

Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference
September 24-28, 2005, Long Beach, California, USA

DETC2005-85260

DESIGN FOR PRODUCT-EMBEDDED DISASSEMBLY

Shingo Takeuchi and Kazuhiro Saitou
Department of Mechanical Engineering

University of Michigan
Ann Arbor, MI, 48109-2125

E-mail:{stakeuch, kazu}@umich.edu

Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference
September 24-28, 2005, Long Beach, California USA

DETC2005-85260
ABSTRACT
This paper presents a computational method for designing

assemblies with a built-in disassembly pathway that maximizes
the profit of disassembly while satisfying regulatory
requirements for component retrieval. Given component
revenues and components to be retrieved, the method
simultaneously determines the spatial configurations of
components and locator features on the components, such that
the product can be disassembled in the most profitable
sequence, via a domino-like “self-disassembly” process
triggered by the removal of one or a few fasteners. The
problem is posed as optimization and a multi-objective genetic
algorithm is utilized to search for Pareto-optimal designs in
terms of three objectives: 1) the satisfaction of distance
specification among components, 2) the efficient use of locator
features on components, and 3) the profit of overall
disassembly process under the regulatory requirements. A case
study with different costs for removing fasteners demonstrates
the effectiveness of the method in generating design
alternatives under various disassembly scenarios.

Keywords: Design for disassembly, design optimization,
computer-aided design, multi-objective genetic algorithm

INTRODUCTION
Increased regulatory pressures (e.g., EU’s WEEE

directive) and voluntary initiatives has placed manufacturers
more responsibility for end-of-life (EOL) treatments such as
material recycling and component reuse. Since both recycling
and reuse typically require disassembly, design for disassembly
(DFD) has become a key design issue in almost any mass-
produced products. DFD is particularly critical in consumer
electrical products due to a large number of production and
short cycle time for technological obsolescence. Also,
components in these products are typically required to fit into a
tight enclosing space, which makes disassembly even more
challenging.

The optimal EOL treatments should be determined based
on the profit of disassembly process and environmental impact
[1]. In the simplest form, the profit of a disassembly process u
can be expressed as:

∑ −=
i

ii cru)((1)

where ri is the revenue of the i-th disassembled components
and ci is the disassembly cost of the i-th disassembly operation.
While ri depends only on disassembled components, ci
generally depends on both disassembled components and the
spatial configuration of components and fasteners [2]. Note that
it is often profitable to stop disassembly before a product is
completely disassembled to components.

To prevent manufacturers from pursuing most profitable
EOL treatments with potentially serious environmental impacts,
regulatory requirements are often imposed. In many countries,
for example, the recovery of toxic components such as lead and
mercury is obligated regardless of profit. It is therefore desired
to design products with the maximum profit of disassembly
while satisfying constraints on regulatory requirements.

The above thoughts motivated us to develop a concept of
product-embedded disassembly [3], where the relative motions
of components are constrained by locator features (such as
catches and lugs) integral to components, in such a way that the
optimal disassembly sequence is realized via a domino-like
“self-disassembly” process triggered by the removal of one or a
few fasteners. Figure 1 illustrates the concept. In the assembly
shown in Figure 1 (a), suppose the retrieval of component A
(valuable material) and component B (toxic material) are
desired, and the retrieval of component C (non-valuable
material) is not profitable considering disassembly cost. To
disassemble the assembly in an optimal fashion, a disassembly
operator can simply remove the screw, which activates a
1 Copyright © 2005 by ASME

disassembly pathway A B as shown in Figures 1 (b) and (c).
Thanks to locator 1 on component A and locator 2 on the
container, the use of fasteners is minimized, which is essential
to increase the profit of overall disassembly process.

Figure 1. Concept of product-embedded disassembly [3].

In our preliminary work [3], the spatial configurations of

components and locators are simultaneously determined to
retrieve a given set of components in a unique sequence, with
no consideration of the profit of overall disassembly process.
Also, no rotational motions are considered in determining the
spatial configuration of components. As an extension, this
paper presents a method where the profit of disassembly
process, as defined in Equation (1), is explicitly treated as an
objective to maximize. Given component revenues and
components to be retrieved, the method simultaneously
determines the spatial configurations of components and
locator features on the components, such that the product can
be disassembled in the most profitable sequence, via a domino-
like “self-disassembly” process triggered by the removal of one
or a few fasteners. The problem is posed as optimization and a
multi-objective genetic algorithm [4, 5] is utilized to search for
Pareto-optimal designs in terms of three objectives: 1) the
satisfaction of distance specification among components, 2) the
efficient use of locator features on components, and 3) the
profit of overall disassembly process under regulatory
requirements. A case study with different costs for removing
fasteners demonstrates the effectiveness of the method in
generating design alternatives under various disassembly
scenarios.

PREVIOUS WORKS
Design for Disassembly

Design for disassembly (DFD) is a class of design methods
and guidelines to enhance the ease of disassembly for product
maintenance and/or EOL treatments [6]. Kroll et al. [7] utilized
disassembly evaluation charts to facilitate the improvements of
product design. Das et al. [8] introduced the Disassembly
Effort Index (DEI) score to evaluate the ease of disassembly.
Reap et al. [9] reported DFD guidelines for robotic semi-
destructive disassembly, where detachable or breakable snap
fits are preferred to screws due to their ease of disengagement.
O’Shea et al. [10] focused on tool selection during disassembly
where the optimal tool selection path in terms of the ease of
disassembly is produced via dynamic programming. Matsui et
al. [11] proposed the concept of Product Embedded
Disassembly Process, where a means of part separation that can
be activated upon disassembly is embedded within a product.

2

(a)
container

B A
C

1

(c)
container

C
B

(b)
container

B
C

A

As an example, they developed cathode-ray tube (CRT) with a
Nichrome wire embedded along the desired separation line,
which can induce thermal stress to crack the glass of the CRT
tube upon the application of current.

While these works suggest locally redesigning an existing
assembly for improving the ease of its disassembly, they do not
address the simultaneous decision of the spatial configuration
of components and joints for improving an entire disassembly
processes.

Disassembly Sequence Planning

Disassembly sequence planning (DSP) aims at generating
feasible disassembly sequences for a given assembly, where the
feasibility of a disassembly sequence is checked by the
existence of collision-free motions to disassemble each
component or subassembly in the sequence. Since the
disassembly sequence generation problem is NP-complete, the
past researches have focused on efficient heuristic algorithms
to approximately solve the problem. Based on a number of
important research results on assembly sequence planning [12-
16], several automated disassembly sequence generation
approaches for 2/2.5D components have been developed [17-
21]. More recent works are geared towards DSP with special
attentions to reuse, recycling, remanufacturing, and
maintenance. Lambert [22] built a linear programming model
to obtain the optimal EOL disassembly. Li et al. [23] used
Genetic Algorithm (GA) combined with Tabu search [24, 25] to
find the optimal disassembly sequence for maintenance.

These works, however, only address the generation and
optimization of disassembly sequences for an assembly with a
pre-specified spatial configuration of components. Since the
feasibility of disassembly sequences largely depends on the
spatial configuration of components, this would seriously limit
the opportunities for optimizing an entire assembly. In addition,
these works do not address the design of joint configurations,
which also has a profound impact on the feasibility and quality
of a disassembly sequence.

Configuration Design Problem

While rarely discussed in the context of disassembly, the
design of the spatial configuration of given shapes has been an
active research area by itself. Among the most popular flavors
is the bin packing problem (BPP), where the total volume (or
area for 2D problems) a configuration occupies is to be
minimized. Since this problem is also NP-complete, heuristic
methods are commonly used. Fujita et al. [26] proposed hybrid
approaches for a 2D plant layout problem, where the
topological neighboring relationships of a layout are
determined by Simulated Annealing (SA), whereas the
generalized reduced gradient (GRG) method determines the
geometry. Kolli and Cagan [27] used SA for packing 3D
components with arbitrary geometry. GA is also widely used
for the configuration design problem. Corcoran et al. [28]
solved a 3D packing problem with GA using multiple crossover
methods. Jain et al. [29] adopted discrete representation as an
2 Copyright © 2005 by ASME

1 Fasteners are considered as a special case of locators and are included in

a locator library
object expression and proposed a geometry-based crossover
operation for a 2D packing problem. Grignon et al. [30]
proposed a configuration design optimization method by using
multi-objective GA, where static and dynamic balances and
maintainability are considered in addition to configuration
volume.

These works, however, do not address the integration with
DSP.

METHOD
The proposed method can be summarized as the following

optimization problem:

• Given: component geometries, component revenues,
components to be retrieved, distance specification, and
locator library and its priority set

• Find: component configuration, locator configuration on
each component

• Subject to: no floating component, no overlap among
components, no unfixed component prior to disassembly

• Minimizing: redundant use of locator features, violation
of distance specification

• Maximizing: profit of disassembly to retrieve required
components

Since the problem has three objectives, Pareto optimal
solutions will be obtained as outputs, using a multi-objective
genetic algorithm (MOGA) [4, 5]. The rest of the section
describes the method in detail.

Inputs

The following inputs are assumed as given:

• Component geometries: As in [3, 31, 32, 33], the
component geometries are represented by voxels, due to
the efficiency in checking contacts and the simplicity in
modifying geometries. CAD inputs are first voxelized
using ACIS® solid modeling kernel.

• Component revenues (ri in Equation (1)): They are the
amounts of revenue each component yield through reuse
and recycling. Note that the costs of disassembly (ci in
Equation (1)) are calculated based on the disassembly
motions of each component.

• Components to be retrieved: It is a (small) subset of
components that must be retrieved due to regulatory
requirements, regardless of their revenues.

• Distance specification: The distances among components
are often constrained by their functional relationships. For
example, a cooling fan should be positioned near a CPU in
the component configuration of a laptop computer. Since
the distances between some pairs of components are more
important than the others, the distance specification is
defined as a set of the weights of importance for the
distances between pairs of components (measured between
two designated voxels) that need to be minimized. If the

weight between two components is not defined, their
distance is considered unimportant and can be arbitrary
chosen. Figure 2 shows an example of the distance
specification among five components.

• Locator library: Since types of feasible locators depend
on manufacturing and assembly processes, they are pre-
specified by a designer as a locator library. It is a set of
locators for a specific application domain, which can be
potentially added on each component to constrain its
motion. Figure 3 shows an example of five locators1 in the
locator library used in the following case study. Locator
constraint (LC) shown in the third column of Figure 3
illustrates a set of directions locators constrain when they
are oriented as shown in the second column, formally
represented as a subset of {-x, +x, -y, +y, -z, +z}.

• Priority set: As seen in Figure 3, multiple locator types in
a locator library can constrain the motion in the same
direction. Since a component often needs to be constrained
in multiple directions, the selection of locators on a
component to constrain specified directions can be non-
trivial. To minimize the generation of infeasible locator
selections during optimization, the locator configuration of
a component is dynamically constructed by testing locator
types, in a specified sequence, for constraining each
specified direction. Priority set is a set of potential
sequences (specified by a designer) in which locator types
are tested during the construction of locator configurations.

Figure 2. An example of the distance specification. The
labeled lines between two voxels indicate the weights of
importance of minimizing the respective distances.

Design Variables

There are two design variables for the problem. The first
design variable, configuration vector, represents the spatial
configuration and dimensional change of each component:

x = (x0, x1, …., xn-1) (2)

xi = (ti, ri, di,); i = 0, 1, … n-1 (3)

where n is the number of components in the assembly, ti and ri
are the vectors of the translational and rotational motions of
component i with respect to the global reference frame, and di =
3 Copyright © 2005 by ASME

(d0, d1, …, df-1) is a vector of the offset values of the faces of
component i in their normal directions. Since the voxel
representation is used, translations and offsets are limited to the
multiples of the size of a voxel. Similarly, rotations are limited
to +90o, -90o and +180o. Note that the dimensional changes are
considered only for the components whose dimensions are
assumed unfixed.

Figure 3. Locator library used in the case study: (a) Catch,
(b) Lug, (c) Track, (d) Boss, and (e) Screw.

The second design variable, locator vector, indirectly
represents the spatial configuration of the locator features on
each component:

y = (y0, y1, …, ym-1) (4)
yi = (CDi, pi); i = 0, …, m-1 (5)

where m = n (n-1)/2 is the number of pairs of components in
the assembly, and CDi ⊆ {-x, +x, -y, +y, -z, +z} is a set of
directions in which the motion of component c0 in the i-th pair
(c0, c1) is to be constrained, and pi is a sequence in the priority
set, in which locator types in the locator library are tested
during the construction of the locator configuration of the i-th
pair.

Given yi = (CDi, pi), the locator configuration of the i-th
pair of components c0 and c1 is constructed by testing locator

Type Geometry

(a) Catch

(b) Lug

(c) Track

(d) Boss

(e) Screw

LC

types, in sequence pi, for constraining each direction in CDi as
follows:

1. For each d ∈ CDi, remove d from CDi if the motion of c0

in d ∈ CD is constrained by other components or locators.
This step is necessary to reduce the redundant use of
locator features.

2. Remove locator type t at the beginning of pi. If pi is
empty, return FALSE.

3. Select direction d ∈ CD.
4. Find an orientation of o of locator type t whose locator

constraint LC (after re-orientation) contains d. If several
orientations are found, select an orientation with maximum
| LC ∩ CDi |. If none is found, go to step 2.

5. Add t to c0 or c1 in o.
6. CDi ← CDi \ LC. If CD = Ø, return TRUE. Otherwise, go

to step 3.

The above procedure returns TRUE if a locator configuration
constraining all directions in CDi is found by using the locator
types in pi, and FALSE otherwise. During optimization, the
value of yi returning FALSE is considered as infeasible.

Figure 4 shows an example construction of locator
configuration of components c0 and c1 according to the above
procedure with CD = {+z} and p = <Catch, Screw, Lug, Track,
Boss>:

• Step 1: Since component c1 does not constrain the motion

of c0 in +z (Figure 4 (a)), +z remains in CD
• Step 2: Remove Catch from p. Since p = <Screw, Lug,

Track, Boss> is non-empty, proceed.
• Step 3: Select +z from CD.
• Step 4: Systematically examine the possible orientations of

Catch on c0 and c1 to find the orientations that constraint
+z (o0 through o7 in Figure 4 (b) and (c)). Note, however,
that the orientations other than o0 and o5 in Figure 4 (d) are
infeasible due to the lack of an adjacent component. Since
both o0 and o5 has | LC ∩ CDi | = |{+z}∩{+z}| = |{+z}| = 1,
o0 is chosen.

• Step 5: Catch in orientation o0 is added to c1 (Figure 4 (e)).
• Step 6: Since CDi \ LC = {+z}\{+z}= Ø, CDi = Ø. Return

TRUE.

Figure 5 illustrates how two different values of priority
sequence p with the same CD can result in the different locator
configurations. For the two components in Figure 5 (a) with
CD = {-x, +x, +z}, sequence p = <Track, Boss, Screw, Catch,
Lug> results in the locators in Figure 5 (b), whereas sequence p
= <Catch, Lug, Screw, Track, Boss> results in the locators in
Figure 5 (c). In Figure 5 (c), two locator types, Catch and Lugs
are used since Catch (top priority) cannot be oriented to
constrain c0 in +z direction while Lug (second priority) can.

While indirect, constraint direction CD and priority
sequence p realizes a compact representation of a locator
4 Copyright © 2005 by ASME

configuration of a pair of components. Compared to the direct
representation in [3] that specifies the existence of a locator
type in an orientation at a potential location on a component, it
can generate far fewer infeasible locator configurations during
the “generate and test” process of genetic algorithms. As a
result, the computational efficiency is dramatically improved.
Instead of treating the priority sequence as a design variable,
one might imagine checking for locator types always in the
(fixed) ascending sequence of their manufacturing costs is
sufficient. However, such costs are difficult to determine a
priori, since the actual geometry (and hence the cost) of a
locator heavily dependents on the configuration of the
surrounding components.

Figure 4. An example construction of locator configuration:
(a) two components, (b) and (c) possible orientations of
Catch, (d) two feasible orientations, and (e) final locator
configuration.

Figure 5. Influence of priority sequence p in locator
configurations: (a) two components with CD = {-x, +x, +z},
(b) locators constructed with p = <Track, Boss, Screw,
Catch, Lug>, and (c) locators constructed with p = <Catch,
Lug, Screw, Track, Boss>.

(b) (c)

x

y
z

(a)
c1

c0

c0

c1

x

y
z

o0

o1

o2

o3

o4

o5

o6

o7

(a) (b) (c)

(d) (e)

o0

o5

Constraints
The locations of components as specified by x, whose

geometries are altered by adding the locator features
constructed from y, must satisfy the following three constraints:

1. No floating components
2. No over-lap components
3. No unfixed component prior to disassembly

Prior to the evaluation of the objective functions for x and y,
these constraints are checked by using the standard geometric
algorithms for mobility and contact analyses. Voxel
representation allows the very efficient execution of these
algorithms. While constraint 1 is a necessary condition for
constraint 3, they are separated here to indicate the fact that
constraint 1 is used as a pre-screeding for constraint 3 during
the optimization process.

Objective Functions

The configurations of components and locator features on
each component specified by x and y are evaluated according
to three criteria: 1) the satisfaction of distance specification
among components, 2) the efficient use of locator features on
components, and 3) the profit of overall disassembly process
under regulatory requirements for component retrieval.

The first objective function (to be minimized) is for the
satisfaction of the distance specification, given as:

f1(x, y) =∑

i
iidw (6)

where wi is the weight of importance of the i-th distance in the
distance specification and di is the distance between two
designated voxels.

The second objective function (to be minimized) is for the
efficient use of locator features, given as the total increase in
manufacturing cost due to the addition of locator features to
components:

f2(x, y) =∑

i
ic (7)

where ci is the manufacturing cost of the i-th locators in the
assembly.

The third objective function (to be maximized) is for the
profit of the overall disassembly process under the regulatory
requirements of component retrieval. Since assembly a(x, y)
specified by x and y can generally be disassembled in multiple
sequences, the objective function is defined as the profit of the
best (most profitable) disassembly sequence with the penalty of
un-retrieving components in RC, the input set of components to
be retrieved:

 f3(x, y) =

xyQq∈
max {

qPpq∈
max u (a, pq) - w · v(a, pq*) } (8)

where:
5 Copyright © 2005 by ASME

• Qxy is the set of all 2-disassembly sequences [31] (each

disassembly step consists of less than two consecutive
translations of a

• Pq is the set of sub-sequences of q ∈ Qxy in which a is only
partially disassembled

• u(a, pq) is the profit of disassembling a in pq ∈ Pq
• pq*

 is the sub-sequence of q that gives
qPpq∈

max u (a, pq)

• v(a, pq*) is the number of components in RC that are not
retrieved by disassembling a in pq*

• w is weight

It is assumed that a disassembly sequence and a set of
disassembly sequences are represented as a binary tree and a
AND/OR graph [11], respectively. Accordingly, Qxy is
computed as follows:

1. Set a component (eg., container) as the fixed component,

and push the assembly to stack S and Qxy
2. Pop a subassembly s from S
3. For each subassembly ss ⊂ s that does not contain any

fixed components, check the 2-disassemblability of ss and
st = s\ss. If ss and st are 2-disassemblable, add ss and st to
Qxy. If ss is composed of multiple components and
contains components in RCi, push ss to S. Also, do the
same for st.

4. If S= Ø, return. Otherwise go to step 2.

where the 2-disassembleability of two subassemblies ss and st
are checked as follows [31, 34]:

1. For each mating surfaces between ss and st (including the

ones of the locators), obtain a set of constrained directions
as a subset of six possible translational directions D = {-x,
+x, -y, +y, -z, +z}.

2. Compute constrained directions CDst between ss and st as
a union of all constrained directions obtained in step 1.

3. If D\CDst = Ø, return FALSE.
4. If there exist a direction in D\CDst along which ss can be

moved infinitely without a collision, return TRUE (ss is 1-
disassembleable).

5. Select a direction d in D\CDst. If all have been selected,
return infeasible. Otherwise, go to the next step.

6. Move ss by unit length along d. If ss collides with other
components, go to step 5.

7. If ss is 1-disassembleable at the current location, return
TRUE (ss is 2-disassembleable). Otherwise, go to step 6.

Given a 2-disassembly sequence q ∈ Qxy, the maximum

profit ua ≡ u (a, pq*) among all partial disassembly sequence of
q in Equation (8) can be obtained by following the disassembly
steps in q until the continuation is unprofitable. Considering a
disassembly step in q that disassembles subassembly s into two

subassemblies ss and st, the maximum profit us of partially
disassembling s in sub-sequences of q can be recursively
defined as follows:

if is a component
0 if () 0 and < 0

 otherwise

s

s ss st s

ss st s

r s
u v s u u c

u u c

⎧
⎪= = + −⎨
⎪ + −⎩

 (9)

where rs is the revenue of s (if s is a component), v(s) is the
number of components in RC contained in s, and cs is the cost
of disassembling s into ss and st. The condition v(s) = 0 is
necessary for the case us = 0, in order to ensure that
disassembly continues as long as there is a chance of retrieving
the components in RC regardless of the profit.

The disassembly cost ci in Equation (9) depends on the
orientation changes, the moved distance, and the accessibility
of fasteners during the disassembly operation, and is given by:

ci = ∑
=

⋅
2

0j
jj dcω (10)

where dc0 is the number of orientation changes, dc1 is the sum
of the moved distances of disassembled components, dc2 is the
sum of accessibilities acf of removed screws and ωj is the
weight of dcj. The accessibility acf of a screw is defined as:

acf = 1.0 + ωa / (aa + 0.01) (11)

where ωa is weight and aa is the area of the mounting face of
the screw, accessible from outside of the product in its normal
direction.

Optimization Algorithm

Since design variables x and y are discrete and there are
three objectives, the problem is solved by using a multi-
objective genetic algorithm [4,5]. A multi-objective genetic
algorithm is an extension of the conventional (single-objective)
genetic algorithms, which does not require multiple objectives
to be aggregated to one value, for example, as a weighted sum.
Instead of static aggregates such as a weighted sum, it
dynamically determines an aggregate of the values of multiple
objective functions of a candidate solution based on its relative
quality in the current population. The proposed research will
use the non-dominated sorting genetic algorithm, where the
relative quality of a candidate solution is measured in terms of
the number of solutions dominating it in the current population.

Chromosome c, an internal representation of design
variables for genetic algorithms, is defined as a simple list of
the two design variables:

c = (x, y) (12)

6 Copyright © 2005 by ASME

Since the information in x, y are linked to the geometry of a
candidate design, the conventional one point or multiple point
crossovers for linear chromosomes are ineffective in preserving
high-quality building blocks [35]. Accordingly, a geometry-
based crossover operation based on [29] is adopted:

1. Randomly select a point in the bounding box of the

assembly.
2. Cut two parent designs p1 and p2 with the three planes

parallel to x, y, z axes, and passing through the point
selected in step 1, into eight pieces each (Figure 6 (a)).

3. Assemble two child designs c1 and c2 by alternately
swapping the pieces of p1 and p2 (Figure 6 (b)).

4. Repair c1 and c2 by moving each component C to the child
containing the larger volume (of the sliced piece) of C. If
c1 and c2 contain the same volume, C is placed in the same
way as the parent with the higher rank [4,5].

5. Add locators to c1 and c2 by checking which parent each
pair of component is inherited from. If a child contains
both components of a pair, the corresponding locator is
added to the child. Otherwise, a locator is randomly added
to either child.

CASE STUDY
The proposed method is applied to an assembly composed

of 10 components with a distance specification shown in Figure
7, where component A (container) is considered as fixed, the
revenues rc of components are listed in Table 1, and RC = {C,
G}. The locator library in Figure 3 is used and the
manufacturing costs of locators in the locator library are listed
in Table 2. Note that the manufacturing cost of screws is low,
while their disassembly cost tends to be higher than other
locators reflecting additional efforts to remove them.

In order to examine the effect of the cost of removing
screws on assembly design, the results are obtained with two
sets of weights in Equations (10) and (11). The difference
between the weights for Cases 1 and 2 are , ω2 in the fourth
column, the weight for the sum of the accessibilities of the
screws removed during disassembly. For both cases, the
number of population of 150 and the maximum number of
generation of 1200 are used for the genetic algorithm. The
running time for both cases is approximately 336 hours (two
weeks) with a standard desktop PC.

For case 1, thirty-eight (38) Pareto optimal designs are
obtained. Figure 8 shows five designs R11, R12, R13, R14 and
R15 that enable the retrieval of all components in RC, whose
objective function values are listed in Table 4. For case 2, forty-
five (45) Pareto optimal designs are obtained. Figure 9 shows
four designs R21, R22, R23 and R24 that enable the retrieval of all
components in RC, whose objective function values are listed
in Table 5.

Designs R13 and R23 utilize only one fastener, whose
removal activates a disassembly pathways as illustrated in
Figure 1. Figure 10 shows one of 7332 optimal disassembly
sequences for A13 obtained by evaluating 11228 feasible

disassembly sequences. Upon the removal of the screw that
fixes component A and F, all components are disassembled to
gain the maximum profit of disassembly. Similarly, Figure 11
shows one of 2400 optimal disassembly sequences for R23
obtained by evaluating 178018 feasible disassembly sequences.
Upon the removal of the screw that fixes component A and C,
all components except for J are disassembled to gain the
maximum profit. This is because the orientation change is
required to disassemble J, and hence, the disassembly cost to
disassemble J becomes higher than its revenue. Although the
orientation change is also required to retrieve B and C in R13,
they are disassembled since B is included in RC and the
revenue of C is still higher than the disassembly cost.

Figure 6. Geometry-based crossover operator. (a) two
parents p1 (left) and p2 (right), (b) two children c1 (left) and
c2 (right) after crossover, and (c) two children c1 (left) and c2
(right) after repair.

C1 B1

A1 C2

B2

A2

A2 C1

B2

B1
C2

B1
B2

A1

A2

B1 C1

A1 C2

A2

B2

(a)

(b)

(c)
7 Copyright © 2005 by ASME

Figure 7. Distance specifications of the example assembly
for the case study.

Table 1. Revenues of components in assembly in Figure 7.

Table 2. Manufacturing cost of the locators in the locator

library.

Table 3. Weights in Equations 10 and 11 for Cases 1 and 2.

Designs R11 and R21 are the same design with the minimum

f2 (manufacturing cost). Since the manufacturing cost of screws
is inexpensive, seven screws are used instead of locators in the
design. Figure 12 shows one of 92112 optimal disassembly
sequences for R11 and R21 obtained by evaluating 385358
feasible disassembly sequences. Due to high ω2 in Case 1,
component B and I are not disassembled in R11, whose retrieval
would require the removal of two screws. Due to low ω2 in
Case 2, on the other hand, all components are disassembled in
R21.

CONCLUSION AND FUTURE WORK
This paper presented a computational method for designing

an assembly that can be disassembled via a domino-like “self-
disassembly” process in the most profitable sequence, triggered
by the removal of one or a few fasteners. The problem is posed
as the simultaneous determination of the spatial configurations
of components and locators, which minimize the violation of
the distance specification among components and the cost of
locators on components, and maximize the profit of overall
disassembly process under the regulatory requirements. A

A B C D E F G H I J
fixe

d
200 50 1000 300 300 50 200 50 100

Locator Lug Track Catch Boss Screw
Mfg cost 20 30 10 70 20

parameter ω0 ω1 ω2 ωa
Case 1 1.5 37.5 100 10
Case 2 1.5 37.5 10 10

A

B

C

D

E
F

G H
I

J

simple case study with different costs for removing fasteners
demonstrated that the method can effectively generate design
alternatives.

Although the resulting designs cannot be used directly as
the final design due to a number of other design factors, they
would provide early insights to designers during conceptual
design stages. The future work includes the integration with an
LCA to quantify the trade-off between economical profitability
and environmental impact of products as studied in [1], and the
application to more realistic examples. The improvements in
the computational speed will also be addressed the use of an
alternative optimization algorithm.

Figure 8. Pareto Optimal Solutions (a) R11, (b) R12, (c) R13,
(d) R14, (e) R15.

Table 4. Objective function values for R11, R12, R13, R14 and
R15.

ACKNOWLEDGMENTS
The authors acknowledge funding provided by National

Science Foundation (BES-0124415) for this research. Any
options, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not

 f1 (distance spec.) f2 (mfg. cost) f3 (dissasm. cost)
R11 4908.66 160 937.826
R12 5581.06 200 1103.53
R13 5668.18 480 1355.61
R14 12114.5 360 1390.06
R15 12114.5 400 1470.06

(a) R11 (b) R12

(c) R13

(d) R14 (e) R15
8 Copyright © 2005 by ASME

necessarily reflect the views of the National Science
Foundation.

Figure 9. Pareto Optimal Solutions (a) R21, (b) R22, (c) R23,
(d) R24.

Table 5. Objective function values for R21, R22, R23 and R24.

REFERENCES
[1] A. Hulla, K. Jalali, K. Hamza, S. Skerlos, K. Saitou, 2003,

“Multi-criteria Decision Making for Optimization of Product
Disasembly under Multiple Situatioins,” Environmental Science
and Technology, Special issue on Principles of Green
Engineering, vol. 37, No. 23, pp. 5303 -5313.

[2] D. Shetty, K. Rawolle, and C. Campana, 2000, “A New
Methodology for Ease-Of-Disassembly in Production Design,”
Recent Advances in Design for Manufacture (DFM), vol. 109,
pp. 39-50, ASME.

[3] S. Takeuchi and K. Saitou, 2005, “Design for Product-
Embedded Disassembly Pathways,” Proceedings of the IEEE
Conference on Automation Science and Engineering, August 1-
2, Edmonton, Canada, in press.

[4] C. M. Fonseca and P. J. Fleming, 1993, “Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and
Generalization,” Proceedings of the Fifth International
Conference on Genetic Algorithms, San Mateo, California, pp.
416-423.

 f1 (distance spec.) f2 (mfg. cost) f3 (dissasm. cost)
R21 4908.66 160 1466.86
R22 5573.34 180 1509.36
R23 10298.0 450 1564.92
R24 12170.6 330 1555.31

(a) R21 (b) R22

(c) R23 (d) R24

[5] C. A. Coello, D. A. Veldhuizen, and G. B. Lamont, 2002,
Evolutionary algorithms for solving multi-objective optimization
problems, Kluwer Academic Publishers, ISBN-0306467623.

[6] G. Boothroyd and L. Alting, 1992, “Design for assembly and
disassembly,” Annals of CIRP, vol. 41, no. 2.

[7] E. Kroll, B. Beardsley, and A. Parulian, 1996, “A Methodology
to Evaluate Ease of Disassembly for Product Recycling,” IIE
Transactions, vol. 28, No 10, pp. 837-845.

[8] S. K. Das, P. Yedlarajiah, and R. Narendra, 2000, “An Approach
for Estimating the End-Of-Life Product Disassembly Effort and
Cost,” International Journal of Production Research, vol. 38,
No. 3, 657-673.

[9] J. Reap and B. Bras, 2002, “Design for Disassembly and the
Value of Robotic Semi-Destructive Disassembly,” Proceedings
of the ASME 2002 Design Engineering Technical Conferences
and Computers and Information in Engineering Conference,
(Paper No. DETC2002/DFM-34181), September 29 – October
2, Montreal, Canada.

[10] B. O’Shea, H. Kaebernick, S. S. Grewal, H. Perlewitz, K.
Müller, and G. Seliger, 1999, “Method for Automatic Tool
Selection for Disassembly Planning,” Assembly Automation, vol.
19, No. 1, pp. 47-54.

[11] K. Matsui, K. Mizuhara, K. Ishii, and R. M. Catherine, 1999,
“Development of Products Embedded Disassembly Process
Based on End-Of-Life Strategies,” EcoDesign 1999, First
International Symposium on Environmentally Conscious Design
and Inverse Manufacturing, February 1-3, pp. 570-575.

[12] L. S. Homem dé Mello and A. C. Sanderson, 1990, “AND/OR
Graph Representation of Assembly Plans,” IEEE Transactions
on Robotics and Automation, vol. 6, pp. 188-99.

[13] T. L. De Fazio and D. E. Whitney, 1987, “Simplified Generation
of All Mechanical Assembly,” IEEE Journal of Robotics and
Automation, vol. 3, No. 6, pp. 640-658.

[14] S. Lee and Y. G. Shin, 1990, “Assembly Planning Based on
Geometric Reasoning,” Computer and Graphics, vol. 14, No. 2,
pp. 237-250.

[15] L. S. Homem dé Mello and A. C. Sanderson, 1991, “A Correct
and Complete Algorithm for the Generation of Mechanical
Assembly Sequences,” IEEE Transactions on Robotics and
Automation, vol. 7, pp. 228-40.

[16] D. F. Baldwin, T. E. Abell, M.-C. M. Lui, T. L. De Fazio, and D.
E. Whitney, 1992, “An Integrated Computer Aid for Generating
and Evaluating Assembly Sequences for Mechanical Products,”
IEEE Transactions on Robotics and Automation, vol. 7, No. 1,
pp. 78-94.

[17] T. C. Woo and D. Dutta, 1991, “Automatic Disassembly and
Total Ordering in Three Dimensions,” Transactions of ASME,
Journal of Engineering for Industry, vol. 113, pp. 207-213.

[18] D. Dutta and T. C. Woo, 1995, “Algorithm for Multiple
Disassembly and Parallel Assemblies,” Transactions of ASME,
Journal of Engineering for Industry, vol. 117, pp. 102-9.

[19] S.-F. Chen, J. H. Oliver, S.-Y. Chou and L.-L. Chen, 1997,
“Parallel disassembly by onion peeling,” Transactions of ASME,
Journal of Mechanical Design, vol. 119, pp. 267-274.

[20] H. Srinivasan and R. Gadh, 2000, “Efficient Geometric
Disassembly of Multiple Components from An Assembly Using
Wave Propagation,” Transactions of ASME, Journal of
Mechanical Design, vol. 122, pp. 179-184.

[21] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Calton and A. L.
Ames, 1996, “The Archimedes 2 Mechanical Assembly
Planning System,” Proceedings of the 1996 IEEE International
9 Copyright © 2005 by ASME

Conference on Robotics and Automation, April, 1996,
Minneapolis, Minnesota.

[22] A. J. D. Lambert, 1999, “Optimal Disassembly Sequence
Generation for Combined Material Recycling and Part Reuse,”
Proceedings of the 1999 IEEE International Symposium on
Assembly and Task Planning, Portugal, pp. 146-151.

[23] J. R. Li, S. B. Tor and L. P. Khoo, 2002, “A Hybrid Disassembly
Sequence Planning Approach for Maintenance,” Transactions of
ASME, Journal of Computing and Information Science in
Engineering, vol. 2, pp. 28-37.

[24] F. Glover, 1977, “Heuristics for Integer Programming Using
Surrogate Constraints,” Journal of Decision Science, vol. 8, pp.
156-166

[25] F. Glover, 1986, “Further Paths for Integer Programming and
Links to Artificial Intelligence,” Journal of Computer and
Operations Research, vol. 13, pp. 533-549.

[26] K. Fujita, S. Akagi, and S. Shimazaki, 1996, “Optimal Space
Partitioning Method Based on Rectangular Duals of Planar
Graphs,” JSME International Journal, vol. 60, pp. 3662-3669.

[27] A. Kolli, J. Cagan and R. Rutenbar, 1996, “Packing of Generic,
Three-Dimensional Components Based on Multi-Resolution
Modeling,” Proceedings of the 1996 ASME Design Engineering
Technical Conferences and Computers in Engineering
Conference, August 18-22, 1996, Irvine, California.

[28] A. L. Corcoran III and R. L. Wainwright, 1992, “A Genetic
Algorithm for Packing in Three Dimensions,” Proceedings of
the 1992 ACM/SIGAPP Symposium on Applied Computing,
Kansas City, Missouri.

[29] S. Jain and H. C. Gea, 1998, “Two-Dimensional Packing
Problems Using Genetic Algorithm,” Journal of Engineering
with Computers, 1998, vol. 14, pp. 206-213.

[30] P. M. Grignon and G. M. Fadel, 1999, “Configuration Design
Optimization Method,” Proceedings of the 1999 ASME Design
Engineering Technical Conferences and Computers in
Engineering Conference, (Paper No. DETC99/DAC-8575),
September 12-15, Las Vegas, Nevada.

[31] D. Beasley and R. R. Martin, 1993, “Disassembly Sequences for
Objects Built from Unit Cubes,” Journal of Compute-Aided
Design, vol. 25, No. 12.

[32] S. Minami, K. F. Pahng, M. J. Jakiela and A. Srivastave, 1995,
“A Cellular Automata Representation for Assembly Simulation
and Sequence Generation,” IEEE International Symposium on
Assembly and Task Planning, pp.56-65, August 10-11,
Pittsburgh, Pennsylvania.

[33] R. C. W. Sung, J. R. Corney and D. E. R. Clark, 2001,
“Automatic Assembly Feature Recognition and Disassembly
Sequence Generation,” Transactions of ASME, Journal of
Computing and Information Science in Engineering, vol. 1, pp.
291-299.

[34] T. C. Woo and D. Dutta, “Automatic Disassembly and Total
Ordering in Three Dimensions,” Transactions of ASME, Journal
of Engineering for Industry, 1991, vol. 113, pp. 207-213.

[35] D. E. Goldberg, 1989, Genetic Algorithms in Search
Optimization and Machine Learning, Addison-Wesley, Reading,
Massachusetts.

Figure 10. An optimal disassembly sequence of R13.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
10 Copyright © 2005 by ASME

Figure 11. An optimal disassembly sequence of R23

Figure 12. An optimal sequence of R11 ((a)-(j)) and of R21 ((a)-(l)).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
 11 Copyright © 2005 by ASME

	Welcome Menu
	Main Table of Contents
	Track-4 Table of Contents
	About DETC2005
	Author Index

	Search
	Print Article

