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ABSTRACT 

This paper presents an integrated approach to design an 
assembly, fixture schemes and an assembly sequence, such that 
the dimensional integrity of the assembly is insensitive to the 
dimensional variations of individual parts. The adjustability of 
critical dimensions and the proper constraining of parts during 
assembly process are the keys in achieving the dimensional 
integrity of the final assembly. A top down design method is 
developed which recursively decomposes a lump of initial 
product geometry and fixture elements matching critical 
dimensions, into parts and fixtures. At each recursion, joints are 
assigned to the interfaces between two subassemblies to ensure 
parts and fixtures are properly constrained at every assembly 
step. A case study on a simple frame structure is presented to 
demonstrate the method. 

INTRODUCTION 
Structural enclosures of modern mechanical products, such 

as ship hulls, airplanes and automotive bodies, typically are 
made of hundreds or thousands of parts due to their geometric 
complexity and sizes. As the number of parts increases, 
however, achieving the dimensional integrity of the final 
assembly becomes more difficult due to the inherent variations 
in manufacturing and assembly processes.  

 

 
Figure 1. Two box designs (a) without and (b) with 
adjustable height during assembly [1]. 
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A solution is to adjust critical dimensions in assembly 
processes when parts or subassemblies are located and fully 
constrained in fixtures. This in-process dimensional adjustment 
is typically facilitated by slip planes, mating surfaces at joints 
that allow a small amount of relative motions. For example, 
Figure 1 shows two designs of a rectangular box. In contrast to 
design in (a) with no in-process adjustability of the critical 
dimensions (length between sections 1 and 3), design in (b) 
provides slip planes such that relative location of parts can be 
adjusted along the critical dimension. 

 

 
Figure 2. Two box designs (a) without and (b) with properly 
constrained parts [1]. 

The dimensional integrity of an assembly is also affected 
by the post-assembly distortion due to the internal stress 
induced by joining parts with dimensional mismatches. A 
solution is to ensure the proper constraining of subassemblies at 
each assembly step. For example, part 1 in Figure 2 (a) is not 
properly constrained and therefore the post-assembly distortion 
might occur, if the length of sections 2 and 4 are slightly 
different due to manufacturing variation. With two slip planes 
perpendicular to each other, the design in (b) can absorb 
manufacturing variations within parts 1 and 2-3-4, provided 
that variations in angles are negligible. 

In addition to the assembly design including joint types at 
part interfaces, the assembly sequence also influences in-
process dimensional adjustability and proper part constraints. In 
the assembly sequence in Figure 3 (a), the critical dimension 
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(total length) is not adjustable since there is no slip plane 
parallel to it when the total length is realized with the addition 
of part 1. On the other hand, the sequence shown in (b) 
provides the slip plane at the assembly step where the critical 
dimension is achieved, to absorb the variation in length. As 
another example, the sequence in Figure 4 (b), where each 
critical dimension is independently adjusted at each step, is 
more desirable than the sequence in (a), where both dimensions 
are adjusted at one step, inevitably requiring a compromise 
between two potentially conflicting critical dimensions. Figure 
5 illustrates an effect of the assembly sequence on proper part 
constraints, where the sequence in (a) causes over-constraint at 
the second step, whereas all parts are properly constrained at all 
steps in (b), thus avoiding potential assembly stress. 

 

 
Figure 3. Assembly sequences (a) without and (b) with in-
process adjustability (modified from [2]). 

 
Figure 4. Assembly sequences where two dimensions are 
adjusted (a) at one step and (b) independently at two steps 
(modified from [2]). 

 
Figure 5. Assembly sequences (a) without and (b) with 
proper constraints [1]. 

Let us note Figure 4 again. In Figure 4 (b), each critical 
dimension is realized on a separate fixture, in which case, it is 
the only feasible assembly sequence to realize both critical 
dimensions independently. However, to make the problem 
more complicated, other assembly sequences are feasible if 
fixtures are arranged differently. For example, in Figure 6, both 
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critical dimensions are realized independently on the only 
fixture, in two different assembly sequences, (a) and (b). What 
is different from Figure 4 (a) is that pins locating part 1 and 2 
control the location of part 1 and 2 separately, thus enabling 
independent realization of the critical dimensions. The pin 
locating part 3 serves realizing both critical dimensions. Indeed, 
the fixture in Figure 6 is the union of the two fixtures utilized in 
Figure 4 (b). Examining different ways of arranging fixtures for 
multiple KCs is valuable, as using one fixture to deal with 
several critical dimensions is quite common for large scale 
assemblies, especially when several parts constitute a flat 
subassembly. 

 

 
Figure 6. Feasible assembly sequences depend on 
utilization of fixtures. Compare with Figure 4 (b). 

As pointed out by industry practitioners and researchers, 
the proper constraint and adjustability are key elements in 
assembly design to achieve high precision and accuracy with 
low cost parts [3]. Whereas it is important to carefully design 
and sequence the assembly and fixtures in order to avoid over-
constraints and the loss of desired adjustability, industry 
practices do not come up to systematic approaches. Despite the 
fact that the proper constraint and adjustability should be 
ensured between ‘subassemblies’ at ‘every assembly step,’ not 
between parts, current design practices and CAD systems 
overlook this important property and mistreat joints and 
tolerances as the attributes of part geometry without 
considering assembly sequences. For complex mechanical 
assemblies, this causes many dimensional discrepancies at the 
manufacturing stage, followed by costly redesigns and reworks. 
To make matters worse, typical engineering countermeasures in 
such situations have often been to tighten part tolerances, 
without examining the assembly design and tolerance 
relationships as a whole [4]. 

As a remedy, we have presented a top-down 
decomposition-based assembly synthesis method [1] to fully 
enumerate all feasible sets of part decomposition, joint 
assignments and an assembly sequence, for 2D geometry. 
Assuming that assemblies can be built in the reverse sequence 
of decomposition, the method recursively decomposes a given 
product geometry into two subassemblies until parts become 
manufacturable. At each recursion, joints are assigned to the 
interfaces between two subassemblies to ensure in-process 
dimensional adjustability and properly constraint. The method 
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has also been applied to 3D beam-based structure [5], where 
Screw Theory [6] is utilized for the evaluation of in-process 
adjustability and proper constraints of subassemblies at every 
assembly step. 

However, our previous works [1, 5] assume one fixture to 
achieve every critical dimension (as shown in Figure 4 (b)), and 
hence incapable of exploring various fixture schemes†. This 
paper extends our previous works to design fixture scheme as 
an integrated part of assembly synthesis, which enumerates all 
feasible “designs” (assembly designs, fixture schemes, and 
assembly sequences) by treating fixtures as an entity of 
assembly. Not only does this integration explore all feasible 
fixture schemes along with assembly designs, but also reveals 
feasible assembly sequences that were illicit in our previous 
methods [1, 5], such as those shown in Figure 6. A case study 
on a simple space frame is presented to demonstrate the method. 
Considering the number of parts, the number of fixtures, the 
depth of assembly tree, and the number of under-constraints as 
objectives to minimize, a multi-objective graph search is 
performed on the enumerated feasible designs, in order to 
obtain Pareto optimal solutions. Some representative designs in 
the Pareto set are examined to illustrate the trade-offs among 
the assembly design, fixture scheme, and assembly sequence. 

RELATED WORKS 
Since previous works in general relevance to assembly 

synthesis are reviewed in [1], this section focuses on the 
literature directly related to the present extension of the 
assembly synthesis method, namely on property constrained 
assembly designs and fixture designs.   

The advantages of properly constrained assemblies are 
well known to practitioners in precision machinery design, and 
several methods have been proposed in literatures including: 
Kinematic Design [7], Minimum Constraint Design [8] and 
Exact Constraint Design [3, 4]. These works describe 
disadvantages of over-constraints and provide good practices as 
well as analytical methods to compute constraints. In these 
works, the most commonly cited merit of properly constraint 
design is repeatability that leads to high precision. Downey et 
al. [9] analyzed and classified elements of assemblies that 
absorb manufacturing variations of parts.  

A universal analytical method for motion and constraint 
analysis dates back to Screw Theory, a pioneering work by Ball 
[6]. Since then, Screw Theory has been applied to areas of 
mechanism, robotics and machine design. Among others, 
Waldron [10] utilized the screw theory to build a general 
method which can determine all relative degrees of freedom 
(DOF) between any two rigid bodies making contacts to each 
other. Blanding [4] shows the application of screw theory to 
assembly design. Adams and Whitney [11] also used screw 
theory to compute the constraints on parts and applied it to rigid 
body assemblies with mating features such as pin-slot joint. 
Asada and By [12] proposed kinematic analysis method for 
fixture layout design by modeling kinematic constraints of 
 

                                                           
† Fixture scheme is defined as a plan showing which fixture will control 

what critical dimensions where in assembly sequence. More formal definition 
will follow in terminology section. 
fixture locators as a Jacobian matrix, which should have full 
rank to locate a given work piece uniquely at a desired position. 

While these works provide tools for analyzing constraints 
in a given assembly and design guidelines, they do not address 
a systematic and integrated synthesis of an assembly and fixture 
scheme with desired constraint characteristics such as in-
process dimensional adjustability and proper part constraints, as 
discussed in this paper. Although design of fixture scheme 
should precede physical fixture layout design, authors could not 
find previous works attacking this problem in a systematic way. 

TERMINOLOGY 
Since the assembly synthesis deals with objects yet to be 

decomposed into an assembly of separate parts, a few terms and 
concepts need to be defined to avoid confusion with generic 
meanings used in other literatures. 

• A product geometry is a geometric representation of a 
whole product as one piece before decomposition into parts.  

• A member is a section of a product geometry allowed to be 
a separate part. A pair of members is connected when they 
meet at a certain point in the product geometry.  

• A configuration is a group of members which are 
connected to at least one member within the group. A 
product geometry is a configuration, so as a part (as 
defined below). 

• The Key Characteristics (KCs) are defined by Lee and 
Thornton [13] as product features, manufacturing process 
parameters, and assembly features that significantly affect 
a product’s performance, function and form. In this paper, 
a KC refers to a critical dimension to be achieved in 
assemblies.  

• A decomposition is a transition of a configuration into two 
sub-configurations by removing connections between two 
members.  

• A part is a configuration that is not decomposed further 
under given criteria, e.g., a minimum part size. A part may 
consist of one or more members.  

• A joint library is a set of joint types available for a specific 
application domain (Figure 7).  

 
 

Figure 7. An example of joint library for 3-D beam  based 
assemblies consisting of lap, butt and lap-butt. 

• An (synthesized) assembly is a set of parts and joints that 
connect every part in the set to at least one of other parts in 
the set. 

• Assembly synthesis is a transformation of a product 
geometry into an assembly. 

• A fixture element is an imaginary part of a fixture to 
control a KC. Physically, a KC will be controlled by a set 
of locators, and the fixture element is abstract 
3 Copyright © 2004 by ASME 



representation of this set of locators. Thus, each KC will 
have a fixture element corresponding to it. A fixture is a 
group of fixture elements and contols corresponding KCs. 

• Fixture scheme is partitioning the whole set of fixture 
elements into groups and assigning them into assembly 
sequence. 

SCREW THEORY‡ 
In Screw Theory, a screw is defined as a pair of a straight 

line (screw axis) in a 3D Cartesian space and a scalar (pitch). It 
is commonly represented by screw coordinates, a pair of two 
row vectors S = (s; s0) in 3D Cartesian coordinates, where s is a 
unit vector parallel to the screw axis and s0 is given as:  

s0 = r × s + ps                                     (1) 

where r is the position vector of a point on the screw axis and p 
is the pitch. Equivalently, p can be expressed using s and s0 as: 

ss
ss
⋅
⋅

= 0p                                        (2) 

A screw with an infinite pitch does not follow Equation (1), 
therefore it is denoted by s being the zero vector and s0 being 
the unit vector parallel to the screw axis. 

Two types of screws, twist and wrench, are utilized in this 
paper. A twist is a screw representing a motion of a rigid body 
simultaneously rotating around and translating along an axis. 
Using screw coordinates, it is denoted as T = (ω; v), where ω is 
the angular velocity and v is the linear velocity of a point on the 
body (or its extension) located at the origin of global reference 
frame. A wrench is a screw representing a force along and a 
moment around an axis exerted on a rigid body. Using screw 
coordinates, it is denoted as W = (f; m), where f is the force and 
m is the moment that a point on the body (or its extension) 
located at the origin of global reference frame should resist. 

Two screws S1 = (s1; s01) and S2 = (s2; s02) are reciprocal to 
each other, if and only if they satisfy:  

s1 ⋅ s02 +  s01 ⋅ s2 = 0.                                (3) 

If a twist T is a reciprocal of wrench W (or vise versa), W does 
no “work” to a rigid body moving according to T.  

When a body can receive linear combinations of several 
screws (either twist or wrench), this set of screws are typically 
represented as a matrix where each screw in the set forms a row 
vector of the matrix. This matrix is called a screw matrix. As its 
row space is the screw space (a space formed by the set of 
screws in the matrix), the rank of a screw matrix is equal to the 
dimension of the screw space.  

The function reciprocal(S) returns a screw matrix whose 
row consists of the screws reciprocal to those in S. It can be 
obtained by exchanging the former three columns and the letter 
three columns of the null space of S.   
 

                                                           
‡ The terminology and formalization in this section are summarized 
from [6], [11], [14], [15] and [16]. 
The union of screw matrices represents the sum of the 
screw spaces defined by the matrices, and can be obtained by 
simply “stacking” them on top of one another:   
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The intersection of screw matrices is the set of screws 
common to the screw matrices, and can be computed through 
double reciprocals:  

1 1

recip rocal( reciprocal( ))
n n

i i
i i= =

≡S S∩ ∪       (5) 

Since a twist and a wrench are also screws, the definitions of 
reciprocal, union, and intersection hold. 
 

 
 
Figure 8. Lap (a) and lap-butt joint (b) of a beam based 
model and the local coordinate frames for twists.  

Woo and Freudenstein [14] presents kinematic properties 
of various joint types in screw coordinates, which are adopted 
to build twist matrices of beam joint types. Figure 8 (a) shows a 
typical lap joints found in beam-based structures. When it is 
attached to another beam, the tab allows planar motion parallel 
to x-y plane. Also, if we assume that the length of the tab is 
very small compared to the length of the beam, it can be treated 
as a line contact along y-axis, allowing the rotation about y-axis. 
Thus, the lap join, with respect to the local coordinate frame 
shown in the figure, can be modeled as a twist matrix:   
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Similarly, a butt joint in Figure 8 (b) allows the motion parallel 
to y-z plane, can be modeled as: 
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buttT                        (7) 

In twist matrices in Equation (6) and (7), each row 
represents an independent motion, and each non-zero number 
represents rotation or translation along a corresponding axis – 

x y

z
(a)

x 

z

y

(b) 
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ωx, ωy, ωz, vx, vy or vz. For example, the first row in Equation 
(6) has 1 at the second column, which means the lap joint 
allows rotational motion about y-axis. In the third row, it has 1 
at the fourth column, meaning translation along the x-axis is 
allowed. Since these matrices are used only to give information 
on which DOFs are not constrained for a joint type, the 
magnitude of each twist (row) of these twist matrices (i.e., the 
magnitudes of the angular and linear velocities in the twist) 
does not have significant meaning in this paper. 

Once the twist matrix is obtained for a joint type, the 
reciprocal wrench matrix can be computed as described above. 
For instance, the wrench matrices corresponding to twist 
matrices in (6) and (7) are: 

0 0 1 0 0 0
reciprocal( )

0 0 0 1 0 0lap lap

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
W T        (8) 

1 0 0 0 0 0
reciprocal( ) 0 0 0 0 1 0

0 0 0 0 0 1
butt butt

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

W T       (9)  

Each non-zero number now represents force or moment along a 
corresponding axis – fx, fy, fz, mx, my or mz.  Since a wrench that 
is a reciprocal of a twist does no “work” to a rigid body moving 
according to the twist, these are the forces and moments the 
joint supports (hence resulting no work). For example, in the 
first row in Equation (8) has 1 at the third column, which means 
the lap joint can support a force along z-axis. 
 

 
 

Figure 10. Assembly synthesis by top-down hierarchical 
decomposition. Assembly sequence is the reverse of the 
decomposition sequence. 

ASSEMBLY AND FIXTURE SCHEME SYNTHESIS 

Assembly synthesis via recursive decomposition 
There are numerous issues related to assembly design. 

Among others, adjustability and proper constraint are the key 
necessary conditions for dimensional integrity. Dissimilar to 
other issues such as structural stiffness and product function, 
these two conditions should be satisfied at every assembly step, 
as illustrated in Figures 1-5. By taking advantage of this fact, 
one can hierarchically decompose a given product geometry 
such that (sub)geometries at each decomposition step satisfy 
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the above desired conditions when they are assembled back 
together in the reverse order (see Figure 9). Our previous works 
[1, 5] suggested the framework of assembly synthesis via such 
hierarchical decomposition, which was successfully applied to 
simple 2-D [1] and 3-D [5] geometries.  

Generation of fixture elements  
A KC, in this paper, is assumed to be a critical dimension 

between parts to be achieved by the adjustment during the 
assembly process. Thus, the dimension noted as a KC will be 
constrained by a fixture, according to which parts being 
assembled will be located. In this context, we know the fixture 
would have to constrain at least the DOFs specified by the KC, 
regardless of its physical embodiment. Provided a KC is 
controlled by a fixture, the assembly of two subassemblies 
connected by a KC can be viewed as two assembly steps, 
involving two subassemblies and a fixture, such as {{part1, 
fixture}, part2}. As depicted in Figure 10, this allows each KC 
to be replaced by a fixture element connecting the same 
members. The graph representation shown in Figure 11 is what 
we call configuration graph. After replacing KCs with fixture 
elements, the configuration graph is a pair: 

C = (M, E)                                  (10) 
 

, where M is the set of nodes representing members and 
fixture elements, and E is the set of edges representing 
connections. Each node in M is associated with its type 
(members are in white and fixture element are in black in 
Figure 10), and each edge in E between a member node and a 
fixture element node is associated with a wrench matrix 
representing the DOFs to be constrained by the replaced KC. 
For example, if kc1 in Figure 10 is the distance between 
members 1 and 3 in y-direction measured at x = 1.5 in the 
global reference frame, then the wrench matrix associated 
with edges {1, f1} and {3, f1} is 

 
( )0 1 0 0 0 1.5l1 =W .                   (11) 

where subscript l indicates “locator”. Similarly, the wrench 
matrix associated with for edges {1, f2} and {2, f2} are: 

( )0 0 0 0 0 1l2 =W .                    (12) 

While seemingly subtle, this replacement of KCs with the 
corresponding fixture elements is a major advance beyond our 
previous works [1, 5], which enables an elegant integration of 
the synthesis of a fixture scheme into assembly synthesis 
process. Initially, each fixture element is connected to all the 
other fixture elements, in order to allow the exploration of all 
possible fixture schemes. The connections between a fixture 
element and a member represent minimum locators that 
constrain at least the DOFs specified by the replaced KC. Any 
additional DOFs needed to uniquely locate the part will be 
computed during assembly and fixture scheme synthesis as 
described in the following section. 

Further, the configurations after the replacement of KCs 
with fixture elements are classified to three classes:  
5 Copyright © 2004 by ASME 



• Incomplete configuration: a configuration with 
unconnected members or with a fixture element connected 
to less than two members. For example, the second step of 
Figure 6 (b) is an incomplete configuration since, members 
are not connected and the fixture element controlling the 
distance between members 2 and 3 has only one 
connection (to part 3) due to the absence of member 2. 

• Fixture: a configuration consisting of only fixture elements. 
• Complete configuration: a configuration that is neither an 

incomplete configuration nor a fixture. 

 
 

Figure 10. Replacement of KCs with fixture elements whose 
locators constrain the same DOFs. 

Feasible binary decomposition 
The assembly synthesis algorithm [1] adopted in this paper 

assumes every assembly step combines a pair of subassemblies. 
Conversely, the algorithm decomposes a configuration into two 
(sub)configurations by removing some connections, which is 
equivalent of finding a cut-set [17] of the configuration graph. 
Decomposition is made only when the reverse of it yields a 
feasible assembly step, for which there are two criteria. Firstly, 
the assembly step is binary - only two subassemblies are joined 
at the assembly step. This is justified by the fact that a non-
binary assembly step (eg., assembly of multiple parts on a 
fixture in one step) can be broken down to an equivalent 
sequence of binary assemblies. Secondly, at least one of two 
subassemblies joined at the assembly step is a complete 
configuration, which is justified in the next paragraph.  

When a configuration is incomplete, subassemblies should 
remain on the fixture because subassemblies are either not 
connected or the fixture has at least one assigned KC yet to 
realize (such as the status shown in Figure 6 (b)). Since fixtures 
are usually heavy or grounded, it would be very rare that a 
subassembly attached to a fixture is assembled to another 
subassembly in the same situation, or to another fixture. For the 
same reason, assembly of two fixtures is considered infeasible. 
On the other hand, when a configuration is complete, it has 
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only one connected subassembly and, if any, a fixture with all 
assigned KCs realized. Therefore, it is ready to leave the fixture 
for further assembly with any configuration including a fixture.  

 

 
 

Figure 11. A feasible decomposition 

 
 

Figure 12. An infeasible decomposition that results in two 
incomplete sub-configurations.  

For example, Figure 11 shows a feasible decomposition 
yielding one complete and one incomplete sub-configurations. 
In Figure 12, both sub-configurations are incomplete, thus will 
not be considered as a feasible decomposition.  

More formally, decomposition from configuration Ca = 
(Ma, Ea) to two sub-configurations Cb = (Mb, Eb) and Cc = (Mc, 
Ec) is feasible if the following conditions are satisfied: 

• Mb ≠ ∅ and Mc ≠ ∅. 
• Cb and Cc are connected. 
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• At least one of Cb and Cc is a complete configuration. 
• Ma = Mb  ∪ Mc. 
• Mb  ∩ Mc = ∅.                                                                 (13) 

The 1st condition states sub-configurations should be nonempty. 
The 2nd condition states the sub-configurations must be 
connected. The 4rd and 5th conditions specify the configuration 
should split into a pair of disjoint sub-configurations.  

Decomposition rule for dimensional integrity 
Once a decomposition satisfying conditions in Equation 

(13) is found, feasible joint types are assigned to broken 
connections, which is represented as mapping JLCSdd 6:γ , 
where CSd is the cut-set broken by decomposition d and JL is a 
library of joint and locator types. With the joint assignment, 
(binary) decomposition d can be uniquely specified as d = (Ma, 
γd, (Mb, Mc)). See Figure 13 for an example. Note that feasible 
joint types may depend on the local geometry near the joint 
location. For example, feasible joint types between two 
perpendicular beams would be different from those for two 
coaxial beams. The broken connections with the assigned joints 
are associated with the wrench matrices computed according to 
the assigned joint types and orientations. Every connection 
between a member and a fixture element already has a wrench 
matrix computed in the previous step; therefore no action is 
taken even if it is broken by a decomposition.  

 

 
 

Figure 13. Joints assigned to broken connections, for 
which wrench matrices are computed accordingly (fixture 
elements omitted in the left figure). 

Having replaced all KCs with the corresponding fixture 
elements, the only criterion that needs consideration for 
assigning joint types to broken connections is the proper 
constraint of the mixture of subassemblies and fixtures at every 
assembly step. In particular, there is no need to explicitly 
consider the adjustability for KCs as required in our previous 
work [1] since the proper constraint including the DOF 
constrained by KCs implies the assigned joints do not interfere 
with the DOFs constrained by KCs, automatically ensuring 
their individual adjustability.   

In order for subassemblies being assembled to be properly 
constrained, the joints should not constrain the same DOF more 
than once, as illustrated in Figure 5. This assembly rule is 
inversely stated as the decomposition rule for proper constraint 
in our previous work [1], which only allows the combination of 
joints yielding no over-constraint of parts. Although when one 
subassembly is located on an empty fixture, the fixture should 
constrain all six DOFs [12], when the next subassembly is put 
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together contacting the other subassembly on the fixture, it 
would be constrained by both the other subassembly and the 
fixture. Therefore, joints must be selected in such a way that no 
DOF is constrained twice not only among joints but also with 
locators. In such cases, the intersection of the wrench matrix 
corresponding to any subset of CSd and the wrench matrix of 
any other disjoint subset must result in the zero matrix: 

1 2

1 2 1 2

( ) ( )

, , ,

( ) ( )
d d

d

e e
e C e C

C C CS C C

γ γ
∈ ∈

∀ ⊆ = ∅

=W W O

∩

∩∪ ∪              (14) 

which is also equivalent to: 

( ) ( )
rank( ) rank( )

d d
d d

e e
e CS e CS

γ γ
∈ ∈

= ∑W W∪             (15) 

Further, in order to have all six DOFs constrained, 

( ) ( )
rank( ) rank( ) 6

d d
d d

e e
e CS e CS

γ γ
∈ ∈

= =∑W W∪          (16) 

When any set of joint types and fixture elements satisfies 
Equation (15) with the total rank less than six, it is considered 
to be feasible, assuming that additional fixtures or locators on 
existing fixtures will be arranged. Six less the number of DOFs 
constrained is counted as the number of under-constraints for 
each feasible joint assignment and recorded as uc(γd).  A 
predicate of a decomposition d = (Ma, γd, (Mb, Mc)) for 
complying the rule is given as:  

0 0 0 0de:2 (2 ) (2 2 ) { , }M E M MJL true false× × ×6 6       (17) 

where de(Ma, γd, (Mb, Mc)) is true if and only if the conditions 
in (13) and Equation (15) is satisfied. 

There is an important exception to Equation (15), for 
which compensation should be made before it is checked 
against Equation (15); when there are connections in CSd, from 
multiple fixture element to one member, the wrench matrices 
associated to the connections should be unionized such that the 
intersection among them could be ignored. This is based on a 
basic assumption that there would be no over-constraint 
between a fixture and a member. Suppose there is a set of 
fixture elements that are connected to a member and more than 
one of these connections are broken by a decomposition. In this 
case, even if there is a DOF constrained by more than one 
fixture elements, the DOF will be constrained by one locator in 
actual implementation. For example, see the first step in Figure 
6 (b). When part 3 is placed on the fixture, the fixture is 
constraining two KCs of the same DOF, the distances to 1 and 
2. However no one will use one locator for each KC, which will 
certainly yield over-constraint. When this step is generated 
through decomposition, the decomposition would break 
connections between the member 3 and each of the two fixture 
elements transformed from the two KCs. In order to match the 
assumption that there would be one locator for a DOF, the 
wrench matrices for these connections should be unionized. 

Consider the product geometry decomposed in Figure 11 
and the joint assignment shown in Figure 13, which has two lap 
7 Copyright © 2004 by ASME 



joints j1 and j2, and two locators l1 and l2, for edges cut by the 
decomposition. Because the decomposition is breaking multiple 
connections from member 1 to fixture elements, wrench 
matrices for these connections should be unionized as described 
in the previous paragraph. From Equation (12) and (13), we can 
compute: 

0 1 0 0 0 1.5
0 0 0 0 0 1l1 l2
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

W W∪                 (18) 

Suppose the location of j1 and j2 in global reference frame X-
Y-Z are (3, 0, 0) and (0, 4, 0). Then, based on the local 
coordinate frame of lap joint shown in Figure 8 and orientation 
of j1 and j2, Wlap (Equation (8)) can be transformed into Wj1 
and Wj2 in global reference frame: 

0 0 1 0 3 0
0 0 0 1 0 0j1

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

W                       (19) 

0 0 1 4 0 0
0 0 0 0 1 0j2
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

W                        (20) 

Unionizing the three matrices in Equation (18) – (20), 

( )

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

d
d

e
e CS

γ
∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠⎟⎜ ⎟

W ∼∪ §                  (21) 

Whereas the summation of the ranks of individual matrices 
is six, the rank of union is only five, which implies that this 
combination of joints yield an over-constraint of one DOF. In 
fact, the intersection of Wj1 and Wj2 is not a zero matrix. As 
this joint assignment does not satisfy the decomposition rule, 
Equation (15), the assembly synthesis process will discard it. 

Part manufacturability 
The decomposition stops when the resulting 

subconfigurations become manufacturable by a chosen 
manufacturing process. In the following case study on frame 
structures, components are assumed to be extruded and bent. 
Therefore, a predicate of a configuration Ma for stopping 
decomposition is given as:  

0stop_de : 2 { , }M true false6                          (22) 

, where stop_de(Ma) is true (i.e.. decomposition continues) if 
and only if none of the first four conditions are satisfied or the 
fifth condition is satisfied:  

1. Ma contains both member(s) and fixture member(s). 
2. The induced subgraph on members in Ma has a closed loop 

(cannot extrude such parts). 
 

                                                           
§ The result has been reduced to the Row Reduced Echelon Form for 
easy interpretation. 
3. Three or more members in Ma are connected to each other 
at a single point (cannot extrude such parts). 

4. Members in Ma lie on more than one plane (difficult to 
handle/fixture). 

5. Ma consists of only fixture elements (assembly of two 
fixtures is not considered). 

See Figure 11 for example. The configuration, {2, 3, f1, f2}, 
satisfies the first condition, thus stop_de returns false, subject to 
further decomposition. On the other hand, the other 
configuration, {1, 2}, satisfies none of the first four conditions, 
the decomposition is stopped for this configuration.  

AND/OR graph of assembly synthesis  
A series of decompositions can be typically represented in 

a tree as shown in Figure 9. However, the aim of the presented 
method is to enumerate all such trees, AND/OR graph [18] is 
adopted to facilitate the assembly synthesis, in which multiple 
trees share common nodes. Although the AND/OR has been 
previously used to enumerate assembly sequences for a given 
assembly design [19], it is augmented in this paper in order to 
embody joint assignments. Figure 14 shows a partial AND/OR 
graph of assembly synthesis [1] for the 2D rectangular box 
shown in Figure 1. Each node in white background contains a 
configuration, (Ma ⊆ M0), and each node in black background 
contains joint assignment :i iCS JLγ 6 . A set of three lines 
which connects a configuration Ma, joint assignment γi, and two 
sub-configurations (Mb, Mc) is a hyper-edge, represented as (Ma, 
γi, (Mb, Mc)) which is also the representation of a decomposition 
defined earlier. The AND/OR graph of assembly synthesis is 
then represented as a triple:   

AO = (S, J, F)                                  (23) 

, where S is a set of nodes representing configurations, J is a set 
of nodes representing joint assignments, and F is a set of hyper-
edges (Ma, γi, (Mb, Mc)) satisfying the following necessary 
conditions.  

 

1. stop_de(Ma) = false. 
2. de(Ma, γi, (Mb, Mc)) = true.                                             (24) 

Then AO = (S, J, F) is recursively defined as: 
 

1. If stop_de(M0) = false, M0∈S. 
2. For ∀Ma∈S, if ∃γi, Mb, Mc such that f = (Ma, γi, (Mb, Mc)) 

satisfies necessary conditions (24), then γi∈J, Mb, Mc∈S 
and f∈F. 

3. No element is in S, J and F, unless it can be obtained by 
using rules 1 and 2.                                                         (25) 

The recursive definition in Equation (25) can be easily 
transformed to an algorithm build_AO that generates AO from 
initial configuration and joint library by recursively 
decomposing a configuration into two sub-configurations [1], 
whose details are omitted due to space limitation. Using 
stop_de and de as defined earlier, one can run build_AO with 
any 3D configurations to enumerate all possible assemblies 
(decompositions and joint assignments), fixture schemes and 
8 Copyright © 2004 by ASME 



accompanying assembly sequences that satisfy the in-process 
dimensional adjustability and proper part constraint. 

 

 
 

Figure 14. A part of the AND/OR graph for the 2-D 
rectangular box in Figure 1.   

 
 

Figure 15. A frame structure with eight KCs. 

CASE STUDY 
A frame structure in Figure 15 is decomposed based on 

Equation (25). Only joint types in Figure 16 are assigned to 
broken connections as required by the decomposition rule. In 
order to reduce the size of the AND/OR graph, when several 
joint assignments satisfy decomposition rule for a given 
decomposition, one with minimum under-constraint is included 
in the AND/OR graph. Still, the decomposition rule produced a 
large AND/OR graph with 19962 nodes representing 
configurations and 143269 hyper-edges, which contains about 
8.4 billion trees. However, using brute search starting from the 
terminal nodes (either part or fixture that satisfies stop_de), 
non-dominated solution trees for multi-objectives can be 
identified. Based on four objectives – the number of parts, the 
number of fixtures, the depth of the tree and the total under-
constraints, only 90 trees are found to be non-dominated. 
Associated cost vectors for these non-dominated solution trees 
are listed in Table 1. The number of fixtures and under-
constraints shows a strong correlation, because the more 
fixtures are used, the more DOFs should be constrained when 
initially placing a part on each fixture. From Figure 17 to 23, 
some of non-dominated solution trees and their corresponding 
assembly designs are presented.  In solution trees, a node with a 
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capital letter represents a part (marked with the same letter in 
the following assembly design), and a node marked with “fx” 
with a number represents a fixture. A black node represents a 
joint assignment and the number within the node represents, 
uc(γd), the number of under-constraints for the joint assignment.  

 

 
Figure 16. (top) joint types for frame sturcture, and (bottom) 
their graphical representation used in  results.  

Table 1. Non-dominated cost vectors and the number of 
corresponding non-dominated solution trees for the frame 
structure shown in Figure 15. 

Objectives 
No. of 
parts 

No. of 
fixture 

Depth of 
tree 

No. of under-
constraints 

No. of 
solution 

trees 
7 2 7 6 16 
8 4 5 24 24 
8 1 8 3 46 
6 3 6 11 4 

Total 90 
 
Figure 17 shows a non-dominated solution tree, and 

corresponding assembly design and sequence, which has 7 parts, 
2 fixtures, the depth of 7, and 6 under-constraints. The 
coordinate frame shown by each joint shows DOFs constrained 
by the joint in black and un-constrained DOFs in gray. In the 
figure, fx1 controls kc3, kc4, kc7 and kc8, and fx2 controls kc1, 
kc2, kc5 and kc6. The assembly sequence is as follows: 

1. Locate G on fx2. Three KCs related to G; kc1, kc2 and kc5 
are constrained by fx2. In order to uniquely locate G, fx2 
should constrain the other three DOFs (the number of 
under-constraints) in addition to those required by the KCs. 

2. Assemble F on G-fx2. Only one KC, kc6 is required for F, 
which is fixed by fx2. The other five DOFs are constrained 
by the lap-butt joints with G, thus there is no under-
constraint to be controlled additionally. 

3. Locate G on fx2. Three KCs related to G; kc1, kc2 and kc5 
are constrained by fx2. In order to uniquely locate G, fx2 
should constrain the other three DOFs in addition to those 
required by the three KCs. 

4. Assemble F on G-fx2. Only one KC, kc6 is required for F, 
which is fixed by fx2. The other five DOFs are constrained 
by the lap-butt joints with G, thus there is no under-
constraint to be controlled additionally. 

5. In parallel with step 4, place C on fx1. All four KCs related 
to C are fixed on fx1. The other two DOFs should be 
constrained additionally. 
9 Copyright © 2004 by ASME 



 
 

Figure 17. One of 24 non-dominated solution trees whose cost vector is (7, 2, 7, 6). 
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6. Assemble D-E-F-G on C-fx1, where kc3 and kc7 are 
realized by fx1. The other four DOFs are constrained by 
the lap joint from F to C and another lap joint from C to E. 

7. Assemble B on C-D-E-F-G-fx1, where kc4 is realized. The 
lap joint from B to D and the lap joint from C to B 
constrains four DOFs, thus one DOF should be constrained 
additionally. 

8. Assemble A on B-C-D-E-F-G-fx1, realizing kc8. The other 
five DOFs are fully constrained by one lap joint and one 
butt joint of A. All assembly steps are now completed. 

Figure 18 shows a non-dominated solution tree, which has 
8 parts, 4 fixtures, the depth of 5, and 24 under-constraints. 
This tree has the minimum depth and has a few parallel steps. 
For this reason, the tree is suitable for parallelized and short 
cycle time production. The price it pays is the many fixtures 
required to realize KCs in parallel. On the other hand, the tree 
shown in Figure 20 is completely serial, using only one fixture 
to control all the KCs. Because there are less fixtures, many 
DOFs are constrained by joints between parts, thus yielding 
mere three under-constraints throughout the assembly. Instead, 
the production would require a longer cycle time.   

There are only four trees that have the non-dominated cost 
vector of (6, 3, 6, 11). Two of these are shown as a AND/OR 
 

graph in Figure 22, which contains two different assembly 
sequences to build the assembly design shown in Figure 24 
(note the OR relation between the two hyper-edges from the top 
node). The other two trees for the same cost vector are mirror 
images of ones shown in Figure 22, which has corresponding 
assembly design that is also mirror image of one shown in 
Figure 23. Whereas other non-dominated solution trees have 
one or more decomposition(s) solely to remove an un-planar 
part, a closed loop or a T-joint required by stop_de, without 
breaking a KC, all the decompositions in these trees have been 
made to remove KCs. In other words, these trees show the most 
efficient way to remove KCs in terms of the number of 
decompositions. As a result, these solutions have minimum 
number of parts, 6. 

SUMMARY AND DISCUSSION 
This paper presents an integrated synthesis approach of 

assembly and fixture scheme. Starting with initial geometry, the 
decomposition rule is applied recursively, to obtain all feasible 
“designs” (assembly designs, fixture scheme, and assembly 
sequence), such that every assembly step can be free of over-
constraints. An example with a simple space frame is presented 
to demonstrate the method. Considering the number of parts, 
the number of fixtures, the depth of assembly tree, and the 
10 Copyright © 2004 by ASME 



number of under-constrains as objectives to minimize, the 
Pareto optimal solutions are obtained by searching the 
enumerated AND/OR graph of assembly synthesis that contains 
all feasible designs. Non-dominated solution trees show trade-
offs among the assembly design, the number of fixtures and the 
assembly sequence. An assembly with many connections 
among parts and many KCs is likely to have less parallel 
assembly sequence, because it is likely that the assembling two 
large subassemblies at the later stage would have many joints 
between the two subassemblies and realize many KCs at one 
step, thus more likely to have over-constraints. It has been also 
shown that a more parallelized assembly sequence would 
require more fixtures. 

 

 
 

Figure 18. One of 24 non-dominated solution trees whose 
cost vector is (8, 4, 5, 24). 

 
Figure 19. The assembly design matching the non-
dominated solution tree shown in Figure 18. 
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Figure 20. One of 46 non-dominated solution trees whose 
cost vector is (8, 1, 8, 3). 

 
Figure 21. The assembly design matching the non-
dominated solution tree shown in Figure 20. 
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** Test runs were conducted on a PC with 3.2 GHz Intel® Pentium 4 ® 

processor  with 1GB RAM. 
  
 

Figure 22. Two of four non-dominated solution trees whose 
cost vector is (6, 3, 6, 11).  

 
Figure 23. The assembly design matching the trees in 
Figure 22, which contains two assembly sequences.  

Due to the enumerative nature of the presented approach, 
the amount of computation for complex assemblies would be 
inevitably large. Taking the number of prospective 
decompositions that must be analyzed as a measure of the 
amount of computation, Homem de Mello and Sanderson [20] 
showed that computational complexity is generally O(3n) in 
generating AND/OR graph of assembly sequence for given 
assembly designs, where n is the number of parts. Although the 
amount of computation for assembly synthesis would largely 
dependent on the number of KCs, available joint types and the 
manufacturability criteria, the worst case (when every part 
consists of only one member) would be comparable to that of 
assembly sequence generation. Some of the actual computation 
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times are shown in Table 2**, which exhibits a rapid growth in 
the computation time with the increased number of members 
and KCs. The present method, therefore, would most 
effectively be integrated in the design process if it is applied to 
subassemblies of a product decomposed by other means. 
Alternatively, the repeated applications of the method to 
subassemblies with incremental refinement of members (from 
coarse to fine) would also be effective to manage the 
complexity.  
 
Table 2. Amount of computation for (1) the example in 
Figure 15, (2) without KCs and (3) with 5 members and 4 
KCs removed. 

 1 2 3 
No. of members 12 12 7 

No. of KCs 8 0 4 
No. of decompositions 143269 32240 2621 
No. of solution trees 8.38 × 109 1.03 × 108 9.92 × 103

computation time [sec] 2482 293.0 8.125 
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