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ABSTRACT 
Automated assembly lines are subject to unexpected 

failures, which can cause costly shutdowns. Generally, these 
errors are handled by human experts or logic controllers. 
However, these controller codes are based on anticipated error 
scenarios and are deficient in dealing with unforeseen 
situations. In our previous work (Baydar and Saitou, 2000a), an 
approach for the automated generation of error recovery logic 
was discussed. The method is based on three-dimensional 
geometric modeling of the assembly line to generate error 
recovery logic in an “off-line” manner using Genetic 
Programming. The scope of our previous work was focused on 
finding an error recovery algorithm from a predefined error 
case. However due to the geometrical features of the assembly 
lines, there may be cases which can be detected as the same 
type of error by the sensors. Therefore robustness must be 
assured in the sense of having a common recovery algorithm for 
similar cases during the recovery sequence. In this paper, an 
extension of our previous study is presented to overcome this 
problem. An assembly line is modeled and from the given error 
cases optimum way of error recovery is investigated using 
multi-level optimization. The obtained results showed that the 
infrastructure is capable of finding robust error recovery 
algorithms and multi-level optimization procedure improved the 
process. It is expected that the results of this study will be 
combined with the automatic error generation, resulting in 
efficient ways to automated error recovery logic synthesis. 

 

                                                           
∗ Corresponding author 
INTRODUCTION 
Error recovery plays an important role in automated 

assembly systems since these systems are open to unexpected 
failures, which can halt their operation. Generally, recovery 
algorithms for such failures are anticipated by on-line 
investigation of the assembly line by the experts, during the 
design of assembly lines. Another approach is using 
Programmable Logic Controller (PLC) codes, which are also 
manually coded, based on anticipated scenarios. However 
prediction of all scenarios is impossible, therefore these 
methods are not flexible to solve the majority of the problems. 
An approach of using off-line synthesis of error diagnosis and 
recovery logic based on the three-dimensional geometry model 
of an entire assembly line was discussed in our previous work 
(Baydar and Saitou, 2000a). The scope of this work was finding 
an error recovery algorithm from a predefined error case. The 
system uses one of the commercial assembly line simulation 
software (Workspace, 1998), which is coupled with a developed 
computer program, to obtain error recovery logic using Genetic 
Programming (Koza, 1992). Previous results showed that, the 
system is capable of generating recovery logic for collision 
errors from various error cases individually.  However it does 
not provide robust recovery logic for multiple error cases. The 
work discussed in this paper is an extension of our previous 
study and aimed to recover this deficiency. 

The following section contains information on the previous 
work done on error diagnosis, highlighting the importance of 
having a robust recovery logic as well as a brief summary on 
our previous approach. 
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PREVIOUS WORK 
Error diagnosis is the key step before determining the 

recovery process. Complete diagnosis must be performed for 
the efficient error recovery. The established techniques of 
Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis 
(FTA) and Event Tree Analysis (ETA) have been in use for 
many years (Khodabandehloo, 1997). FMEA is used to examine 
all possible component failures and to identify their first order 
and final effects on the system. FTA and ETA may be applied at 
various levels for examining the errors and failures in a system. 
FTA is a top-down technique for assessing the way in which 
several failures can cause a single outcome or a system failure. 
ETA is a forward technique, which may be used to examine the 
propagation of an initiating event (or failure) with the presence 
of a number of other events, failures, faults or conditions. 

Abu-Hamdan and El-Gizawy developed a knowledge-
based system for monitoring, diagnosis and error recovery for 
the flexible assembly operations (Abu-Hamdan and El-Gizawy, 
1994). The control system consists of a distributed network of 
intelligent sensing, action and reasoning agents. For error 
diagnosis, an AND/OR type failure tree is constructed. The 
error type is the goal node (root of the tree at the top level).  
The error causes are the sub-goals of the tree. The facts of the 
errors (i.e. sensor failure) are represented as the leaves of the 
sub-goals. The use of fault trees as a database of run-time fault 
detection is discussed in (Visinsky et al., 1994). An expert 
system is embedded to the system to monitor the faults and 
maintain the probability of failure for each node within the tree. 
Two finite state machines (FSM) are used. The User/executive 
FSM handles the interaction between the user and the robot 
while; the Critic FSM is responsible for the safety of the robot 
system. Other proposed two methods are known as Failure 
Reason Analysis (FRA) and Multiple Outcome Analysis 
(MOA), which are discussed in (Hardy et al., 1989). FRA is 
based on finding an explanation of the failure and tries to derive 
a plan for recovery by using a failure tree. The tree contains 
action nodes and failure nodes. The data about the type of the 
error are collected from the tree and passes to a planner module. 
In MOA, the states of the workcell are in consideration. 
Detecting the deviation of the states from the expected ones 
reveals the fact of failure. After an error is detected, available 
data and gathered data are used to conclude a predefined 
recovery strategy. 

All of the systems discussed above are focused on 
diagnosis and recovery by using expected error cases. However, 
due to the geometrical nature of the assembly lines, there can be 
errors, which have the same error type (i.e. collision) but need 
to be recovered by using a procedure different from the 
anticipated case. For example a collision error can be occurred 
in many different ways during an assembly process. The 
diagnosis of this failure with the developed systems discussed 
above can reveal the cause of the error correctly. However it 
may not be possible to detect the exact location of the collision, 
which is very important for the recovery procedure. If the 
location is different from the anticipated place, the implemented 
 

recovery logic algorithm may not be useful. Therefore robust 
ways of recovery logic must be investigated.  

In our previous study (Baydar and Saitou, 2000a), a 
possible way of error recovery in off-line manner was discussed. 
A sample assembly line was modeled three-dimensionally using 
a commercial software package.  

The architecture of the system is summarized in Figure 1. 
The system uses a commercial software package called 
Workspace (Workspace, 1998). A software module was 
developed and coupled with the Workspace. This module is 
responsible from the generation of recovery logic using Genetic 
Programming (Koza, 1992). The generated programs are tested 
with the commercial software and evaluated based on their 
performance. After that, evolution process takes place according 
to the performance of each program. Case studies demonstrated 
that the developed system is efficient to find the optimum 
recovery logic from a given collision case. For the error 
recovery language, KAREL2 Robot Language was selected. 
The commands for this language are used to manipulate the 
robot for the recovery process.  

 

Figure.1: System Architecture. 
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The main disadvantage of the previous system is due to its 
insufficiency to generate robust recovery logic from multiple 
error cases. As it is stated before, a part presentation error can 
be resulted in a collision error in different ways at different 
places in three-dimensional space during the assembly process. 
Therefore, a robust recovery algorithm should be investigated 
for the recovery from different collision cases. 

PROPOSED APPROACH 
Genetic programming is an extension of genetic algorithms, 

aimed to produce useful computer programs automatically to 
solve a specific problem. The term “Genetic Programming” was 
first introduced by Koza (Koza, 1992). It uses the same working 
principles of Genetic algorithms.  

Genetic algorithms were first introduced by Holland 
(Holland, 1975). They borrow their terminology and working 
principles from the biology. Basically, problem variables are 
coded onto strings like chromosomes in biological systems. 
Each string is a member of the population, representing a 
solution for the problem. The aim is maximizing a fitness 
function based on the defined objective of the problem. Two 
basic operators are used for the evolution process. The first 
operator, which is called “crossover”, is responsible for taking 
two strings as parents and combining them to produce better 
strings as children. The second operator is called “mutation” 
which has the advantage of introducing some diversity to the 
population by changing the values in a string randomly.  

Genetic programming requires efficient representation of 
the search space with the definition of several critical variables 
for the population. As in our previous study, a chromosome 
structure is defined for each line within a recovery algorithm. 
The maximum number of lines is limited to 10. The number of 
members in the population is determined as 100. The crossover 
probability is taken as 0.9 and it is directly proportional with the 
fitness value of the recovery algorithm. Two parents are 
selected based on their fitness value and the crossover operation 
takes place by locating a crossover point between the programs. 
In order to introduce variance to the population, dynamic 
mutation was applied with a probability of changing between 
0.015 and 0.05 depending on the nature of the population. 

During this study as in our previous work part placement 
errors, which result in collision, are studied. Collision 
calculations are performed by using the commercial software 
package’s abilities. The objective is defined as to minimize the 
part placement error between the final position and its desired 
position on the fixture. A distance function between the 
recovered position and the desired position is used for the 
objective function. Therefore the problem is a single objective 
optimization problem with the objective function: 

 
 

Minimize 222 )()()( ooo zzyyxx −+−+−             (1) 
 
 

 

During the recovery procedure, tolerances for the final 
position of the workpiece are determined as 5 mm for a 
successful assembly operation in all dimensions.  
 
 

5|| ≤− oxx                 (2) 
5|| ≤− oyy                 (3) 

5|| ≤− ozz                 (4) 
 
The problem is handled in two phases: 

 
• Solving a relaxed problem for n different error states to 

reach an intermediate state. 
 
• From the obtained intermediate state, solving the original 

problem to reach a desired state. 
 
At first, several collision cases are solved in parallel to find 

a recovery algorithm, which enables reaching a common state 
for all of the cases. For this step, the same objective function is 
used but this time the constraints are relaxed from 5 mm. to 15 
mm. The reason for relaxing the constraints to 15 mm is to find 
a common point near to the desired location.  A feasible 
working envelope is defined around the fixture for the robot 
movement. It is aimed that this kind of multi-level 
implementation makes the problem much easier to reach an 
intermediate state when the problem is relaxed.  

In the second step, after the intermediate state is obtained a 
new problem of recovery procedure is defined by taking this 
intermediate state as the initial state and the desired state as the 
goal state. Constraint values are also restored to 5 mm. Cubical 
working envelope is reduced to half size and investigation on a 
second error recovery algorithm is done. Finally two error 
recovery algorithms are concatenated to obtain robust recovery 
logic for n different number of error cases.  The complete 
procedure is summarized in Figure 2. 

 

 
 

Figure.2: Multi-level optimization Procedure. 
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The advantages of using a multi-level optimization 
procedure are as follows: 
 
• Trying to solve a relaxed problem will eventually result in 

less number of iterations than the single-step optimization 
case since an intermediate state is defined; there would be 
less number of function evaluations. 

 
 
• The recovery algorithms, which are obtained for reaching 

the final state from the intermediate state can be stored as 
sub-routines and may be used for the recovery of similar 
error conditions later. 

 
A fitness function is defined individually for all error cases. 

These functions are taken as the inverse of the objective 
function as indicated through Eq. (5) and (6) where n is the 
number of error cases. Therefore the problem is converted into 
a maximization problem.   
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The overall fitness of a recovery program is defined as its 

average fitness minus the absolute value of the deviation 
between this average value and the minimum fitness value 
among the n cases as it is shown in Eq. (7). The variables w1 
and w2 determine the weight of each term. By using this kind of 
definition, performance variance for recovery program is 
penalized and robustness is tried to be assured. 
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There can be cases where the maximum variance is 
occurred between the average fitness and the maximum fitness. 
However, those types of cases are not penalized to keep the 
better solutions in the search space. Detailed information on the 
evolutionary coding of the problem is given in (Baydar and 
Saitou, 2000b). 

The first step of optimization is completed when a robust 
recovery algorithm is found. This recovery algorithm makes all 
of the cases to reach the intermediate state. After that, the 
problem is renewed. The obtained intermediate state is defined 
as the only error case to be recovered and the final state is taken 
as the goal state. At this stage, one fitness function is defined 
such as in Eq. (8). 
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Same procedure is applied for the second part of the 
problem. The obtained recovery algorithm for the second part is 
combined with the one obtained in the first part and robust 
recovery logic is obtained. 

In the Genetic Programming part, same population 
structure from our previous study is used. As an improvement 
from our previous study, during the evolution process elitism 
(Goldberg, 1989) is also introduced. The recovery programs are 
ranked based on their individual case performance. After that, 
best programs for each case are combined to get better solutions 
in the problem domain. The case studies showed that this type 
of implementation increased the performance of the system. It 
was observed that, there could be recovery programs, which 
perform efficiently for only small portion of the error cases and 
combination of these programs would result in better programs 
for generation of the robust recovery. 

The implemented system is tested on several case studies. 
The results demonstrated that the system’s overall performance 
is efficient to find robust recovery logic. 

CASE STUDIES 
A model assembly line is constructed by using Workspace 

simulation software and the details are given in (Baydar and 
Saitou, 2000a). An IRB6000 type industrial robot is used for the 
part placement procedure during the assembly process. Figure.3 
shows the model of the assembly line and the desired position 
of the workpiece on the fixture. 

 
 

 
 

Figure.3: Modeled Assembly Line. 
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In the following case studies, six different collision points 
are generated randomly between the workpiece and the fixture. 
These six error cases are studied in two different case studies. 
In case studies, the assumption is made on that the part is held 
in the gripper after the collision and repositioning can be 
detected properly.  

Case Study 1: 
 
Three collision points (n=3) are studied to find a robust 

recovery algorithm. Two of these points are taken from our 
previous study. Figures 4-6 show those collision points. At first 
the first level of optimization is accomplished. This is 
completed in 10 generations (counting the initial random 
generation as the first generation).  

 
 

 
 

Figure.4: 1st Collision Point in Case Study 1. 
 

 
 

Figure.5: 2nd Collision Point in Case Study 1. 
 

 

 
 

Figure.6: 3rd Collision Point in Case Study 1. 
 
 

The positional errors after the 10th generation at the 
intermediate state are given in the following table. Note that 
these values are obtained with the relaxed constraints. 

 
 

Table.1: Positional Errors at the Intermediate State. 
 

Coordinate: Error (mm): 
X: 2 
Y: 11 
Z: 15 

 
 

After reaching the intermediate state, second level of 
optimization is started by regenerating the population. After the 
7th generation a local optimum is found. Table.2 shows the final 
placement errors for the final state. Note that in this case 
original constraint values are restored. 

 
 

Table.2: Positional Errors at the Final State. 
 

Coordinate: Error (mm): 
X: 5 
Y: 3 
Z: 3 

 
 

Totally, 17 generations are needed to reach the robust 
recovery algorithm and it is composed of 6 lines between the 
BEGIN and END command. For the first stage of the 
optimization the recovery algorithm contains 2 lines of code. In 
the second stage, 4 additional lines are added to the code. The 
recovery algorithm is given below. 
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ROUTINE RecoveryCase1 
BEGIN 
-- This portion of the code below belongs to the first level 
Move To POS( -798, -794, -1029, 50, 50, 0,'RUFB') 
Move To POS( -704, -708, -970, 50, 80, 0,'RUFB') 
--This portion of the code below belongs to the second level  
Move To POS( -718, -661, -1028, 40, 10, 0,'RUFB') 
Move Away -51 
Move To POS( -718, -661, -1028, 40, 10, 0,'RUFB') 
Move To POS( -711, -694, -990, 90, 90, 0,'RUFB') 
End RecoveryCase1 

 
In Table 3 the history of the objective function is given. It 

is observed that a fluctuation occurred between the 10th and 11th 
generation. The reason is that the second stage of the 
optimization is initiated at the 11th generation with a new 
generation of population. This can be seen from Figure.7 also. 
Note that the fitness function is inversely proportional with the 
objective function therefore it is increasing throughout the 
study. 
 
 

Table.3: Change in the Objective Function. 
 

Generation Objective Function 
1 56.311 
2 37.23 
3 37.23 
4 36.959 
5 36.969 
6 33.030 
7 33.030 
8 32.465 
9 32.465 

10 20.346 
11 24.39 
12 15.78 
13 15.556 
14 15.556 
15 15.556 
16 15.556 
17 6.556 

 
 

The performance of the robust recovery algorithm is tested 
on each error case individually and it is found that the 
procedure is working properly. 
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Figure.7: Optimization Progress of the 1st Case Study. 

 

Case Study 2: 
 
A different set of three points is selected at this time to test 

the performance of the system. These three collision positions 
are given in Figures 8-10. This time it took 7 generations to 
reach the intermediate state. The positional error in each 
dimension at the intermediate state is given in the Table.4 
below. 

 
 

Table.4: Positional Errors at the Intermediate State. 
 

Coordinate: Error (mm): 
X: 9 
Y: 9 
Z: 8 

 
 

 
 

Figure.8: 1st Collision Point in Case Study 2. 
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Figure.9: 2nd Collision Point in Case Study 2. 
 
 

 
 

Figure.10: 3rd Collision Point in Case Study 2. 
 
 

After this point, second level of optimization is initiated. 
The second state is reached the limits of the final state in 4 
generations. The final placement errors are given in the 
following table. 

 
 

Table.5: Positional Errors at the Final State. 
 

Coordinate: Error (mm): 
X: 5 
Y: 5 
Z: 1 

 
Totally 11 generations are required to gather the robust 

recovery code. Two recovery algorithms are combined and a 
robust recovery for these three cases is obtained. The final 
algorithm is composed of 5 lines between the BEGIN and END 
commands as given below. The first 2 lines are from initial state 
to intermediate state, while the rest of them are for the recovery 
from intermediate state to final state. The change in the 
objective function is given in Table 6. 
 

ROUTINE Recovery2 
BEGIN 
-- This portion of the code below belongs to the first level 
Move Relative VEC (0, -70, -8) 
Move Near POS (-702, -655, -1006, 50, 10, 0,'RUFB') By –43   
--This portion of the code below belongs to the second level  
Move Near POS (-733, -730, -1005, 80, 20, 0,'RUFB') By -74 
Move Near POS (-713, -688, -991, 70, 20, 0,'RUFB') By -15 
Move To POS (-711, -702, -986, 90, 90, 0,'RUFB')  
END Recovery2 

 
 

Table.6: Change in the Objective Function. 
 

Generation Objective Function 
1 38.105 
2 24.35 
3 24.35 
4 18.815 
5 18.815 
6 16.301 
7 15.033 
8 12.083 
9 12.083 

10 12.083 
11 7.1414 

 
 

The change in the objective function from intermediate 
state to final state is smooth in this case. However, as it can be 
seen from Figure.11 the average fitness of the members dropped 
at the 8th generation since a new population is generated for the 
second level optimization process. It is realized that the average 
value increased between 8th and 10th generations and this helped 
the best fitness to increase in 11th generation.  

It is noted that the second level of optimization converged 
in 4 generations in this case. During the case studies, three error 
states are considered for each case study. However the number 
of cases in the initial set can be increased to obtain robust 
recovery logic for n number of cases. 
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Figure.11: Optimization History of the 2nd Case Study.  
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DISCUSSIONS AND FUTURE WORK 
In this paper an approach for the generation of robust 

recovery algorithms is presented. The implemented system is an 
extension on the infrastructure that was developed in our 
previous study. Since part misplacement errors are widely 
occurred during assembly process, recovery for the collision 
errors is studied. However, the system is not limited to the 
collision errors only and other error types can be studied to 
recover in the future. The procedure involves multi-level 
optimization process coupled with genetic programming. In the 
first step, several error states are studied in parallel to find a 
common recovery algorithm for the relaxed program. After that 
in the second stage the solution of the relaxed problem is taken 
as the only state to be recovered for the original problem. 
Finally the recovery algorithms for both stages are combined to 
get a robust recovery algorithm. It is observed that this 
procedure: 
 
• Simplifies the problem of solving different error states. 

Trying to solve a relaxed problem will eventually result in 
less number of iterations than the single-step optimization 
case. Therefore the computation speed would be increased. 

 
• Leads to a robust error recovery algorithm, which can be 

used for different error states (i.e. collision errors occurred 
at different points in an assembly line). 
 
Although three states (n=3) are considered for each case 

study, this procedure can be applied to larger number of states. 
Due to its geometrical features, each assembly line has different 
number of critical states to be considered. Therefore error 
sampling by using the statistical model of the dimensional and 
functional errors must be investigated for each line in order to 
find robust recovery algorithms for each error case. The future 
studies are aimed on this type of error case analysis by using 
Monte-Carlo method.  
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