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ABSTRACT 
This paper presents a computational method for designing 

assemblies with a built-in disassembly pathway that maximizes 
the profit of disassembly while satisfying regulatory 
requirements for component retrieval. Given component 
revenues and components to be retrieved, the method 
simultaneously determines the spatial configurations of 
components and locator features on the components, such that 
the product can be disassembled in the most profitable 
sequence, via a domino-like “self-disassembly” process 
triggered by the removal of one or a few fasteners. The 
problem is posed as optimization and a multi-objective genetic 
algorithm is utilized to search for Pareto-optimal designs in 
terms of three objectives: 1) the satisfaction of distance 
specification among components, 2) the efficient use of locator 
features on components, and 3) the profit of overall 
disassembly process under the regulatory requirements. A case 
study with different costs for removing fasteners demonstrates 
the effectiveness of the method in generating design 
alternatives under various disassembly scenarios.  
 
Keywords: Design for disassembly, design optimization, 
computer-aided design, multi-objective genetic algorithm 

INTRODUCTION 
Increased regulatory pressures (e.g., EU’s WEEE 

directive) and voluntary initiatives has placed manufacturers 
more responsibility for end-of-life (EOL) treatments such as 
material recycling and component reuse. Since both recycling 
and reuse typically require disassembly, design for disassembly 
(DFD) has become a key design issue in almost any mass-
produced products. DFD is particularly critical in consumer 
electrical products due to a large number of production and 
short cycle time for technological obsolescence. Also, 
components in these products are typically required to fit into a 
tight enclosing space, which makes disassembly even more 
challenging. 

The optimal EOL treatments should be determined based 
on the profit of disassembly process and environmental impact 
[1]. In the simplest form, the profit of a disassembly process u 
can be expressed as: 

 

∑ −=
i

ii cru )(    (1) 

where ri is the revenue of the i-th disassembled components 
and ci is the disassembly cost of the i-th disassembly operation. 
While ri depends only on disassembled components, ci 
generally depends on both disassembled components and the 
spatial configuration of components and fasteners [2]. Note that 
it is often profitable to stop disassembly before a product is 
completely disassembled to components.  

To prevent manufacturers from pursuing most profitable 
EOL treatments with potentially serious environmental impacts, 
regulatory requirements are often imposed. In many countries, 
for example, the recovery of toxic components such as lead and 
mercury is obligated regardless of profit. It is therefore desired 
to design products with the maximum profit of disassembly 
while satisfying constraints on regulatory requirements. 

The above thoughts motivated us to develop a concept of 
product-embedded disassembly [3], where the relative motions 
of components are constrained by locator features (such as 
catches and lugs) integral to components, in such a way that the 
optimal disassembly sequence is realized via a domino-like 
“self-disassembly” process triggered by the removal of one or a 
few fasteners. Figure 1 illustrates the concept. In the assembly 
shown in Figure 1 (a), suppose the retrieval of component A 
(valuable material) and component B (toxic material) are 
desired, and the retrieval of component C (non-valuable 
material) is not profitable considering disassembly cost. To 
disassemble the assembly in an optimal fashion, a disassembly 
operator can simply remove the screw, which activates a 
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disassembly pathway A B as shown in Figures 1 (b) and (c). 
Thanks to locator 1 on component A and locator 2 on the 
container, the use of fasteners is minimized, which is essential 
to increase the profit of overall disassembly process.  

 
Figure 1. Concept of product-embedded disassembly [3]. 

 
In our preliminary work [3], the spatial configurations of 

components and locators are simultaneously determined to 
retrieve a given set of components in a unique sequence, with 
no consideration of the profit of overall disassembly process. 
Also, no rotational motions are considered in determining the 
spatial configuration of components. As an extension, this 
paper presents a method where the profit of disassembly 
process, as defined in Equation (1), is explicitly treated as an 
objective to maximize. Given component revenues and 
components to be retrieved, the method simultaneously 
determines the spatial configurations of components and 
locator features on the components, such that the product can 
be disassembled in the most profitable sequence, via a domino-
like “self-disassembly” process triggered by the removal of one 
or a few fasteners. The problem is posed as optimization and a 
multi-objective genetic algorithm [4, 5] is utilized to search for 
Pareto-optimal designs in terms of three objectives: 1) the 
satisfaction of distance specification among components, 2) the 
efficient use of locator features on components, and 3) the 
profit of overall disassembly process under regulatory 
requirements. A case study with different costs for removing 
fasteners demonstrates the effectiveness of the method in 
generating design alternatives under various disassembly 
scenarios.  

PREVIOUS WORKS 
Design for Disassembly 

Design for disassembly (DFD) is a class of design methods 
and guidelines to enhance the ease of disassembly for product 
maintenance and/or EOL treatments [6]. Kroll et al. [7] utilized 
disassembly evaluation charts to facilitate the improvements of 
product design. Das et al. [8] introduced the Disassembly 
Effort Index (DEI) score to evaluate the ease of disassembly. 
Reap et al. [9] reported DFD guidelines for robotic semi-
destructive disassembly, where detachable or breakable snap 
fits are preferred to screws due to their ease of disengagement. 
O’Shea et al. [10] focused on tool selection during disassembly 
where the optimal tool selection path in terms of the ease of 
disassembly is produced via dynamic programming. Matsui et 
al. [11] proposed the concept of Product Embedded 
Disassembly Process, where a means of part separation that can 
be activated upon disassembly is embedded within a product. 
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As an example, they developed cathode-ray tube (CRT) with a 
Nichrome wire embedded along the desired separation line, 
which can induce thermal stress to crack the glass of the CRT 
tube upon the application of current.  

While these works suggest locally redesigning an existing 
assembly for improving the ease of its disassembly, they do not 
address the simultaneous decision of the spatial configuration 
of components and joints for improving an entire disassembly 
processes. 
 
Disassembly Sequence Planning 

Disassembly sequence planning (DSP) aims at generating 
feasible disassembly sequences for a given assembly, where the 
feasibility of a disassembly sequence is checked by the 
existence of collision-free motions to disassemble each 
component or subassembly in the sequence. Since the 
disassembly sequence generation problem is NP-complete, the 
past researches have focused on efficient heuristic algorithms 
to approximately solve the problem. Based on a number of 
important research results on assembly sequence planning [12-
16], several automated disassembly sequence generation 
approaches for 2/2.5D components have been developed [17-
21]. More recent works are geared towards DSP with special 
attentions to reuse, recycling, remanufacturing, and 
maintenance. Lambert [22] built a linear programming model 
to obtain the optimal EOL disassembly. Li et al. [23] used 
Genetic Algorithm (GA) combined with Tabu search [24, 25] to 
find the optimal disassembly sequence for maintenance.  

These works, however, only address the generation and 
optimization of disassembly sequences for an assembly with a 
pre-specified spatial configuration of components. Since the 
feasibility of disassembly sequences largely depends on the 
spatial configuration of components, this would seriously limit 
the opportunities for optimizing an entire assembly. In addition, 
these works do not address the design of joint configurations, 
which also has a profound impact on the feasibility and quality 
of a disassembly sequence. 
 
Configuration Design Problem 

While rarely discussed in the context of disassembly, the 
design of the spatial configuration of given shapes has been an 
active research area by itself. Among the most popular flavors 
is the bin packing problem (BPP), where the total volume (or 
area for 2D problems) a configuration occupies is to be 
minimized. Since this problem is also NP-complete, heuristic 
methods are commonly used. Fujita et al. [26] proposed hybrid 
approaches for a 2D plant layout problem, where the 
topological neighboring relationships of a layout are 
determined by Simulated Annealing (SA), whereas the 
generalized reduced gradient (GRG) method determines the 
geometry. Kolli and Cagan [27] used SA for packing 3D 
components with arbitrary geometry. GA is also widely used 
for the configuration design problem. Corcoran et al. [28] 
solved a 3D packing problem with GA using multiple crossover 
methods. Jain et al. [29] adopted discrete representation as an 
2 Copyright © 2005 by ASME 



                                                           
1 Fasteners are considered as a special case of locators and are included in 

a locator library 
object expression and proposed a geometry-based crossover 
operation for a 2D packing problem. Grignon et al. [30] 
proposed a configuration design optimization method by using 
multi-objective GA, where static and dynamic balances and 
maintainability are considered in addition to configuration 
volume. 

These works, however, do not address the integration with 
DSP. 

METHOD 
The proposed method can be summarized as the following 

optimization problem: 
 

• Given: component geometries, component revenues, 
components to be retrieved, distance specification, and 
locator library and its priority set 

• Find: component configuration, locator configuration on 
each component 

• Subject to: no floating component, no overlap among 
components, no unfixed component prior to disassembly 

• Minimizing: redundant use of locator features, violation 
of distance specification 

• Maximizing: profit of disassembly to retrieve required 
components 

 
Since the problem has three objectives, Pareto optimal 
solutions will be obtained as outputs, using a multi-objective 
genetic algorithm (MOGA) [4, 5]. The rest of the section 
describes the method in detail.  

 
Inputs 

The following inputs are assumed as given: 
 

• Component geometries: As in [3, 31, 32, 33], the 
component geometries are represented by voxels, due to 
the efficiency in checking contacts and the simplicity in 
modifying geometries. CAD inputs are first voxelized 
using ACIS® solid modeling kernel.  

• Component revenues (ri in Equation (1)): They are the 
amounts of revenue each component yield through reuse 
and recycling. Note that the costs of disassembly (ci in 
Equation (1)) are calculated based on the disassembly 
motions of each component.  

• Components to be retrieved: It is a (small) subset of 
components that must be retrieved due to regulatory 
requirements, regardless of their revenues. 

• Distance specification: The distances among components 
are often constrained by their functional relationships. For 
example, a cooling fan should be positioned near a CPU in 
the component configuration of a laptop computer. Since 
the distances between some pairs of components are more 
important than the others, the distance specification is 
defined as a set of the weights of importance for the 
distances between pairs of components (measured between 
two designated voxels) that need to be minimized. If the 
 

weight between two components is not defined, their 
distance is considered unimportant and can be arbitrary 
chosen. Figure 2 shows an example of the distance 
specification among five components.  

• Locator library: Since types of feasible locators depend 
on manufacturing and assembly processes, they are pre-
specified by a designer as a locator library. It is a set of 
locators for a specific application domain, which can be 
potentially added on each component to constrain its 
motion. Figure 3 shows an example of five locators1 in the 
locator library used in the following case study. Locator 
constraint (LC) shown in the third column of Figure 3 
illustrates a set of directions locators constrain when they 
are oriented as shown in the second column,  formally 
represented as a subset of {-x, +x, -y, +y, -z, +z}. 

• Priority set: As seen in Figure 3, multiple locator types in 
a locator library can constrain the motion in the same 
direction. Since a component often needs to be constrained 
in multiple directions, the selection of locators on a 
component to constrain specified directions can be non-
trivial. To minimize the generation of infeasible locator 
selections during optimization, the locator configuration of 
a component is dynamically constructed by testing locator 
types, in a specified sequence, for constraining each 
specified direction. Priority set is a set of potential 
sequences (specified by a designer) in which locator types 
are tested during the construction of locator configurations. 

 

 
Figure 2. An example of the distance specification. The 
labeled lines between two voxels indicate the weights of 
importance of minimizing the respective distances. 
 
Design Variables 

There are two design variables for the problem. The first 
design variable, configuration vector, represents the spatial 
configuration and dimensional change of each component:  

 
x = (x0, x1, …., xn-1)    (2) 

xi = (ti, ri, di,);  i = 0, 1, … n-1  (3) 
 
where n is the number of components in the assembly, ti and ri 
are the vectors of the translational and rotational motions of 
component i with respect to the global reference frame, and di = 
3 Copyright © 2005 by ASME 



(d0, d1, …, df-1) is a vector of the offset values of the faces of  
component i in their normal directions. Since the voxel 
representation is used, translations and offsets are limited to the 
multiples of the size of a voxel. Similarly, rotations are limited 
to +90o, -90o and +180o. Note that the dimensional changes are 
considered only for the components whose dimensions are 
assumed unfixed.  
 

 
Figure 3. Locator library used in the case study: (a) Catch, 
(b) Lug, (c) Track, (d) Boss, and (e) Screw. 
 

The second design variable, locator vector, indirectly 
represents the spatial configuration of the locator features on 
each component:  
 

y = (y0, y1, …, ym-1)    (4) 
yi = (CDi, pi);  i = 0, …, m-1  (5) 

 
where m = n (n-1)/2 is the number of pairs of components in 
the assembly, and CDi ⊆ {-x, +x, -y, +y, -z, +z} is a set of 
directions in which the motion of component c0 in the i-th pair 
(c0, c1) is to be constrained, and pi is a sequence in the priority 
set, in which locator types in the locator library are tested 
during the construction of the locator configuration of the i-th 
pair. 

Given yi = (CDi, pi), the locator configuration of the i-th 
pair of components c0 and c1 is constructed by testing locator 

Type Geometry 

(a) Catch 

(b) Lug 

(c) Track 

(d) Boss 

(e) Screw 

LC 
 

types, in sequence pi, for constraining each direction in CDi as 
follows: 

 
1. For each d ∈ CDi, remove d from CDi if the motion of c0 

in d ∈ CD is constrained by other components or locators. 
This step is necessary to reduce the redundant use of 
locator features. 

2. Remove locator type t at the beginning of pi.  If pi is 
empty, return FALSE. 

3. Select direction d ∈ CD.  
4. Find an orientation of o of locator type t whose locator 

constraint LC (after re-orientation) contains d. If several 
orientations are found, select an orientation with maximum 
| LC ∩ CDi |. If none is found, go to step 2.  

5. Add t to c0 or c1 in o. 
6. CDi ← CDi \ LC. If CD = Ø, return TRUE. Otherwise, go 

to step 3. 
 
The above procedure returns TRUE if a locator configuration 
constraining all directions in CDi is found by using the locator 
types in pi, and FALSE otherwise. During optimization, the 
value of yi returning FALSE is considered as infeasible.  

Figure 4 shows an example construction of locator 
configuration of components c0 and c1 according to the above 
procedure with CD = {+z} and p = <Catch, Screw, Lug, Track, 
Boss>:  

 
• Step 1: Since component c1 does not constrain the motion 

of c0 in +z (Figure 4 (a)), +z remains in CD  
• Step 2: Remove Catch from p. Since p = <Screw, Lug, 

Track, Boss> is non-empty, proceed. 
• Step 3: Select +z from CD.  
• Step 4: Systematically examine the possible orientations of 

Catch on c0 and c1 to find the orientations that constraint 
+z (o0 through o7 in Figure 4 (b) and (c)). Note, however, 
that the orientations other than o0 and o5 in Figure 4 (d) are 
infeasible due to the lack of an adjacent component. Since 
both o0 and o5 has | LC ∩ CDi | = |{+z}∩{+z}| = |{+z}| = 1, 
o0 is chosen.  

• Step 5: Catch in orientation o0 is added to c1 (Figure 4 (e)).  
• Step 6: Since CDi \ LC = {+z}\{+z}= Ø, CDi = Ø. Return 

TRUE.  
 

Figure 5 illustrates how two different values of priority 
sequence p with the same CD can result in the different locator 
configurations. For the two components in Figure 5 (a) with 
CD = {-x, +x, +z}, sequence p = <Track, Boss, Screw, Catch, 
Lug> results in the locators in Figure 5 (b), whereas sequence p 
= <Catch, Lug, Screw, Track, Boss> results in the locators in 
Figure 5 (c). In Figure 5 (c), two locator types, Catch and Lugs 
are used since Catch (top priority) cannot be oriented to 
constrain c0 in +z direction while Lug (second priority) can.  

While indirect, constraint direction CD and priority 
sequence p realizes a compact representation of a locator 
4 Copyright © 2005 by ASME 



configuration of a pair of components. Compared to the direct 
representation in [3] that specifies the existence of a locator 
type in an orientation at a potential location on a component, it 
can generate far fewer infeasible locator configurations during 
the “generate and test” process of genetic algorithms. As a 
result, the computational efficiency is dramatically improved. 
Instead of treating the priority sequence as a design variable, 
one might imagine checking for locator types always in the 
(fixed) ascending sequence of their manufacturing costs is 
sufficient. However, such costs are difficult to determine a 
priori, since the actual geometry (and hence the cost) of a 
locator heavily dependents on the configuration of the 
surrounding components.   

 

 
Figure 4. An example construction of locator configuration:  
(a) two components, (b) and (c) possible orientations of 
Catch, (d) two feasible orientations, and (e) final locator 
configuration.  

 

 
 
Figure 5. Influence of priority sequence p in locator 
configurations: (a) two components with CD = {-x, +x, +z}, 
(b) locators constructed with p = <Track, Boss, Screw, 
Catch, Lug>, and (c) locators constructed with p = <Catch, 
Lug, Screw, Track, Boss>.  
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Constraints 
The locations of components as specified by x, whose 

geometries are altered by adding the locator features 
constructed from y, must satisfy the following three constraints: 
 
1. No floating components 
2. No over-lap components 
3. No unfixed component prior to disassembly 
 
Prior to the evaluation of the objective functions for x and y, 
these constraints are checked by using the standard geometric 
algorithms for mobility and contact analyses. Voxel 
representation allows the very efficient execution of these 
algorithms. While constraint 1 is a necessary condition for 
constraint 3, they are separated here to indicate the fact that 
constraint 1 is used as a pre-screeding for constraint 3 during 
the optimization process.   
 
Objective Functions 

The configurations of components and locator features on 
each component specified by x and y are evaluated according 
to three criteria: 1) the satisfaction of distance specification 
among components, 2) the efficient use of locator features on 
components, and 3) the profit of overall disassembly process 
under regulatory requirements for component retrieval. 

The first objective function (to be minimized) is for the 
satisfaction of the distance specification, given as: 

 
f1(x, y) =∑

i
iidw    (6) 

where wi is the weight of importance of the i-th distance in the 
distance specification and di is the distance between two 
designated voxels. 

The second objective function (to be minimized) is for the 
efficient use of locator features, given as the total increase in 
manufacturing cost due to the addition of locator features to 
components:  

 
f2(x, y) =∑

i
ic    (7) 

 
where ci is the manufacturing cost of the i-th locators in the 
assembly.  

The third objective function (to be maximized) is for the 
profit of the overall disassembly process under the regulatory 
requirements of component retrieval. Since assembly a(x, y) 
specified by x and y can generally be disassembled in multiple 
sequences, the objective function is defined as the profit of the 
best (most profitable) disassembly sequence with the penalty of 
un-retrieving components in RC, the input set of components to 
be retrieved:  

 
   f3(x, y) =

xyQq∈
max {

qPpq∈
max u (a, pq) - w · v(a, pq*) }    (8) 

where: 
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• Qxy is the set of all 2-disassembly sequences [31] (each 

disassembly step consists of less than two consecutive 
translations of a 

• Pq is the set of sub-sequences of q ∈ Qxy in which a is only 
partially disassembled 

• u(a, pq) is the profit of disassembling a in pq ∈ Pq 
• pq*

 is the sub-sequence of q that gives
qPpq∈

max u (a, pq) 

• v(a, pq*) is the number of components in RC that are not 
retrieved by disassembling a in pq*  

• w is weight 
 

It is assumed that a disassembly sequence and a set of 
disassembly sequences are represented as a binary tree and a 
AND/OR graph [11], respectively. Accordingly, Qxy is 
computed as follows: 
 
1. Set a component (eg., container) as the fixed component, 

and push the assembly to stack S and Qxy 
2. Pop a subassembly s from S 
3. For each subassembly ss ⊂ s that does not contain any 

fixed components, check the 2-disassemblability of ss and 
st = s\ss. If ss and st are 2-disassemblable, add ss and st to 
Qxy.  If ss is composed of multiple components and 
contains components in RCi, push ss to S. Also, do the 
same for st. 

4. If S= Ø, return. Otherwise go to step 2. 
 
where the 2-disassembleability of two subassemblies ss and st 
are checked as follows [31, 34]:  
 
1. For each mating surfaces between ss and st (including the 

ones of the locators), obtain a set of constrained directions 
as a subset of six possible translational directions D = {-x, 
+x, -y, +y, -z, +z}. 

2. Compute constrained directions CDst between ss and st as 
a union of all constrained directions obtained in step 1.  

3. If D\CDst = Ø, return FALSE.  
4. If there exist a direction in D\CDst along which ss can be 

moved infinitely without a collision, return TRUE (ss is 1-
disassembleable).  

5. Select a direction d in D\CDst. If all have been selected, 
return infeasible. Otherwise, go to the next step. 

 

6. Move ss by unit length along d. If ss collides with other 
components, go to step 5.  

7. If ss is 1-disassembleable at the current location, return 
TRUE (ss is 2-disassembleable). Otherwise, go to step 6.  

 
Given a 2-disassembly sequence q ∈ Qxy, the maximum 

profit ua ≡ u (a, pq*) among all partial disassembly sequence of 
q in Equation (8) can be obtained by following the disassembly 
steps in q until the continuation is unprofitable. Considering a 
disassembly step in q that disassembles subassembly s into two 
 

subassemblies ss and st, the maximum profit us of partially 
disassembling s in sub-sequences of q can be recursively 
defined as follows: 
 

if  is a component
0 if ( )  0 and  < 0 

 otherwise

s

s ss st s

ss st s

r s
u v s u u c

u u c

⎧
⎪= = + −⎨
⎪ + −⎩

  (9) 

 
where rs is the revenue of s (if s is a component), v(s) is the 
number of components in RC contained in s, and cs is the cost 
of disassembling s into ss and st. The condition v(s) = 0 is 
necessary for the case us = 0, in order to ensure that 
disassembly continues as long as there is a chance of retrieving 
the components in RC regardless of the profit.  

The disassembly cost ci in Equation (9) depends on the 
orientation changes, the moved distance, and the accessibility 
of fasteners during the disassembly operation, and is given by: 

 

ci = ∑
=

⋅
2

0j
jj dcω    (10) 

 
where dc0 is the number of orientation changes, dc1 is the sum 
of the moved distances of disassembled components, dc2 is the 
sum of accessibilities acf of removed screws and ωj is the 
weight of dcj. The accessibility acf of a screw is defined as: 
 

acf = 1.0 + ωa / (aa + 0.01)   (11) 
 
where ωa is weight and aa is the area of the mounting face of 
the screw, accessible from outside of the product in its normal 
direction.  
 
Optimization Algorithm 

Since design variables x and y are discrete and there are 
three objectives, the problem is solved by using a multi-
objective genetic algorithm [4,5]. A multi-objective genetic 
algorithm is an extension of the conventional (single-objective) 
genetic algorithms, which does not require multiple objectives 
to be aggregated to one value, for example, as a weighted sum.  
Instead of static aggregates such as a weighted sum, it 
dynamically determines an aggregate of the values of multiple 
objective functions of a candidate solution based on its relative 
quality in the current population. The proposed research will 
use the non-dominated sorting genetic algorithm, where the 
relative quality of a candidate solution is measured in terms of 
the number of solutions dominating it in the current population.  

Chromosome c, an internal representation of design 
variables for genetic algorithms, is defined as a simple list of 
the two design variables: 
 

c = (x, y)    (12) 
 

6 Copyright © 2005 by ASME 



Since the information in x, y are linked to the geometry of a 
candidate design, the conventional one point or multiple point 
crossovers for linear chromosomes are ineffective in preserving 
high-quality building blocks [35]. Accordingly, a geometry-
based crossover operation based on [29] is adopted: 
 
1. Randomly select a point in the bounding box of the 

assembly.  
2. Cut two parent designs p1 and p2 with the three planes 

parallel to x, y, z axes, and passing through the point 
selected in step 1, into eight pieces each (Figure 6 (a)). 

3. Assemble two child designs c1 and c2 by alternately 
swapping the pieces of p1 and p2 (Figure 6 (b)). 

4. Repair c1 and c2 by moving each component C to the child 
containing the larger volume (of the sliced piece) of C. If 
c1 and c2 contain the same volume, C is placed in the same 
way as the parent with the higher rank [4,5]. 

5. Add locators to c1 and c2 by checking which parent each 
pair of component is inherited from. If a child contains 
both components of a pair, the corresponding locator is 
added to the child. Otherwise, a locator is randomly added 
to either child. 

CASE STUDY 
The proposed method is applied to an assembly composed 

of 10 components with a distance specification shown in Figure 
7, where component A (container) is considered as fixed, the 
revenues rc of components are listed in Table 1, and RC = {C, 
G}. The locator library in Figure 3 is used and the 
manufacturing costs of locators in the locator library are listed 
in Table 2. Note that the manufacturing cost of screws is low, 
while their disassembly cost tends to be higher than other 
locators reflecting additional efforts to remove them.  

In order to examine the effect of the cost of removing 
screws on assembly design, the results are obtained with two 
sets of weights in Equations (10) and (11). The difference 
between the weights for Cases 1 and 2 are , ω2 in the fourth 
column, the weight for the sum of the accessibilities of the 
screws removed during disassembly. For both cases, the 
number of population of 150 and the maximum number of 
generation of 1200 are used for the genetic algorithm. The 
running time for both cases is approximately 336 hours (two 
weeks) with a standard desktop PC. 

For case 1, thirty-eight (38) Pareto optimal designs are 
obtained.  Figure 8 shows five designs R11, R12, R13, R14 and 
R15 that enable the retrieval of all components in RC, whose 
objective function values are listed in Table 4. For case 2, forty-
five (45) Pareto optimal designs are obtained. Figure 9 shows 
four designs R21, R22, R23 and R24 that enable the retrieval of all 
components in RC, whose objective function values are listed 
in Table 5.  

Designs R13 and R23 utilize only one fastener, whose 
removal activates a disassembly pathways as illustrated in 
Figure 1. Figure 10 shows one of 7332 optimal disassembly 
sequences for A13 obtained by evaluating 11228 feasible 
 

disassembly sequences. Upon the removal of the screw that 
fixes component A and F, all components are disassembled to 
gain the maximum profit of disassembly. Similarly, Figure 11 
shows one of 2400 optimal disassembly sequences for R23 
obtained by evaluating 178018 feasible disassembly sequences. 
Upon the removal of the screw that fixes component A and C, 
all components except for J are disassembled to gain the 
maximum profit. This is because the orientation change is 
required to disassemble J, and hence, the disassembly cost to 
disassemble J becomes higher than its revenue. Although the 
orientation change is also required to retrieve B and C in R13, 
they are disassembled since B is included in RC and the 
revenue of C is still higher than the disassembly cost. 

 
 

 
Figure 6. Geometry-based crossover operator. (a) two 
parents p1 (left) and p2 (right), (b) two children c1 (left) and 
c2 (right) after crossover, and (c) two children c1 (left) and c2 
(right) after repair. 
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A2 

B2 
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(b) 
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Figure 7. Distance specifications of the example assembly 
for the case study. 

 
Table 1. Revenues of components in assembly in Figure 7. 

 
Table 2. Manufacturing cost of the locators in the locator 

library. 

 
Table 3. Weights in Equations 10 and 11 for Cases 1 and 2. 

 
Designs R11 and R21 are the same design with the minimum 

f2 (manufacturing cost). Since the manufacturing cost of screws 
is inexpensive, seven screws are used instead of locators in the 
design. Figure 12 shows one of 92112 optimal disassembly 
sequences for R11 and R21 obtained by evaluating 385358 
feasible disassembly sequences. Due to high ω2 in Case 1, 
component B and I are not disassembled in R11, whose retrieval 
would require the removal of two screws. Due to low ω2 in 
Case 2, on the other hand, all components are disassembled in 
R21.  

CONCLUSION AND FUTURE WORK 
This paper presented a computational method for designing 

an assembly that can be disassembled via a domino-like “self-
disassembly” process in the most profitable sequence, triggered 
by the removal of one or a few fasteners. The problem is posed 
as the simultaneous determination of the spatial configurations 
of components and locators, which minimize the violation of 
the distance specification among components and the cost of 
locators on components, and maximize the profit of overall 
disassembly process under the regulatory requirements. A 

A B C D E F G H I J 
fixe

d 
200 50 1000 300 300 50 200 50 100 

Locator Lug Track Catch Boss Screw 
Mfg cost 20 30 10 70 20 

parameter ω0 ω1 ω2 ωa 
Case 1 1.5 37.5 100 10 
Case 2 1.5 37.5 10 10 

A 

B 

C 

D 

E 
F 

G H 
I 

J 
 

simple case study with different costs for removing fasteners 
demonstrated that the method can effectively generate design 
alternatives.  

Although the resulting designs cannot be used directly as 
the final design due to a number of other design factors, they 
would provide early insights to designers during conceptual 
design stages. The future work includes the integration with an 
LCA to quantify the trade-off between economical profitability 
and environmental impact of products as studied in [1], and the 
application to more realistic examples. The improvements in 
the computational speed will also be addressed the use of an 
alternative optimization algorithm.  
 
 

 
Figure 8. Pareto Optimal Solutions (a) R11, (b) R12, (c) R13, 
(d) R14, (e) R15.  

 
Table 4. Objective function values for R11, R12, R13, R14 and 
R15. 

 

ACKNOWLEDGMENTS 
The authors acknowledge funding provided by National 

Science Foundation (BES-0124415) for this research. Any 
options, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 

 f1 (distance spec.) f2 (mfg. cost) f3 (dissasm. cost) 
R11 4908.66 160 937.826 
R12 5581.06 200 1103.53 
R13 5668.18 480 1355.61 
R14 12114.5 360 1390.06 
R15 12114.5 400 1470.06 

(a) R11 (b) R12

(c) R13  

(d) R14 (e) R15
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necessarily reflect the views of the National Science 
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Figure 9. Pareto Optimal Solutions (a) R21, (b) R22, (c) R23, 
(d) R24. 
 
Table 5. Objective function values for R21, R22, R23 and R24.  
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Figure 10. An optimal disassembly sequence of R13. 
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Figure 11. An optimal disassembly sequence of R23 

 
 

 

 
Figure 12. An optimal sequence of R11 ((a)-(j)) and of R21 ((a)-(l)). 
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