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ABSTRACT 
This paper discusses a computational method for 

optimally allocating dimensional tolerances for an automotive 
pneumatic control valve. Due to the large production volume, 
costly tight tolerances should be allocated only to the 
dimensions that have high influence to the quality. Given a 
parametric geometry of a valve, the problem is posed as a 
multi-objective optimization with respect to product quality 
and production cost. The product quality is defined as 1) the 
deviation from the nominal valve design in the linearity of 
valve stroke and fluidic force, and 2) the difference in fluidic 
force with and without cavitation. These quality measures are 
estimated by using Monte Carlo simulation on a Radial-Basis 
Function Network (RBFN) trained with computational fluid 
dynamics (CFD) simulation of the valve operation. The 
production cost is estimated by the tolerance-cost relationship 
obtained from the discrete event simulations of valve 
production process. A multi-objective genetic algorithm is 
utilized to generate Pareto optimal tolerance allocations with 
respect to these objectives, and alternative tolerance 
allocations are proposed considering the trade-offs among 
multiple objectives. 

1. INTRODUCTION 
The allocation of the dimensional tolerances to a product 

highly affects their quality and manufacturing cost. In most 
cases, tighter tolerances realize smaller variations in the 
product performances and hence higher quality. On the other 
hand, tighter tolerances require precision machine tools and 
often longer process time, hence causing higher production 
cost. Since tolerances of some dimensions affect the quality 
and cost more than the other, it is desirable to allocate tight 
tolerances only to the dimensions that have high influences to 
the quality, to attain an optimal balance between the quality 
and cost. This is especially the case of mass-produced 
products, whose unit cost saving can sum up to a significant 
amount over production periods. In order to shave off 
maximum cost without compromising quality, accurate 
estimations of product quality and production cost are 
essential.  

This paper presents a method for an optimal allocation of 
dimensional tolerances based on the computer simulations of 
the product function and production process, and its 
application to an automotive pneumatic control valve. The 
function of the valve is to regulate the fluid flow by changing 
the valve stroke, the distance between the boll-shaped tip of a 
plunger and the seat at the flow exit of a pipe (Figure 1). Fast 
and accurate control of the stroke is essential to the 
performance of the valve, which requires the prediction and 
compensation of fluidic force on the plunger at various strokes 
and under various operating conditions such as pressure and 
temperature of inlet fluid. Since the fluidic force is affected by 
the valve geometry, it is desired to allocate the nominal values 
and tolerances of its dimensions such that the variations of 
fluidic force from the one predicted for the nominal dimension 
is minimized. Due to the large production volume of the 
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valve, on the other hand, costly tight tolerances should be 
allocated only to the dimensions that have high influence to 
the fluidic force on the plunger. 

 
Figure 1. Pneumatic control valve: (a) closed, and (b) 

opened. 
 
Figure 2 shows the overview of the method. Given a 

parametric geometry of a valve, the problem is posed as a 
multi-objective optimization with respect to product quality 
and production cost. The product quality is defined as 1) the 
deviation from the nominal valve design in the linearity of 
valve stroke and fluidic force, and 2) the difference in fluidic 
force with and without cavitation. These quality measures are 
estimated by using Monte Carlo simulation on a Radial-Basis 
Function Network (RBFN) [1] trained with computational 
fluid dynamics (CFD) simulation of the valve operation. The 
production cost is estimated by the tolerance-cost relationship 
obtained from the discrete event simulations of the valve 
production process. A multi-objective genetic algorithm [2] is 
utilized to generate Pareto optimal tolerance allocations with 
respect to these objectives. 

 
Figure 2. Overview of the method. 
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2. RELATED WORK 
Tolerance allocation is a process for finding a best 

compromise between product quality and production cost. 
Early work on tolerance allocations employed some variants 
of reciprocal or exponential tolerance-cost models, and simple 
linear or nonlinear “design functions,” which indirectly 
represent the product quality in terms of part dimensions [3,4]. 
These classic works are later extended to incorporate more 
detailed tolerance-cost models [5,6,7] and quality models such 
as reliability [8-10], quality loss [11-17], and both [18]. Some 
researchers adopted the direct measure of product functions as 
a quality model [19-22], and production simulation as a cost 
model [23, 24] 

This paper applies a variant of the method proposed in 
our previous work [23,24] to automotive pneumatic control 
valves, where product quality is obtained by the Monte Carlo 
simulation of product functions and production cost is 
obtained by the discrete-event simulation of production 
processes. Dissimilar to [23,24] which considers the type and 
number of production machines with different precision as 
decision variables, the present work considers tolerance values 
as conventionally done in tolerance allocation, by assuming 
the flexible production system with CNC machining centers.  

3. METHOD 
The method, as illustrated in Figure 2, solves the 

following optimization problem: 
 

• Given: parametric geometry of a product, models of 
product function and production process 

• Find: nominal product dimensions and their tolerances  
• Subject to: upper and lower bounds of dimensions and 

tolerances  
• Maximizing: measures of product quality 
• Minimizing: production cost 
 

The product function model is implemented as a surrogate 
model (Radial-Basis Function Network: RBFN) of the 
computational fluid dynamics (CFD) simulations of the valve 
with various dimensions. The production process model is a 
discrete-event simulation of the valve production process. The 
product quality is defined as 1) the deviation from the nominal 
valve design in the linearity of valve stroke and fluidic force, 
and 2) the difference in fluidic force with and without 
cavitation. They are calculated by Monte Carlo simulation on 
the surrogate response model of the valve. The production 
cost is calculated by the tolerance-cost relationship obtained 
from the running the discrete event simulations with various 
tolerance values. Due to the existence of multiple objectives, a 
multi-objective genetic algorithm is utilized to generate Pareto 
optimal nominal dimensions and the tolerances. The rest of the 
section describes each item in detail.  
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3.1. Parametric product geometry 
Figure 3 shows the parametric geometry of the pneumatic 

control valve considered in this paper, consists of four 
dimensions with high influence to the fluidic force on the 
plunger: 

 
• Diameter of ball: dB 
• Diameter of pipe: dP 
• Angle of seat: θ 
• Depth of seat: h 
 
These are the parameters that can be adjusted within given 
tolerances by the valve production process, and hence 
considered controllable.  

 
Figure 3. Close-up view of the outlet cross section of 
pneumatic control valve, with controllable parameters (dB, 
dP, θ, h) and uncontrollable parameters (L, T, P). 
 

In addition, the fluidic force is affected by the following 
parameters:  

 
• Valve stroke: L 
• Fluid temperature: T 
• Outlet pressure: P 

 
These are the parameters that cannot be adjusted by the valve 
production process, and hence considered uncontrollable and 
treated as noise factors during the evaluation of the product 
quality as described in the following section.  

3.2. Product model 
Due to the high computational cost of computational fluid 

dynamics (CFD) simulation, two surrogate response models 
are utilized, which can be represented as:  
 

fz  = fluidic-force(dB, dP, θ, h, L, T, P)  (1) 
fz

C = fluidic-force-cav(dB, dP, θ, h, L, T, P)  (2) 
 

θ 

L 

h 

dP 

dB T, P 
 

where fz and fz
C are the fluidic forces on the plunger, with and 

without considering the effects of cavitation, respectively. 
Radial-Basis Function Network (RBFN) is chosen for its fast 
convergence and accuracy of interpolation among training 
samples.  

Since the feasible ranges of the input parameters are fairly 
small but accurate estimates is necessary within the ranges, the 
79 training samples are obtained from the 5 levels of the 7 
input parameters dB, dP, θ, h, L, T, and P, by using Central 
Composite Inscribed (CCI) design [25] combined with 
Fractional-Factorial designs [26]. CCI design was chosen 
since it allocates a relatively small number of samples with a 
large (5) factor level densely near the center points. Since 
there are 7 parameters (k=7), the number of samples is 
determined by using the following equation:  

 
N(fractional points) + N(axial points) + N(center point)  

= 2k-1 + 2*k + 1 = 79  (3) 
 

Figure 4 shows the CFD model one of the 79 sample 
valve designs. Due to the axisymmetric geometry, only a right 
half of the outlet cross section is modeled. The CFD 
simulations are conducted by StarCD software on a 264 CPU 
PC cluster at the Center of Advanced Computing at the 
University of Michigan. The average, longest, and shortest 
CPU time of the 79 samples are 21.1 CPU-days, 38.0 CPU-
days, and 11.6 CPU-days, respectively.  

 
Figure 4. Example CFD model of the pneumatic control 

valve.  A right half of the outlet cross section is modeled. 
 
The large differences in the running time of samples are 

mainly due to the existence and magnitude of cavitation 
during the simulated time. When certain physical conditions 
are satisfied during the iteration, a simulation automatically 
switches to “cavitation mode,” which causes far longer time 
for the results to converge. To further examine the effect of 
cavitation, the 79 samples are classified to 1) cavitation near 
edge of the outlet seat of the pipe (large pressure drop), and 2) 
no cavitation (small pressure drop). Figure 4 shows examples 
CFD results with cavitation.  

Since the occurrence of cavitation largely reduces the 
fluidic force and its prediction by CFD simulation is not very 
accurate, it is desired to design valves with the minimum 

ball 

seat 
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influence of cavitation. As such, the surrogate response model 
without cavitation (Equation 1) is built with the values of the 
fluidic force right before switching to the cavitation mode. 
The surrogate response model with cavitation (Equation 2), on 
the other hand, is built with the values of the fluidic force at 
the simulation convergence.  

 
Figure 4. Example CFD results with cavitation near edge of 
seat.  

 
Figure 5. Sensitivity to input parameters: (a) fz

C and (b) fz 
 
Figures 5 (a) and (b) show the sensitivities of fluidic force 

with cavitation fz
C and without cavitaion fz, respectively, to 

input parameters dB, dP, θ, h, L, T, and P. Compared to the other 
inputs, fz

C very highly sensitive to outlet pressure P, whereas fz 
is highly sensitive to P, stroke L, and depth of seat h. 
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3.2. Production system model 
In order to accurately estimate unit production cost, the 

production process of pneumatic control valves is modeled as 
a discrete event simulation, which can be represented as: 

 
c = production-cost(τΒ, τP, τθ, τh)  (4) 

 
where τΒ, τP, τθ , and τh are the tolerances of dB, dP, θ, and h, 
respectively, and c is a part of the unit production cost of the 
valve that depends on the tolerances of dB, dP, θ, and h. 
Typically c is higher with tighter (smaller) tolerances due to 
the higher cost of precision tools, longer processing time, 
reduced tool life, and the need of additional process (eg., 
grinding) for precision finish.  

Figure 6 shows the production process of the pipe, where 
CNC machine 1 cuts the outlet geometry (hence determines 
dP, θ and h), and CNC machine 2 drills the inlet hole. The 
production process of the ball, which determines dB, was not 
modeled due to the unavailability of detailed processing data. 
Instead, an empirical formula provided by the supplier is used 
to estimate the contribution of τΒ  to the production cost of the 
plunger.  

 
Figure 6. Control valve production model 

 
A bar stock fed to CNC machine 1 goes through the 

following processes, as illustrated in Figure 7:   
 

 Seat face milling (determines h) 
 Seat angle milling (determines θ) 
 Seat angle grinding (determines θ): required for high 

tolerance only 
 Orifice drilling (determines dP) 
 Turning and cutting 

 

bar stock  machine 1 

 machine 2 

cleaning 

heat treatment

inspection surface processing

valve
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Since the study shows CNC machine 1 has virtually no 
variations in processing time and unexpected failure, it was 
modeled as a deterministic single-server system, with input 
queue (raw material) is always full. Prior to each process, the 
need of tool replacement is checked, and if needed, the 
corresponding downtime is added to the clock. During the 
simulation, production cost is calculated as a sum of raw 
material cost, tool cost, labor cost, and machine operating 
cost. 

 
Figure 7. Process flow chart of machine 1 

 
Figure 8 shows the non-dimensionalized unit cost of the 

pipe for small, medium, and large tolerances, calculated by the 
discrete event simulation of machine 1 in Figure 7. All three 
lines show initial transient range where the unit cost increases. 
This is because the production begins with new tools that do 
not need to be replaced for the time being. After a certain 
amount of valves are produced, the unit costs reach steady 
values. As expected, smaller tolerance design resulted in 
higher unit cost, mainly due to the decreased tool life from 
high tolerance machining processes. In the following results, 
the unit cost after 2,000,000 is used.  
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Figure 8. Unit valve cost for machine 1 

3.3. Design variables and constraints 
The design variables are the nominal and tolerance values 

of 4 controllable parameters in Figure 2: μB, μP, μθ, and μh, and 
τΒ, τP, τθ , and τh. There are only side constraints (upper and 
lower bounds) to these design variables. Due to the 
proprietary nature of the information, the values of the design 
variable are shown as normalized using these bounds to [-1, 1] 
for nominal values (baseline = 0) and to [0, 1] for tolerances 
(baseline = 0.67).  

Figure 9. Monte-Carlo Simulation 

3.4. Objective functions 
The following two quality measures are used as the 

objective functions (to be minimized) representing the product 
quality:  

 
• f1: deviation from the nominal valve design in the 

linearity of valve stroke L and fluidic force with 
cavitation fz
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• f2: difference in fluidic force with cavitation fz
c and fluidic 

force without cavitation fz. 
 

Given values of design variables (dB, dP, θ, h,τΒ, τP, 
τθ , and τh), these objective functions are obtained by the 
Monte-Carlo simulation on the surrogate response model in 
Equations 1 and 2, as shown in Figure 9. All design variables 
are assumed to be normally distributed with means being the 
nominal values, and standard deviation being 1/3 of the 
tolerances. Uncontrollable variables are assumed to be 
uniformly distributed within the given ranges, and sampled 
accordingly during the Monte Calro simulation.  

The first objective function f1 (to be minimized) is 
calculated as the error between the fz

c of a sampled design at 
various stroke L and the linear fit of the L- fz

c plot of the 
nominal design, averaged over n samples of the Monte Carlo 
simulation: 

 

1
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where fzij

c is the fluidic force with caviation of sample i at 
stroke Lj, m is the number of discrete stoke values ranging 
from lower to upper bounds, and a and b are the slope and L-
intercept of the linear regression of the L- fz

c plot of the 
nominal design with nominal values of P and T:  
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The second objective function f2 (to be minimized) is 

calculated as the error between fz
c and fz of a sampled design at 

various stroke L and outlet pressure P, averaged over n 
samples of the Monte Carlo simulation: 
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where fzijk

c and fzijk
 are the fluidic force with and without 

caviation, respectively, of sample i at stroke Lj and outlet 
pressure Pk, m is the number of discrete stoke values ranging 
lower to upper bounds, and l is the number of discrete values 
of outlet pressure, also ranging from lower to upper bounds. 

The third objective function f3 (to be minimized) 
representing the unit production cost of the valve is calculated 
by using the production process models in Equation 4:  

 
f3 = cB(τB) + cP(τP) + cθ (τθ) + ch(τh)  (11) 

 
where cB, cP, cθ, and ch are the processing costs of ball surface, 
orifice drilling, seat angle milling, and seat face milling, 
respectively, shown in Figure 10. The tolerance-cost curves 
for cP(τP), cθ(τθ), and ch(τh) in Figure 10 are obtained by 
running the discrete event simulation of machine 1 with 
various values of tolerances, and the curve for cB(τB) is 
obtained by an empirical data provided by the supplier of the 
plunger. A step-like discontinuity in cθ(τθ) is due to the 
additional grinding process necessary for small values of τθ. 
Since the discrete-event simulation in Figure 7 is 
deterministic, the tolerance-cost curves in Figure 10 generated 
off-line are simply looked up to calculate f3 during the 
optimization.  

 
Figure 10. Tolerance-cost curve of valve production. 

4. RESULTS 
Figure 11 shows the Pareto optimal solutions in the 2-D 

projections of the 3-D objective function spaces, obtained by a 
multi-objective genetic algorithm (NSGA-II) with the 
following parameters: 

 
 Population number: 400 
 Generation number: 100 
 Replacement Rate: 0.5 
 Crossover Rate: 0.9 
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Pareto solutions in the f1-f2 space (Figure 11 (a)) show an 

inversely proportional distribution. With tighter tolerances, the 
design becomes closer to the nominal design, thereby 
decreases f1. This strangely has an effect of increasing f2. Close 
examination of individual design reveals that the value of f2 is 
dominated by outlet presume P as seen in Figure 5, and tends 
to decrease with larger variations in fz

c and fz since they “cover 
up” the effect of P. With similar tolerances, smaller μB and μh 
decreases f2 but increases f1, Pareto solutions in the f1-f3 space 
(Figure 11 (b)) also show inversely proportional distribution. 
This is natural since tighter tolerances increases production 
cost as evident in Figure 10, while they decrease f1 as 
discussed above. Pareto solutions in the f2-f3 space (Figure 11 
(c)) scatters over the space. 

Figure 11 also shows four representative designs: 
representative designs: best for f1 (triangle), best for f2 
(square), best for f3 (diamond), and balanced in all objectives 
(star). Table 1 shows the normalized values of objective 
functions and design variables of these designs. The 
comparison of these designs suggests the tight τθ is essential 
for product quality despite its large penalty on production 
cost. On the other hand, loosening τB and τP  by a factor of 10 
in the normalized scale can significantly improve the 
production cost with small penalty on product quality. Since cθ 
(τθ) = 0 for τθ > 0.67 in the normalized scale, the minimum 
cost design (f3 best) in Table 1 has this value τθ  = 0.67 thereby 
dominating other minimum cost designs with respect to other 
objectives that generally favor smaller tolerances. However, 
designs with the best f1 and f2 values in Table 1 do not 
necessarily have the smallest tolerances. This is likely due to 
the high sensitivity of uncontrollable variables P and T to f1 
and f2 (especially to f2), which masks the relatively small effect 
of tolerances on these objectives. 

Since production cost does not depend on the nominal 
dimensions, quality improvement by changing nominal values 
comes with no cost penalty. The results of the design best for 
f1, however, suggest the current design (μ = 0 in the 
normalized scale) is fairly well designed for robustness.  

5. CONCLUSION 
This paper presents a method for an optimal allocation of 

dimensional tolerances based on the computer simulations of 
the product function and production process, and its 
application to an automotive pneumatic control valve. Given a 
parametric geometry of a valve, the problem is posed as a 
multi-objective optimization with respect to product quality 
and production cost. The product quality is defined as 1) the 
deviation from the nominal valve design in the linearity of 
valve stroke and fluidic force, and 2) the difference in fluidic 
force with and without cavitation. Pareto optimal solution 
obtained by a multi-objective genetic algorithm suggest that 
some tolerances essential for product quality have large 
 

penalty on production cost, while others can improve product 
quality with small effect on production cost.  
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Figure 11. Pareto optimal solutions with representative 
designs: best for f1 (triangle), best for f2 (square), best for 
f3 (diamond), and balanced in all objectives (star). 
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Table 1. Representative optimal designs in Figure 11. 
 

  f1 f2 f3 
f1 best 0.00 0.82 0.81 
f2 best 0.77 0.00 0.55 
f3 best 0.85 0.28 0.00 

Compromised 0.16 0.54 0.15 
 

  τB τP τθ τh 
f1 best 0.08 0.01 0.04 0.09 
f2 best 0.47 0.17 0.46 0.07 
f3 best 0.99 0.99 0.67 1.00 

Compromised 0.86 0.17 0.02 0.55 
 

  μB μP μθ μh 
f1 best 0.06 0.04 0.00 -0.03 
f2 best 0.97 1.00 0.97 1.00 
f3 best 0.88 0.24 -0.90 0.69 

Compromised 0.24 -0.11 0.08 0.41 
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