem.  

 
Even though both parent graphs are connected, the 

crossover may yield an offspring graphs C that are 
disconnected. In such cases, a repair operator is applied to 
reconstruct the connectivity, where Dijkstra’s algorithm [34] is 
used to find the shortest path on the ground topology graph 
between the disconnected subgraphs of C, and the nodes and 
edges on the shorted path are added to C. 

Mutation modifies a structure in the following three steps:  
 
1. Mutate topology vector x by random bit flipping. This will 

add or remove basic members (Figures 6 (b) and (c)). 
2. If the resulting structure is disconnected, apply the above 

repair operator to reconstruct connectivity.  
3. Mutate decomposition vector y by random bit flipping. This 

will alter the location of joints (Figure 6 (d)). 
 

 
Figure 6. Mutation operation. (a) original structure and graph 
(b) adding beam elements, (c) removing beam elements, and 
(d) altering joint locations. 

 
In addition to the above custom crossover and mutation, 

the implementation of MOGA used in the following examples 
utilizes linear fitness scaling, niching based on the distances in 
objective function space, and stochastic universal sampling [5]. 
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Also, the population is initialized to contain only chromosomes 
that satisfy both Connectivity Constraints 1 and 2. Figure 7 
shows the flowchart of multi-component structure synthesis . 
Software implementation, including MOGA code, is done in the 
C++ programming language. LEDA1 library was used for graph 
algorithm and an in-house FEM code2 is used to obtain fstiffness. 
 

 
Figure 7.  Flowchart of multi-component structure 
synthesis.  

 

CASE STUDY 
Multi-component structure synthesis in Figure 7 is applied 

to two case studies: a cantilever structure and a simplified 
automotive floor frame. Tables 1 and 2 list the geometric and 
material properties of the beam elements and the parameter 
values for MOGA runs used in both case studies , respectively. 
The spring rate of 100[Nm/rad] is used for all torsional springs. 
 

 
 
 

                                                                 
1  Developed by Algorithmic Solution (http://www.algorithmic-
solutions.com) 
2  Developed by Mr. Karim Hamza. 

Table 1. Geometric and material properties of beam 
elements used in the case studies. 

 
property value 

cross sectional area 314 [mm2] 
moment of inertia (Ixx, Iyy) 7,854 [mm4] 
polar moment of inertia 15,708 [mm4] 
density 3194.0 [kg/m3] 
Young’s modulus 210 [GPa] 

 
 
Table 2. Parameter values for MOGA runs used in the case 
studies. 

property Case I 
maximum # of generation 100 
number of population 1000 
replacement rate (m/n) 0.5 
crossover probability 0.9 
mutation probability for x 0.05 (case I) 

0.10 (case 2) 
mutation probability for y 0.10 

 

Case I: Cantilever Structure 
 For the first case study, a cantilever structure is modeled 

as a design domain in Figure 8 (a), with length 200 [mm] and 
height 100 [mm]. The left side of the domain is fixed on the wall 
and a vertical load P (=100 [N]) is applied at the lower right 
corner of the domain. The displacement is measured at the 
loading point to calculate the stiffness of the structure. Figure 8 
(b) shows the ground structure with 15 non-overlapping beam 
elements, each of which are regarded as a basic member. Figure 
8 (c) shows the ground topology graph of the ground structure 
in Figure 8 (b), containing 15 nodes and 44 edges.  
 

 
Figure 8. Case I model. (a) design domain, (b) ground 
structure with 15 beam elements, and (c) ground topology 
graph of 15 nodes (n0~n14) and 44 edges (e0~e43). 
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Figure 9 shows the typical convergence histories of MOGA 

runs with three different mutation probabilities for y (Figure 10 
(a)). All three plots indicate the increase in the size of Pareto set 
(number of Pareto optimal designs) as the number of generation 
increases. Note that as mutation probability decreases, the 
number of individuals in the Pareto Front converges closer to 
the total number of population (= 1000). 
 

 
Figure 9. Typical convergence histories of MOGA runs with 
three different mutation probability for y (black line: 0.1, dark 
gray line: 0.2 and light gray line: 0.3).  

 
Figure 10 shows objective function spaces obtained at the 

terminal generation (= 100). Because there are four objective 
functions, fstiffness, fweight, fmanufac, and fspringrate , the resulting 4-
dimensional space is projected on to four 2-dimensional spaces 
as shown in Figures 10 (a)-(d). Each 2-D plot shows points for 
all 1000 structural designs with respect to the chosen two 
objectives only, ignoring the values of the remaining two 
objectives. In all plots, the utopia points are located at the upper 
right corner. The points with rank < 3 (with respect to all four 
objectives) are marked black in each plot. The following 
observations can be made from these plots: 

 
� Observation 1: In fweight – fstiffness space (Figure 10 (a)), 

designs are concentrated on the upper-right portion.  
Possible explanation: Higher weight implies more beams, 
which tends to increase stiffness. 
 

� Observation 2: fweight – fmanufac space (Figure 10 (b)) shows a 
linear trend between fweight and fmanufac.   
Possible explanation: Shearing perimeter (P) that 
determines fmanufac is highly related to the fweight because we 
are using only beam elements, where component perimeter 
is directly proportional to the size (and weight) of the 
element. As a result, higher manufacturability implies less 
number of beams, which decreases total weight. 
 

� Observation 3: Designs with lower stiffness show higher 
manufacturability (Figure 10 (c)).  

Possible explanation: Higher manufacturability implies 
smaller components, which would require more joints, 
which in turn tends to reduce stiffness.  
 

� Observation 4: Design with higher fspringrate show lower 
stiffness (Figure 10 (d), upper portion). 
Possible explanation Higher fspringrate  implies more number of 
springs in the joints, which tends to reduce stiffness.  
 

 
Figure 10. Distribution of designs at generation = 100 for 
Case I. In all plots, the utopia points are at the upper right 
corner. Black-marked ones are designs with rank<3 with 
respect to all four objectives. Three representative Pareto 
optimal designs R1, R2 and R3 are shown in Figure 11. 

 
 

Three representative Pareto optimal designs, annotated as 
R1, R2 and R3 in Figure 10, are shown in Figure 11 and their 
objective function values are listed in the Table 3. Objective 
function values in Table 3 are plotted on a spider diagram in 
Figure 12. The geometry of each structure exhibits its unique 
characteristics allowing the following interpretations: 

 
� Structure R1 (Figure 11 (a)) is a very light structure with 

three simple components connected by 2 joints. Each joint 
design is composed of 2 torsional springs with spring rate 
100[Nm/rad]. The structure also fairly stiff thanks to the 
clever arrangement of beams (including a triangular 
structure formed with the wall), which imposes mostly axial 
loading in each beam, thereby avoiding bending of joints.  
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� Structure R2 (Figure 11 (b)) shows balanced performances 
in all objectives with very good stiffness. One component 
with the complex geometry (hence causing reduced 
manufacturability) seems the key to very high stiffness 
with low weight. 

 
� Structure R3 (Figure 11 (c)) has three components that are 

more complex and larger than the ones of R1 and R2. It is 
the stiffest among the three structures.  It contains the 
three triangular structures (including the one formed with 
the wall), which seems to help for increasing the stiffness 
of the structure. 

 

 
Figure 11. Representative Pareto optimal designs for Case I. 
(a) R1, (b) R2, and (c) R3.  R1 and R3 have 3 components and 
R2 has 4 components. 
 

Table 3. Objective function values for R1, R2, and R3. 
 

 fstiffness 
[mm] 

fweight  
[10-3Kg] 

fmanufac fspringrate  
[Nm/rad]  

R1 0.510 341.4 0.960 400.0 
R2 0.071 541.4 0.764 700.0 
R3 0.017 653.5 0.673 800.0 

 

 
Figure 12. A spider diagram for the objective function values 
of designs R1, R2, and R3. Note that R2 shows a balanced 
performance in all 4 objective functions. 
 

Case II: Simplified Automotive Floor Frame under 
Multiple Loadings 

For the second case study, a simplified automotive floor 
frame under multiple loadings is modeled as a design domain in 
Figures 13 (a)-(c), with length 3000 [mm] and width 1600 [mm] 
seen from the above. The structure is subject to the following 
three loading cases: 

 
1. Front wheel locations are fixed on the ground and a unit 

horizontal load P1 (= 1.0 [N]) is applied at each of the right 
end points of the domain that represent rear wheel 
locations (Figure 13 (a)).  

2. Rear wheel locations are fixed on the ground and a unit 
horizontal load P2 (= 1.0 [N]) is applied at each of the left 
end points of the domain that represent front wheel 
locations (Figure 13 (b)).  

3. Both of the front and rear wheel locations are fixed and unit 
horizontal load P3 (= 1.0 [N]) is applied at the middle of the 
domain (Figure 13 (c)).  
 
Displacements are measured at the loading points to 

calculate the stiffness of the structure. Since there are three 
values of displacements corresponding to the three loading 
cases, the number of objective functions becomes 6 (3 stiffness, 
1 weight, 1 manufacturability, and 1 spring rates).  

Figure 13 (d) illustrates the ground structure with 70 non-
overlapping beam elements, each of which are regarded as a 
basic member. Due to the symmetric nature of the automotive 
floor frame, only right half of the floor frame will be modeled and 
the left side of the floor frame will have the mirror image of the 
right side. Figure 13 (e) shows the ground topology graph of 
upper half of the ground structure in Figure 13 (d), containing 38 
nodes and 130 edges.  
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Figure 13. Case study II model. (a)~(c) Design domain with 
three loading and boundary conditions, (d) ground structure 
with 70 beam elements, and (e) ground topology for upper 
half model with 38 nodes (n0~n37) and 130 edges. Note that 
symmetric design assumption made only the beams in the 
upper half modeled in (e). Edge numbers (e0~e129) are not 
shown in (e) due to the space limitation. 

 
 

 
Figure 14. Typical convergence histories of MOGA runs with 
three different mutation probability for x (black line: 0.05, and 
gray line: 0.1).  

 
Figure 14 shows the typical convergence histories of 

MOGA runs with two different mutation probabilities for x in 
Case II. As in Case I, all plots indicate the increase in the size of 
Pareto set (number of Pareto optimal designs) as the number of 
generation increases. 

The six selected objective function spaces obtained at the 
terminal generation (= 100) are illustrated in Figure 15. Because 
there are six objective functions (fstiffness_1, fstiffness_2, fstiffness_3, fweight, 
fmanufac, and fspringrate), the resulting 6-dimensional space is 
projected on to 2-dimensional spaces as shown in Figures 15 
(a)-(f) as in Case I. The following observations can be made 
from these plots: 

 
 

 
Figure 15. Distribution of designs at generation = 100. In all 
plots, the utopia points are at the upper right corner. Black-
marked ones are designs with rank < 3 with respect to all 
six objectives. Three representative Pareto optimal designs 
R1, R2, and R3 are shown in Figure 16. 
 
� Observation 1: As in Case I, designs are concentrated on 

the upper-right portion in fweight – fstiffness_1 space (Figure 15 
(a)).  
Possible explanation: Higher weight implies more beams , 
which tends to increase stiffness. 

 

(a) (b) 

(e) (f) 

(d) 

fstiffness_2 

fmanufac 

-0.012 -112.7 

0.159 

1.0 

R1 

R2 

R3 

-fweight 

fmanufac 

-3400.0 -13501.2 

0.159 

1.0 

R1 

R2 

R3 

(c) 

fstiffness_1 

-fspringrate 

-0.011 -826.3 

-8.2*106 

-
0.4*106 

R1 R2 

R3 

fmanufac 

-fspringrate 

1.0 0.159 

-8.2*106 

-
0.4*106 

R1 

R2 

R3 

-fweight 

fstiffness_1 

-3400.0 -13501.2 

-826.3 

-0.011 

R1 

R2 
R3 

fstiffness_1 

fstiffness_3 

-0.011 -826.3 

-34.76 

-0.001 

R1 R2 
R3 

Number of Generation 

100 40 20 60 80 

Individuals in 
Pareto Front 

200 

400 

600 

800 

0 
0 

(a) 

design       
domain 

P3 
 

 P3 

  

design       
domain 

 

P1 

 

P1 

(d) 

n9

n1 3 n14

n10

n3 2 n33

n30

n31

n36 n37

n35

n34

n0

n3 n4

n1

n2

n7 n8

n5

n17 n26

n22n6

n16

n19

n2 7

n29

n28n15

n23 n24

n21

n20

n11

n18 n2 5

n12

(e) 

 

 
design       
domain 

P2 

P2 

(b) (c) 



 11 Copyright © 2003 by ASME 

� Observation 2: fweight – fmanufac space (Figure 15 (b)) shows 
two groups of solutions. While upper group is composed 
of solutions mostly with beam-shaped components , lower 
group solutions contain more number of components with 
larger area. In the upper group, the strong linear trends can 
be seen between fweight and fmanufac as in Case I. 
Possible explanation: As in Case I, in the structures 
composed of linear shaped components, higher 
manufacturability implies less number of beams, which 
decreases total weight. 
 

� Observation 3: As in Case I, designs with higher fspringrate  
show lower stiffness (Figure 15 (d), upper portion). 
Possible explanation: Higher fspringrate  implies more number 
of springs in the joints, which reduce stiffness. 

 
� Observation 4: Designs with higher manufacturability 

show higher value of fspringrate  (Figure 15 (f)).  
Possible explanation: Higher manufacturability implies 
smaller components, which would require more joints, 
which in turn needs more springs. 
 

 
Figure 16. Representative Pareto optimal designs. (a) R1, (b) 
R2, and (e) R3. R1, R2 and R3 have 18, 8 and 2 components, 
respectively. 

 

Three representative Pareto optimal designs, annotated as 
R1, R2 and R3 in Figure 15, are shown in Figure 16 and their 
objective function values are listed in the Table 4. Objective 
function values in Table 4 are plotted on a spider diagram in 
Figure 17. The geometry of each structure exhibits its unique 
characteristics allowing the following interpretations: 

 
� Structure R1 (Figure 16 (a)) is a light structure with 18 

simple beam shape components connected by 14 joints. 
The structure shows high manufacturability due to the 
simple shapes of components with large number of joints 
sacrificing the stiffness characteristics. In Figure 17, 
Structure R1 shows a biased performance on the fweight and 
fmanufac. 

 
� In Structure R2 (Figure 16 (b)), one middle component with 

the complex geometry (hence causing reduced 
manufacturability) and closed box sub-structures in the 
middle of the structure seem to increase the stiffness of the 
structure with relatively low total weight. In Figure 17, 
Structure R2 shows a well balanced performance on every 
objective functions. 

 
� Structure R3 (Figure 16 (c)) is the heaviest structure among 

these three structures and contains one big component 
that are more complex and larger than the ones of R1 and 
R2. Due to this complex component, manufacturability of 
this  structure is low. However, it increased the stiffness of 
the structure in all three loading cases. In Figure 17, 
Structure R3 shows a biased performance on the stiffness 
functions. 

 
 

Table 4. Objective function values for R1 ~ R3 in Case II  
 

 fstiffness_1 
[mm] 

fstiffness_2 
[mm] 

fstiffness_3 
[mm] 

fweight  
[Kg] 

fmanufac fspringrate  
[Nm/rad]  

R1 119.41 243.56 0.432 4.00 0.998 3.2*106 
R2 17.38 1.99 0.068 6.28 0.718 2.2*106 
R3 0.08 1.02 0.002 12.10 0.190 1.4*106 
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(b) 

(c) 
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Figure 17. A spider diagram for the objective function values 
of the representative Pareto optimal designs (R1~R3) in Case 
II. Note that R2 shows a balanced performance in all 6 
objective functions. 

SUMMARY AND FUTURE WORK 
This paper described a method for synthesizing multi-

component structural assemblies, where the topology and 
decomposition of a structure is simultaneously optimized over a 
ground structure for stiffness, weight, component 
manufacturability, and assembleability. Multi-objective genetic 
algorithm, coupled with finite element analyses, was employed 
to efficiently obtain Pareto optimal designs for the four 
objectives. Two simple case studies were presented to 
demonstrate the effectiveness of the proposed method.  

While the obtained results are inspiring, further relaxation 
of the optimization problem is desired, for example, by allowing 
variable spring rate at joints and variable cross section of beam 
elements. We also believe it would be possible to extend the 
present approach to continuum based topology optimization by 
extending the framework of, for example, the Homogenization 
Design Method [19]. The developments in these directions are 
currently in progress and will be reported at other future 
opportunities. 
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