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ABSTRACT 

This paper presents a new method for designing vehicle 
structures for crashworthiness using surrogate models and a 
genetic algorithm. Inspired by the classifier ensemble 
approaches in pattern recognition, the method estimates the 
crash performance of a candidate design based on an ensemble 
of surrogate models constructed from the different sets of 
samples of finite element analyses. Multiple sub-populations of 
candidate designs are evolved, in a co-evolutionary fashion, to 
minimize the different aggregates of the outputs of the 
surrogate models in the ensemble, as well as the raw output of 
each surrogate. With the same sample size of finite element 
analyses, it is expected the method can provide wider ranges 
potentially high-performance designs than the conventional 
methods that employ a single surrogate model, by effectively 
compensating the errors associated with individual surrogate 
models. Two case studies on simplified and full vehicle models 
subject to full-overlap frontal crash conditions are presented for 
demonstration.  

1. INTRODUCTION 
Vehicle crashworthiness is an important design attribute 

which designers strive to improve. However, design for 
structural crashworthiness is a difficult task, which often 
involves non-obvious decisions beyond simply designing stiffer 
structures. A vehicle structure has to be strong in some parts to 
help minimizing the intrusion of the passenger compartment, 
yet compliant in other parts to absorb the impact energy. 
Moreover, performance criteria such as deformation, 
acceleration, and the risks of passenger injury are usually 
related to the design variables (e.g., length and thickness of 
structural members) via complex nonlinear functions that have 
no known closed form solutions.  

 

                                                           
§ Corresponding Author 
While actual testing is a more direct measure of vehicle 
crash performance, the computational crash simulations using 
finite element (FE) analyses are widely used in industry during 
design iterations, due to the no need of building physical 
prototypes. The main drawback of FE crash simulation is the 
requirement of massive computational resources, which makes 
them prohibitively difficult to be used within optimization.  It is 
practical, therefore, is to construct a surrogate model from the 
results of the FE simulations of a small number of sample 
designs, and use the surrogate model with an automated 
optimization algorithm. While the DOE/Surrogates is a 
dominant approach in practice [1], its major problem is the 
difficulty in constructing a high fidelity surrogate over a large 
design space with a number of samples practical for running 
time-consuming FE crash simulations [2,3].   

To achieve high fidelity with a limited number of samples, 
this paper presents a new method that utilizes an ensemble of 
surrogate models, rather than a single surrogate model, to 
estimate the crash performance of a candidate structure during 
optimization. It is inspired by the classifier ensemble 
approaches in pattern recognition [4-8], where the different 
aggregates, such as the weighted average, best, and majority 
votes, of multiple pattern classifiers trained from the different 
sets of training data, are used for improved performances over 
the single classifiers. Based on multi-objective genetic 
algorithms [9,10], the proposed method, which we shall refer to 
as Multi-Scenario Co-Evolutionary Genetic Algorithm 
(MSCGA), evolves multiple sub-populations of candidate 
designs in a co-evolutionary fashion [11], that minimize the 
different aggregates of the outputs of the surrogate models in 
the ensemble as well as the raw output of each surrogate. With 
the same sample size of finite element analyses, it is expected 
the method can provide wider ranges potentially high-
performance designs than the conventional methods that 
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employ a single surrogate model, by effectively compensating 
the errors associated with each surrogate models in the 
ensemble. 

This paper started with a motivation that leads to 
introducing the proposed approach. The following sections 
provide a review of relevant literature, followed by the details 
of the proposed algorithm. A simple numerical study is 
presented, and then the proposed approach is applied to two 
case studies involving a simplified vehicle model, as well as a 
full vehicle subjected to full-overlap frontal crash conditions. 
The paper concludes with a general discussion. 

2. RELATED WORK 

2.1. Surrogate Models in Crashworthiness Design 
Meta-models or surrogate models have been widely used 

to assist design optimization when computer models for 
estimating design performances are too computationally 
expensive. A review of the applications of and the challenges 
using meta-models is presented in [1]. For crashworthiness 
optimization, typically, the surrogate models based on 
Polynomial Regression [12,13], Neural Networks [14,15], 
Radial Basis Networks [15, 16] and Kriging [17,18], which are 
constructed from the sample designs obtained by Design of 
Experiments (DOE) methods such as the orthogonal arrays [19-
21] and Latin hypercube [22], are used with the optimization 
algorithms such as multi-start Sequential Quadratic 
Programming (SQP) [15] and Genetic Algorithms (GA) [23]. 
Examples of crashworthiness design are presented, for 
example, in [24-27]. There have been studies that compared the 
performance of meta-modeling techniques for engineering 
applications [2,3,28-30]. In most of these studies, Kriging 
seems to prevail. However, Yang et al. [2,3] suggested that 
none of the techniques can be decisively judged as the best for 
small sample sizes.  

To obtain the best possible surrogate out of a given set of 
sample simulations, Yang et al [25] reported a “multi-
resolution” surrogate modeling, where the “fine resolution” 
models are constructed with the samples within a narrower 
region of the design space in the vicinity of the optimal design 
obtained with the “coarse resolution” model. While this 
approach was reported to improve the accuracy of the resulting 
estimations by surrogates, the problem remains since the region 
for finer sampling are affected by the accuracy of the coarse 
resolution model, which is constructed from a limited number 
of samples.   

2.2. Ensemble Classifiers in Pattern Recognition 
Classifiers in the context of pattern recognition refers to a 

function that takes as an input a set of data (pattern) and returns 
its classification in a predefined category, sometimes with a 
confidence level of the classification [31]. Classifiers are often 
constructed through supervised learning, where initialized 
classifiers are “trained” by being presented a set of the pairs of 
an input pattern and its correct classification (called teaching 
 

data) – a process analogous to the construction of surrogate 
models from sampled simulation data. In fact, modern 
classifiers are often implemented as feed-forward Artificial 
Neural Networks, which are also popular as surrogate models 
for design optimization.  

Ensemble classifier approaches are a class of methods to 
utilize a set (ensemble) of classifiers, instead of a single 
classifier, to classify input patterns by taking the aggregates 
(such as average, best confidence, and majority votes) of the 
outputs of the multiple classifiers in the ensemble [4-8]. A 
comprehensive review the area can be found in [6]. It has been 
shown that the ensembles of classifiers, when property 
constructed, are often much more accurate than the individual 
classifiers that make them up. The necessary and sufficient 
conditions for an ensemble of classifiers to be more accurate 
than any of its individual members are if the classifiers are 
accurate and diverse [4]. An accurate classifier is the one that 
has an error better than random guessing on unseen input 
patterns. Two classifiers are diverse if they make different 
errors on unseen input patterns.  

The proposed method adopts the ensemble approach to 
surrogate-based design optimization, by integrating it within a 
co-evolutionary genetic algorithm as described in detail in the 
next section.  

3. MULTI-SCENARIO CO-EVOLUTIONARY GENETIC 
ALGORITHM (MSCGA) 

3.1. Rationale 
The proposed method assumes an ensemble of surrogate 

models constructed from the different sets of the sampled data 
of FE crash simulations. Each surrogate model takes as an input 
a vector of design variables and outputs a vector of crash 
performances. Examples of design variables are the lengths and 
thicknesses of structural members, and examples of the crash 
performances (to be minimized) are the mass of the structure 
and the amounts of the violation of design targets such as cabin 
acceleration and intrusion.  

Considering that each surrogate model contains errors 
associated with its estimation of the outputs of the FE crash 
simulations, the methods provides a designer with the 
following potentially high-quality designs, some or all of which 
can be chosen for further examinations with FE analyses: 

 
• Designs predicted as Pareto optimal by each surrogate.  
• Designs predicted as Pareto optimal by the ensemble, 

where the outputs of the ensemble are defined as 1) the 
weighted average and 2) the most conservative, of the 
outputs of all surrogate models.  

• Designs that show a balanced compromise among the 
outputs of all surrogate models in the ensemble, i.e., Pareto 
optimal with respect to the non-aggregated (raw) outputs 
of the ensemble.  
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More precisely, the method provides approximate solutions of 
the following r + 3 multi-objective optimization problems: 
 

minimize  Φi(x);  i = 1, 2, ..., r   (1) 
 subject to  x ∈ D        

 
minimize   fi(x);  i ∈{w, c, s}   (2) 

            subject to  x ∈ D 
 
where, x is the design variable, D is the domain of the design 
variable, r is the number of surrogate models in the ensemble, 
Φi: D → Rm is the i-th surrogate model in the ensemble, m is 
the number of crash performances in the output vector, and fi: 
D → Rm is the outputs of the ensemble defined as:  
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In Equations (1) and (2), the constraints are treated as one of 
the objectives to be minimized. Equations (3) and (4) represent 
the weighted average with weights wi (assumed to sum up to 
unity) and the most conservative (i.e., the largest values) of the 
outputs of all surrogate models, respectively. Equation (5) is the 
vector of (raw) outputs of all surrogate models in the ensemble.  
Note that the vector functions fw and fc have m elements, 
whereas fs has r × m elements.  

The r + 3 multi-objective optimization problems as defined 
in Equations (1)-(5) are simultaneously solved by using the 
Multi-Scenario Co-Evolutionary Genetic Algorithm (MSGA), 
whose details are provided in the next section. In essence, 
MSCGA is a co-evolutionary genetic algorithm, which evolves 
r sub-populations P1, P2, … Pr, where each sub-population 
evolves for minimizing two indices: the internal dominance 
count λij and the external dominance count µij where: 

• λij is the number of members (“chromosomes”) in the ith 
subpopulation Pi that dominate1 the jth member with 
respect to the output of i-th surrogate model Φi in the 
ensemble.  

• µij is the number of members (“chromosomes”) in all the 
sub-populations P1, P2, … Pr, other than Pi that dominate 
the jth member with respect to the outputs of the 
corresponding surrogate models Φ1, Φ2, … Φr.  

 
During the evolution of sub-populations P1, P2, … Pr,, a copy 
of high-quality members with respect to λij and µij are passed 
onto the next generations. Upon the termination of the 
algorithm, un-dominated (Pareto optimal) members with 
 

                                                           
1One member x dominates another member y if and only if x out-performs y 
with respect to both indices λ and µ.  
respect to the outputs of Φ1, Φ2, … Φr (the solutions of the 
problems (1)), fw,  fc, and fs (the solutions of the problems (2)) 
are collected from all sub-populations and stored in the r + 3 
solution sets L1, L2, … Lr,, Lw and Lc, and Ls, respectively, which 
are presented to a designer as the outputs of the algorithm for 
further examinations with FE analyses. While it is possible to 
individually solve the optimization problems (1) and (2), an 
advantage of MSGA is that it can provide the solutions with a 
single optimization run. 

3.2. Algorithm 
MSCGA is a class of co-evolutionary genetic algorithm 

where each sub-population is evolved in a manner similar to 
NSGA-II [NSGA-II]. The following description is kept brief by 
assuming the basic understanding of NSGA-II algorithm. 
Interested readers should refer to [9] for details.  
 
Algorithm MSCGA:  
 
1. Randomly initialize multiple sub-populations P1, P2, … Pr 

of np chromosomes. Initialize the generation counter. 
2. Compute f1 = Φ1(x), …, fr = Φr(x), and fw (x) and  fc (x) 
3. Update Lw and Lc, so they contain only the un-dominated 

members with respects to fw and fc, respectively.  
4. For all members in all sub-populations P1, P2, … Pr, 

compute λij and µij, and then ρij, the Pareto-based 
dominance rank [9] with respect to (λij, µij). 

5. For each sub-population Pi, create the new sub-population 
Qi of size np, which contains 1) member j with λij = 0, 2) 
member j with ρij = 1, and 3) new members created by 
selection (with respect to ρij), crossover, and mutation. 
Replace Qi with Pi.  

6. Increment the generation counter. If the number of 
generation reached the pre-specified limit, proceed. 
Otherwise, go to step 2.  

7. For each sub-population Pi, create Li so it contains member 
j with λij = 0.  

8. Create Ls so it contains member j with µij = 0 in all 
subpopulations P1, P2, … Pr 

9. Return L1, L2, … Lr, Lw, Lc, and Ls 
 

The implementation used in the following examples adopts 
tournament selection, arithmetic and heuristic crossover, and 
uniform random mutation [32]. While the algorithm does not 
dictate any particular type of surrogate model, polynomial 
regression [12,13] is used for the following examples.  

4. PRELIMINARY EXAMPLE 
Consider a two-variable, two-objective problem:  
 
            minimize   f1 = (x1+5)2 +(x2+5)2 

minimize   f1 = (x2-5)2 +(x2-5)2     (6) 
            subject to  -10 ≤ x1, x2 ≤ 10 
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The Pareto optimal solutions of this problem are all points on 
the line segment between the points (-5, -5) and (5, 5) shown in 
Fig. 1. Fig. 2 shows the Pareto plot, the values of the objective 
function of these Pareto optimal solutions in the f1-f2 space. 

To demonstrate the proposed approach, a uniform random 
noise of maximum magnitude ± 20.0 is introduced on the 
values of f1 and f2, then 24 random samples are drawn out. A 
half the samples are used to fit the surrogate Φ1, the other half 
is used to fit the surrogate Φ2, and all the samples are used to fit 
the surrogate Φ3. All surrogates were the second order 
polynomial regression of the corresponding samples, fitted via 
the least squares error. The weights in Equation (3) were 
chosen as (w1, w2, w3) = (0.3, 0.3, 0.4). 

 
Fig. 1. Pareto optimal solutions of the problem (6).  

 

 
Fig. 2. Pareto plot of the problem (6). 

 
For this simple problem, it is fairly easy to obtain the 

“exact” Pareto optimal solutions without running optimization, 
based on the polynomial coefficients of each surrogate.  The 
Pareto plots for each surrogate fit with a set of 24 random 
samples are shown in Fig. 3, together with the ones for the 
ensemble (weighted average and most conservative).  
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For the three surrogate models Φ1, Φ2 and Φ3, MSCGA is 
run with the sub-population size of 80, the number of 
maximum generations of 200, the crossover probability 90%, 
and the mutation probability 5%. Figs. 4 and 5 show the results, 
where the solid lines represent the “exact” Pareto-plot in Fig 3, 
while the scattered points are those generated by MSCGA. It is 
clear that for this example, MSCGA was successful in reaching 
a wide range of designs on the “exact” Pareto plots.  

 

 
Fig. 3. The “exact” Pareto plot of surrogates 1-3, and the 
ensemble (weighted average and most conservative).  
 

 
Fig. 4. Results by MSCGA: the objective function values of 
the solutions in L1, L2, L3, Lw, and Lc, plotted with the 
“exact” Pareto plots in Fig. 3. 

 
In order to better access the performance of the algorithm, 

ten runs of MSCGA were conducted for the surrogate models 
constructed from the ten independent sets of 24 samples. The 
quality of the resulting solutions are measured as the average 
Euclidean distances between the solutions in L1, L2, L3, Lw, Lc, 
and Ls obtained at each run, and the closest points on the true 
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Pareto-optimal set (the line segment between (-5, -5) and (5, 
5)). The results are listed in Table 1. 

It is observed that the solutions in Lw often show better 
accuracy than the ones by a single surrogate in L1, L2, and L3 
and in Lc and Ls. They also seem to have good consistency in 
the accuracy of predictions, indicated by the small standard 
deviations.  While the solutions in  Lc and Ls seem overly 
conservative causing them not to be very accurate, they rarely 
score the worst performance in any of the ten runs (unlike a 
single surrogate), and both scenarios seem to have good 
consistency in their accuracy of predictions. While this 
example is too simple to draw any general conclusions, the 
results suggest none of the solution sets is predominantly 
superior to the rest. In other words, for effective design, it is 
advisable to examine all solutions in L1, L2,, … Lr, Lw, Lc, and 
Ls.  

 

 
Fig. 5. Results by MSCGA: the objective function values of 
the solutions in Ls, plotted with the “exact” Pareto plots in 
Fig. 3. 

 
Table 1. Average Euclidean distances between the MSCGA 
solutions and the true Pareto-set. The grayed cells indicate 
the best of each run.  

 
Run # L1, L2 L3 Lw Lc Ls 

1 7.93 6.53 5.61 6.22 7.59 7.35 
2 7.02 6.34 7.03 5.97 6.04 6.79 
3 7.05 5.70 6.94 6.58 7.12 7.00 
4 6.32 5.78 6.53 6.22 7.31 6.78 
5 7.67 6.71 6.11 7.09 7.37 7.13 
6 6.10 7.37 6.21 6.76 6.80 6.94 
7 7.70 5.86 5.78 5.95 6.74 6.53 
8 6.91 5.46 7.09 5.96 6.69 6.86 
9 6.56 7.06 7.20 7.03 6.98 6.91 
10 6.02 6.12 7.25 5.98 6.31 6.54 

Avg 6.93 6.29 6.58 6.38 6.90 6.88 
StdDev 0.68 0.62 0.61 0.45 0.48 0.25 
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5. CASE STUDIES 
This section describes the application of the proposed 

approach to crashworthiness design.  It is assumed that the 
references for the “true” crash performances, based on which 
the surrogate models are constructed, are provided by the FE 
crash simulations rather than the results of the physical tests. 
The reader should keep in mind, therefore, that all stated “true” 
performance values in this section come from FE simulations, 
which have not been verified by actual crash testing.  

Similar to the preliminary example in the previous section, 
three surrogate models, Φ1, Φ2 and Φ3, are constructed from the 
data obtained from the DOE sampling of the design space using 
the FE crash simulations: one from a half of the data, another 
from the rest of the data, and yet another from all data. 

5.1. Vehicle Front Half-Body Subject to Full-Overlap 
Frontal Crash 

This case study considers a FE model representing the 
main structural members of a vehicle subjected to full-overlap 
frontal crash conditions (Fig. 6). It has 18 design variables, 4 of 
which are continuous representing the height and width of 
upper and lower members, while 14 of the variables are 
discrete representing the sheet metal thickness in 14 different 
zones. The design objectives for this test condition are the 
intrusion into the passenger compartment and the peak 
acceleration at the passenger point:  
 

minimize  f1 =  Passenger Compartment Intrusion [mm]     (7) 
minimize   f2 =  Max. Passenger Point Acceleration [G]      (8) 

 
The best design in our previous publication [33] (shown in 

the second column of Table 2) is used as the baseline design 
around which the samplings are conducted.  The sample 
domain is restricted to ±10 mm for the heights and widths of 
the cross sections of the structural members, and ± one step 
(0.2 mm) in the sheet metal thicknesses. The L54 array [20] is 
employed that gives a three-level fractional factorial DOE 
requiring 54 samples, where the sample levels are set as: level 
1 =  lower bound; level 2 = value of the baseline design; and 
level 3 = upper bound.  

The sampling was performed by randomly assigning the 
design variables to the columns of the L54 array.  Two sets of 54 
samples are collected using two independently randomized 
variable-column assignments, and used to construct the 
surrogate models Φ1 and Φ2 with quadratic polynomials. In 
addition, all the 108 samples are used to construct the surrogate 
model Φ3. The Pareto plot all the samples are shown in Fig. 7. 
It is noted that some of the samples fall within a special region 
of interest (f1 < 100 mm and f2 < 30 G), and dominate the rest 
of the samples, including the baseline design. The design 
variables and objective values for these samples are listed in 
the Table 2. 
5 Copyright © 2005 by ASME 



Fig. 7 shows the Pareto plot of the results by MSCGA2. 
Among many suggested solutions twenty representative 
designs are chosen for the verification with FE analyses, whose 
results are shown in Fig. 8. It is observed that the results of the 
FE simulation gave lower performances than the ones 
estimated by the surrogate models. However, the scatter of the 
designs is shifted nearer to the best known Pareto-optimal ones, 
and one of the designs suggested by MSCGA (a solution in L2) 
is actually dominates all DOE samples, resulting in the 
discovery of a new Pareto optimal design. Details of the newly 
found design are reported in Table 2.  

 
Fig. 6. FE model of front half body of a vehicle subjected to 
full-lap frontal crash [41]. 
 

5.2. Full Vehicle Subjected to Full-Overlap Frontal 
Crash 

This case study considers an accurate half-million-element 
FE model of a full vehicle subjected to a full-overlap frontal 
crash condition (Fig. 9). It has 12 design variables, each 
governing the sheet metal thicknesses of the 49 important 
components in the vehicle structure, which can vary among 
five to six discrete choices. The same objective functions as in 
the previous case study (Eqs. 7 and 8) are used.  

Two sets of DOE samplings with the randomized L27 array 
[20] are performed around the baseline design, shown in the 
first column of Table 3. Due to proprietary issues, the detailed 
definitions and the actual values of the design variables and 
objective functions cannot be disclosed. Instead, Table 3 shows 
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2 In Fig. 7, “Worst of Pred.” and “Rank-1 Scatter” represents the solutions 

in Lc and Ls, respectively.  

 

the values of the design variables in a dimensionless form, 
scaled with respect to the baseline design, and the values of the 
objective functions also in a dimensionless form, scaled with 
respect to the values of a region of interest. The Pareto plot all 
the samples are shown in Fig. 10. The values of design 
variables and objective functions (in dimensionless forms) of 
four un-dominated samples are listed in Table 3.  

 

 
Fig. 7. Pareto plot of the baseline design, DOE samples, 
and the results by MSCGA. 

 

 
Fig. 8. Pareto plot of the results of FE re-testing of some 
designs suggested by MSCGA 

 
Fig. 10 shows the Pareto plot of the results by MSCGA3. 

Among many suggested solutions seven representative designs 
are chosen for the verification with FE analyses, whose results 
are shown in Fig. 11. Similar to the first case study, the results 
of the FE simulation gave lower performances than the ones 
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solutions in Lc and Ls, respectively.  

 



estimated by the surrogate models. However, two designs 
suggested by MSCGA (solutions in Ls and L1) dominates all 
DOE samples (and one of them dominates the other), resulting 
in the discovery of a new Pareto optimal design (a solution in 
L1).  Details of the newly found design are reported in Table 3.  

 
Table 2. details of some designs 

 
 Best of DOE Samples 
 

Base-
line #35 #16 #22 #66 

Found 
by 

MSCGA 
x1 (mm) 120.0 130.0 120.0 130.0 110.0 110.3 
x2 (mm) 60.0 70.0 60.0 50.0 60.0 56.0 
x3 (mm) 70.0 80.0 80.0 70.0 70.0 78.3 
x4 (mm) 60.0 60.0 70.0 70.0 70.0 50.0 
x5 (mm) 2.6 2.4 2.6 2.8 2.8 2.8 
x6 (mm) 2.6 2.4 2.4 2.6 2.6 2.8 
x7 (mm) 2.2 2.0 2.0 2.0 2.0 2.0 
x8 (mm) 2.4 2.4 2.2 2.2 2.4 2.2 
x9 (mm) 3.6 3.4 3.6 3.4 3.8 3.8 
x10 (mm) 3.2 3.4 3.2 3.4 3.2 3.2 
x11 (mm) 2.8 3.0 3.0 2.8 3.0 2.8 
x12 (mm) 2.0 2.2 2.2 2.2 1.8 2.2 
x13 (mm) 1.8 1.6 2.0 1.8 2.0 1.6 
x14 (mm) 3.6 3.4 3.6 3.6 3.4 3.6 
x15 (mm) 2.8 2.8 3.0 3.0 2.6 2.8 
x16 (mm) 2.0 1.8 2.0 1.6 2.6 2.2 
x17 (mm) 2.8 3.0 2.6 2.8 3.0 3.0 
x18 (mm) 2.0 2.2 2.0 2.2 2.4 2.4 
f1 (mm) 56.0 43.9 68.6 85.6 90.5 97.8 
f2 (g) 31.6 29.9 29.4 28.4 27.9 27.8 

 

 
Fig. 9. A detailed FE model of a vehicle subjected to full-
overlap frontal crash 

6. CONCLUDING REMARKS 
This paper presented a new method for designing vehicle 

structures for crashworthiness using an ensemble of surrogate 
models and a co-evolutionary, multi-objective genetic 
algorithm. Multiple sub-populations of candidate designs are 
evolved, in a co-evolutionary fashion, to minimize the different 
aggregates of the outputs of the surrogate models in the 
ensemble as well as the raw output of each surrogate. Two case 
 

studies on simplified and full vehicle models subject to full-
overlap frontal crash conditions successfully demonstrated that 
the method is effective in providing a designer with wide 
ranges potentially high-performance designs.  

In the case studies, it was observed that the estimation 
error of the surrogate models was quite significant. This is most 
likely due to the relatively low accuracy of polynomial 
regression, and a simple scheme to split samples for 
constructing an ensemble. Accordingly, future work could 
explore different meta-modeling techniques, such as Kriging 
and Radial Basis Neural Networks, as well as different 
sampling techniques for ensemble construction, such as 
Bagging and AdaBoost [6].  

 

 
Fig. 10. Pareto plot of the baseline design, DOE samples, 
and the results by MSCGA. 

 

 
Fig. 11. Pareto plot of the results of FE re-testing of some 
designs suggested by MSCGA 
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Table 3. details of some designs 

 Best of DOE Samples 
 

Base-
line #17 #12 #14 #44 

Found 
by 

MSCGA 
x1 1.000 1.000 1.000 1.167 1.167 1.056 
x2 1.000 1.167 0.889 1.000 0.889 1.056 
x3 1.000 0.900 1.100 1.100 1.000 1.000 
x4 1.000 1.000 1.063 0.875 0.875 1.000 
x5 1.000 1.000 0.933 0.933 1.000 0.967 
x6 1.000 1.000 1.100 1.000 0.900 0.900 
x7 1.000 0.800 1.000 0.800 1.200 1.133 
x8 1.000 0.889 1.000 1.167 1.167 1.111 
x9 1.000 1.100 1.000 1.000 0.900 1.050 
x10 1.000 1.167 0.889 1.167 1.167 0.889 
x11 1.000 0.875 0.875 1.000 1.000 1.063 
x12 1.000 1.167 1.167 0.750 1.000 0.75 
f1 0.602 0.503 0.526 0.679 0.711 0.583 
f2 1.000 0.990 0.966 0.909 0.896 0.949 
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