

Proceedings of DETC’00
ASME 2000 Design Engineering Technical Conferences

 and Computers and Information in Engineering Conference
Baltimore, Maryland, September 10-13

DETC2000/CIE-14639

GENERATION OF ROBUST ERROR RECOVERY LOGIC IN ASSEMBLY SYSTEMS
USING MULTI-LEVEL OPTIMIZATION AND GENETIC PROGRAMMING

Cem M. BAYDAR
(cbaydar@umich.edu)

Kazuhiro SAITOU∗∗∗∗
(kazu@umich.edu)

Department of Mechanical Engineering and Applied Mechanics

University of Michigan
Ann Arbor, MI 48109-2125, USA

ABSTRACT
Automated assembly lines are subject to unexpected

failures, which can cause costly shutdowns. Generally, these
errors are handled by human experts or logic controllers.
However, these controller codes are based on anticipated error
scenarios and are deficient in dealing with unforeseen
situations. In our previous work (Baydar and Saitou, 2000a), an
approach for the automated generation of error recovery logic
was discussed. The method is based on three-dimensional
geometric modeling of the assembly line to generate error
recovery logic in an “off-line” manner using Genetic
Programming. The scope of our previous work was focused on
finding an error recovery algorithm from a predefined error
case. However due to the geometrical features of the assembly
lines, there may be cases which can be detected as the same
type of error by the sensors. Therefore robustness must be
assured in the sense of having a common recovery algorithm for
similar cases during the recovery sequence. In this paper, an
extension of our previous study is presented to overcome this
problem. An assembly line is modeled and from the given error
cases optimum way of error recovery is investigated using
multi-level optimization. The obtained results showed that the
infrastructure is capable of finding robust error recovery
algorithms and multi-level optimization procedure improved the
process. It is expected that the results of this study will be
combined with the automatic error generation, resulting in
efficient ways to automated error recovery logic synthesis.

∗ Corresponding author
INTRODUCTION
Error recovery plays an important role in automated

assembly systems since these systems are open to unexpected
failures, which can halt their operation. Generally, recovery
algorithms for such failures are anticipated by on-line
investigation of the assembly line by the experts, during the
design of assembly lines. Another approach is using
Programmable Logic Controller (PLC) codes, which are also
manually coded, based on anticipated scenarios. However
prediction of all scenarios is impossible, therefore these
methods are not flexible to solve the majority of the problems.
An approach of using off-line synthesis of error diagnosis and
recovery logic based on the three-dimensional geometry model
of an entire assembly line was discussed in our previous work
(Baydar and Saitou, 2000a). The scope of this work was finding
an error recovery algorithm from a predefined error case. The
system uses one of the commercial assembly line simulation
software (Workspace, 1998), which is coupled with a developed
computer program, to obtain error recovery logic using Genetic
Programming (Koza, 1992). Previous results showed that, the
system is capable of generating recovery logic for collision
errors from various error cases individually. However it does
not provide robust recovery logic for multiple error cases. The
work discussed in this paper is an extension of our previous
study and aimed to recover this deficiency.

The following section contains information on the previous
work done on error diagnosis, highlighting the importance of
having a robust recovery logic as well as a brief summary on
our previous approach.
1
Copyright (C) 2000 by ASME

mailto:kazu@umich.edu
mailto:cbaydar@umich.edu

PREVIOUS WORK
Error diagnosis is the key step before determining the

recovery process. Complete diagnosis must be performed for
the efficient error recovery. The established techniques of
Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis
(FTA) and Event Tree Analysis (ETA) have been in use for
many years (Khodabandehloo, 1997). FMEA is used to examine
all possible component failures and to identify their first order
and final effects on the system. FTA and ETA may be applied at
various levels for examining the errors and failures in a system.
FTA is a top-down technique for assessing the way in which
several failures can cause a single outcome or a system failure.
ETA is a forward technique, which may be used to examine the
propagation of an initiating event (or failure) with the presence
of a number of other events, failures, faults or conditions.

Abu-Hamdan and El-Gizawy developed a knowledge-
based system for monitoring, diagnosis and error recovery for
the flexible assembly operations (Abu-Hamdan and El-Gizawy,
1994). The control system consists of a distributed network of
intelligent sensing, action and reasoning agents. For error
diagnosis, an AND/OR type failure tree is constructed. The
error type is the goal node (root of the tree at the top level).
The error causes are the sub-goals of the tree. The facts of the
errors (i.e. sensor failure) are represented as the leaves of the
sub-goals. The use of fault trees as a database of run-time fault
detection is discussed in (Visinsky et al., 1994). An expert
system is embedded to the system to monitor the faults and
maintain the probability of failure for each node within the tree.
Two finite state machines (FSM) are used. The User/executive
FSM handles the interaction between the user and the robot
while; the Critic FSM is responsible for the safety of the robot
system. Other proposed two methods are known as Failure
Reason Analysis (FRA) and Multiple Outcome Analysis
(MOA), which are discussed in (Hardy et al., 1989). FRA is
based on finding an explanation of the failure and tries to derive
a plan for recovery by using a failure tree. The tree contains
action nodes and failure nodes. The data about the type of the
error are collected from the tree and passes to a planner module.
In MOA, the states of the workcell are in consideration.
Detecting the deviation of the states from the expected ones
reveals the fact of failure. After an error is detected, available
data and gathered data are used to conclude a predefined
recovery strategy.

All of the systems discussed above are focused on
diagnosis and recovery by using expected error cases. However,
due to the geometrical nature of the assembly lines, there can be
errors, which have the same error type (i.e. collision) but need
to be recovered by using a procedure different from the
anticipated case. For example a collision error can be occurred
in many different ways during an assembly process. The
diagnosis of this failure with the developed systems discussed
above can reveal the cause of the error correctly. However it
may not be possible to detect the exact location of the collision,
which is very important for the recovery procedure. If the
location is different from the anticipated place, the implemented

recovery logic algorithm may not be useful. Therefore robust
ways of recovery logic must be investigated.

In our previous study (Baydar and Saitou, 2000a), a
possible way of error recovery in off-line manner was discussed.
A sample assembly line was modeled three-dimensionally using
a commercial software package.

The architecture of the system is summarized in Figure 1.
The system uses a commercial software package called
Workspace (Workspace, 1998). A software module was
developed and coupled with the Workspace. This module is
responsible from the generation of recovery logic using Genetic
Programming (Koza, 1992). The generated programs are tested
with the commercial software and evaluated based on their
performance. After that, evolution process takes place according
to the performance of each program. Case studies demonstrated
that the developed system is efficient to find the optimum
recovery logic from a given collision case. For the error
recovery language, KAREL2 Robot Language was selected.
The commands for this language are used to manipulate the
robot for the recovery process.

Figure.1: System Architecture.

2
Copyright (C) 2000 by ASME

The main disadvantage of the previous system is due to its
insufficiency to generate robust recovery logic from multiple
error cases. As it is stated before, a part presentation error can
be resulted in a collision error in different ways at different
places in three-dimensional space during the assembly process.
Therefore, a robust recovery algorithm should be investigated
for the recovery from different collision cases.

PROPOSED APPROACH
Genetic programming is an extension of genetic algorithms,

aimed to produce useful computer programs automatically to
solve a specific problem. The term “Genetic Programming” was
first introduced by Koza (Koza, 1992). It uses the same working
principles of Genetic algorithms.

Genetic algorithms were first introduced by Holland
(Holland, 1975). They borrow their terminology and working
principles from the biology. Basically, problem variables are
coded onto strings like chromosomes in biological systems.
Each string is a member of the population, representing a
solution for the problem. The aim is maximizing a fitness
function based on the defined objective of the problem. Two
basic operators are used for the evolution process. The first
operator, which is called “crossover”, is responsible for taking
two strings as parents and combining them to produce better
strings as children. The second operator is called “mutation”
which has the advantage of introducing some diversity to the
population by changing the values in a string randomly.

Genetic programming requires efficient representation of
the search space with the definition of several critical variables
for the population. As in our previous study, a chromosome
structure is defined for each line within a recovery algorithm.
The maximum number of lines is limited to 10. The number of
members in the population is determined as 100. The crossover
probability is taken as 0.9 and it is directly proportional with the
fitness value of the recovery algorithm. Two parents are
selected based on their fitness value and the crossover operation
takes place by locating a crossover point between the programs.
In order to introduce variance to the population, dynamic
mutation was applied with a probability of changing between
0.015 and 0.05 depending on the nature of the population.

During this study as in our previous work part placement
errors, which result in collision, are studied. Collision
calculations are performed by using the commercial software
package’s abilities. The objective is defined as to minimize the
part placement error between the final position and its desired
position on the fixture. A distance function between the
recovered position and the desired position is used for the
objective function. Therefore the problem is a single objective
optimization problem with the objective function:

Minimize 222)()()(ooo zzyyxx −+−+− (1)

During the recovery procedure, tolerances for the final
position of the workpiece are determined as 5 mm for a
successful assembly operation in all dimensions.

5|| ≤− oxx (2)
5|| ≤− oyy (3)

5|| ≤− ozz (4)

The problem is handled in two phases:

• Solving a relaxed problem for n different error states to

reach an intermediate state.

• From the obtained intermediate state, solving the original

problem to reach a desired state.

At first, several collision cases are solved in parallel to find

a recovery algorithm, which enables reaching a common state
for all of the cases. For this step, the same objective function is
used but this time the constraints are relaxed from 5 mm. to 15
mm. The reason for relaxing the constraints to 15 mm is to find
a common point near to the desired location. A feasible
working envelope is defined around the fixture for the robot
movement. It is aimed that this kind of multi-level
implementation makes the problem much easier to reach an
intermediate state when the problem is relaxed.

In the second step, after the intermediate state is obtained a
new problem of recovery procedure is defined by taking this
intermediate state as the initial state and the desired state as the
goal state. Constraint values are also restored to 5 mm. Cubical
working envelope is reduced to half size and investigation on a
second error recovery algorithm is done. Finally two error
recovery algorithms are concatenated to obtain robust recovery
logic for n different number of error cases. The complete
procedure is summarized in Figure 2.

Figure.2: Multi-level optimization Procedure.
3
Copyright (C) 2000 by ASME

The advantages of using a multi-level optimization
procedure are as follows:

• Trying to solve a relaxed problem will eventually result in

less number of iterations than the single-step optimization
case since an intermediate state is defined; there would be
less number of function evaluations.

• The recovery algorithms, which are obtained for reaching

the final state from the intermediate state can be stored as
sub-routines and may be used for the recovery of similar
error conditions later.

A fitness function is defined individually for all error cases.

These functions are taken as the inverse of the objective
function as indicated through Eq. (5) and (6) where n is the
number of error cases. Therefore the problem is converted into
a maximization problem.

ni ,...,2,1= (5)

222)()()(

1

oioioi

i

zzyyxx
f

−+−+−
= (6)

The overall fitness of a recovery program is defined as its

average fitness minus the absolute value of the deviation
between this average value and the minimum fitness value
among the n cases as it is shown in Eq. (7). The variables w1
and w2 determine the weight of each term. By using this kind of
definition, performance variance for recovery program is
penalized and robustness is tried to be assured.

|min|21 i
ii f

n
f

ABSw
n

f
wf −⋅−⋅= ∑∑ (7)

There can be cases where the maximum variance is
occurred between the average fitness and the maximum fitness.
However, those types of cases are not penalized to keep the
better solutions in the search space. Detailed information on the
evolutionary coding of the problem is given in (Baydar and
Saitou, 2000b).

The first step of optimization is completed when a robust
recovery algorithm is found. This recovery algorithm makes all
of the cases to reach the intermediate state. After that, the
problem is renewed. The obtained intermediate state is defined
as the only error case to be recovered and the final state is taken
as the goal state. At this stage, one fitness function is defined
such as in Eq. (8).

222)()()(

1

ooo zzyyxx
f

−+−+−
= (8)

Same procedure is applied for the second part of the
problem. The obtained recovery algorithm for the second part is
combined with the one obtained in the first part and robust
recovery logic is obtained.

In the Genetic Programming part, same population
structure from our previous study is used. As an improvement
from our previous study, during the evolution process elitism
(Goldberg, 1989) is also introduced. The recovery programs are
ranked based on their individual case performance. After that,
best programs for each case are combined to get better solutions
in the problem domain. The case studies showed that this type
of implementation increased the performance of the system. It
was observed that, there could be recovery programs, which
perform efficiently for only small portion of the error cases and
combination of these programs would result in better programs
for generation of the robust recovery.

The implemented system is tested on several case studies.
The results demonstrated that the system’s overall performance
is efficient to find robust recovery logic.

CASE STUDIES
A model assembly line is constructed by using Workspace

simulation software and the details are given in (Baydar and
Saitou, 2000a). An IRB6000 type industrial robot is used for the
part placement procedure during the assembly process. Figure.3
shows the model of the assembly line and the desired position
of the workpiece on the fixture.

Figure.3: Modeled Assembly Line.

4
Copyright (C) 2000 by ASME

In the following case studies, six different collision points
are generated randomly between the workpiece and the fixture.
These six error cases are studied in two different case studies.
In case studies, the assumption is made on that the part is held
in the gripper after the collision and repositioning can be
detected properly.

Case Study 1:

Three collision points (n=3) are studied to find a robust

recovery algorithm. Two of these points are taken from our
previous study. Figures 4-6 show those collision points. At first
the first level of optimization is accomplished. This is
completed in 10 generations (counting the initial random
generation as the first generation).

Figure.4: 1st Collision Point in Case Study 1.

Figure.5: 2nd Collision Point in Case Study 1.

Figure.6: 3rd Collision Point in Case Study 1.

The positional errors after the 10th generation at the
intermediate state are given in the following table. Note that
these values are obtained with the relaxed constraints.

Table.1: Positional Errors at the Intermediate State.

Coordinate: Error (mm):
X: 2
Y: 11
Z: 15

After reaching the intermediate state, second level of
optimization is started by regenerating the population. After the
7th generation a local optimum is found. Table.2 shows the final
placement errors for the final state. Note that in this case
original constraint values are restored.

Table.2: Positional Errors at the Final State.

Coordinate: Error (mm):
X: 5
Y: 3
Z: 3

Totally, 17 generations are needed to reach the robust
recovery algorithm and it is composed of 6 lines between the
BEGIN and END command. For the first stage of the
optimization the recovery algorithm contains 2 lines of code. In
the second stage, 4 additional lines are added to the code. The
recovery algorithm is given below.

5

Copyright (C) 2000 by ASME

ROUTINE RecoveryCase1
BEGIN
-- This portion of the code below belongs to the first level
Move To POS(-798, -794, -1029, 50, 50, 0,'RUFB')
Move To POS(-704, -708, -970, 50, 80, 0,'RUFB')
--This portion of the code below belongs to the second level
Move To POS(-718, -661, -1028, 40, 10, 0,'RUFB')
Move Away -51
Move To POS(-718, -661, -1028, 40, 10, 0,'RUFB')
Move To POS(-711, -694, -990, 90, 90, 0,'RUFB')
End RecoveryCase1

In Table 3 the history of the objective function is given. It

is observed that a fluctuation occurred between the 10th and 11th
generation. The reason is that the second stage of the
optimization is initiated at the 11th generation with a new
generation of population. This can be seen from Figure.7 also.
Note that the fitness function is inversely proportional with the
objective function therefore it is increasing throughout the
study.

Table.3: Change in the Objective Function.

Generation Objective Function
1 56.311
2 37.23
3 37.23
4 36.959
5 36.969
6 33.030
7 33.030
8 32.465
9 32.465

10 20.346
11 24.39
12 15.78
13 15.556
14 15.556
15 15.556
16 15.556
17 6.556

The performance of the robust recovery algorithm is tested
on each error case individually and it is found that the
procedure is working properly.

0.00E+00
2.00E-02
4.00E-02
6.00E-02
8.00E-02
1.00E-01
1.20E-01
1.40E-01
1.60E-01
1.80E-01

1 4 7 10 13 16

Generation Number

Fi
tn

es
s

Va
lu

e

Worst
Best
Average

Figure.7: Optimization Progress of the 1st Case Study.

Case Study 2:

A different set of three points is selected at this time to test

the performance of the system. These three collision positions
are given in Figures 8-10. This time it took 7 generations to
reach the intermediate state. The positional error in each
dimension at the intermediate state is given in the Table.4
below.

Table.4: Positional Errors at the Intermediate State.

Coordinate: Error (mm):
X: 9
Y: 9
Z: 8

Figure.8: 1st Collision Point in Case Study 2.

6

Copyright (C) 2000 by ASME

Figure.9: 2nd Collision Point in Case Study 2.

Figure.10: 3rd Collision Point in Case Study 2.

After this point, second level of optimization is initiated.
The second state is reached the limits of the final state in 4
generations. The final placement errors are given in the
following table.

Table.5: Positional Errors at the Final State.

Coordinate: Error (mm):
X: 5
Y: 5
Z: 1

Totally 11 generations are required to gather the robust

recovery code. Two recovery algorithms are combined and a
robust recovery for these three cases is obtained. The final
algorithm is composed of 5 lines between the BEGIN and END
commands as given below. The first 2 lines are from initial state
to intermediate state, while the rest of them are for the recovery
from intermediate state to final state. The change in the
objective function is given in Table 6.

ROUTINE Recovery2
BEGIN
-- This portion of the code below belongs to the first level
Move Relative VEC (0, -70, -8)
Move Near POS (-702, -655, -1006, 50, 10, 0,'RUFB') By –43
--This portion of the code below belongs to the second level
Move Near POS (-733, -730, -1005, 80, 20, 0,'RUFB') By -74
Move Near POS (-713, -688, -991, 70, 20, 0,'RUFB') By -15
Move To POS (-711, -702, -986, 90, 90, 0,'RUFB')
END Recovery2

Table.6: Change in the Objective Function.

Generation Objective Function
1 38.105
2 24.35
3 24.35
4 18.815
5 18.815
6 16.301
7 15.033
8 12.083
9 12.083

10 12.083
11 7.1414

The change in the objective function from intermediate
state to final state is smooth in this case. However, as it can be
seen from Figure.11 the average fitness of the members dropped
at the 8th generation since a new population is generated for the
second level optimization process. It is realized that the average
value increased between 8th and 10th generations and this helped
the best fitness to increase in 11th generation.

It is noted that the second level of optimization converged
in 4 generations in this case. During the case studies, three error
states are considered for each case study. However the number
of cases in the initial set can be increased to obtain robust
recovery logic for n number of cases.

0.00E+00
2.00E-02
4.00E-02
6.00E-02
8.00E-02
1.00E-01
1.20E-01
1.40E-01
1.60E-01

1 3 5 7 9 11

Generation Number

Fi
tn

es
s

Va
lu

e

Worst
Best
Average

Figure.11: Optimization History of the 2nd Case Study.
7
Copyright (C) 2000 by ASME

DISCUSSIONS AND FUTURE WORK
In this paper an approach for the generation of robust

recovery algorithms is presented. The implemented system is an
extension on the infrastructure that was developed in our
previous study. Since part misplacement errors are widely
occurred during assembly process, recovery for the collision
errors is studied. However, the system is not limited to the
collision errors only and other error types can be studied to
recover in the future. The procedure involves multi-level
optimization process coupled with genetic programming. In the
first step, several error states are studied in parallel to find a
common recovery algorithm for the relaxed program. After that
in the second stage the solution of the relaxed problem is taken
as the only state to be recovered for the original problem.
Finally the recovery algorithms for both stages are combined to
get a robust recovery algorithm. It is observed that this
procedure:

• Simplifies the problem of solving different error states.

Trying to solve a relaxed problem will eventually result in
less number of iterations than the single-step optimization
case. Therefore the computation speed would be increased.

• Leads to a robust error recovery algorithm, which can be

used for different error states (i.e. collision errors occurred
at different points in an assembly line).

Although three states (n=3) are considered for each case

study, this procedure can be applied to larger number of states.
Due to its geometrical features, each assembly line has different
number of critical states to be considered. Therefore error
sampling by using the statistical model of the dimensional and
functional errors must be investigated for each line in order to
find robust recovery algorithms for each error case. The future
studies are aimed on this type of error case analysis by using
Monte-Carlo method.

REFERENCES
 Abu-Hamdan M. G., El-Gizawy A. S., “Computer Aided
Monitoring System for Flexible Assembly Operations”,
Computers in Industry, Vol. 34, pp. 1-10, 1997.
 Baydar C., Saitou K., “Off-line Error Recovery Logic
Synthesis in Automated Assembly Lines by using Genetic
Programming, 2000 Japan-USA Symposium on Flexible
Automation, 2000a.
 Baydar C., Saitou K., “A Genetic Programming Framework
for Error Recovery in Assembly Systems”, Genetic and
Evolutionary Computation 2000 Conference, Las Vegas,
Nevada, 2000b.
 Brnyjolfsson S., Arnstrom A, “Error Detection and Recovery
in Flexible Assembly Systems”, The International Journal of
Advanced Manufacturing Technology, Vol.5, pp. 112-125,
1990.

 Goldberg D., “Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison-Wesley, Reading, MA, 1989.
 Koza J. R., “Genetic Programming: On the Programming of
Computers by Natural Selection”, MIT Press, Cambridge, MA.,
1992.
 Khodabandehloo K., “Analyses of Robot Systems using Fault
and Event Trees: Case Studies”, Reliability Engineering and
System Safety 53, 247-264, 1996.
 Hardy N., Barnes D., Lee M., “Automatic Diagnosis of Task
Faults in Flexible Manufacturing Systems”, Robotica 7, 25-35,
1989.
 Holland J., “Adaptation in Natural and Artificial Systems”,
MIT Press, Cambridge, MA, 1975.
 Visinsky M.L., Cavallaro J.R., Walker I.D, “Expert System
Framework for Fault Detection and Fault Tolerance in
Robotics”, Computers in Electrical Engineering 20(5), 421-435,
1994.
 Wirth R., Berthold B., Kramer A., Peter G., “Knowledge
Based Support of System Analysis for the Analysis of Failure
Modes and Effects”, Engineering Applications in Artificial
Intelligence 9(3), 219-229, 1996.
 Workspace v.4 Educational User Guide Manual, 1998.

8
Copyright (C) 2000 by ASME

	CIE TOC

