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ABSTRACT 

A method for robustness optimization of flexible manufac- 
turing systems is presented which undergoes forecasted product 
plan variations. A configuration of an FMS is modeled by a col- 
ored Petri net and the associated transition firing sequence. The 
robustness optimization of the colored Petri net model is for- 
mulated as an multi-objective optimization problem which min- 
imizes production costs under multiple production plans, and re- 
configuration cost due to production plan changes. As a first at- 
tempt, machines with limited flexibility are considered, and a ge- 
netic algorithm, coupled with a simple FIFO dispatching rule, is 
used to simultaneously find an semi-optimal resource allocation 
and event-driven schedule of a colored Petri net. The resulting 
Petri nets are then compared with the Petri nets optimized for a 
particular production plan in order to address the effectiveness 
of the robustness optimization for simultaneous production of 
products with different similarities. The simulation results sug- 
gest that the robustness optimization should be considered when 
the products are moderately different in their manufacturing pro- 
cesses. 

*Corresponding author 
+Formerly a visiting student, Department of MechanicalEngineeringand Ap- 

plied Mechanics, University of Michigan. 
INTRODUCTION 
Flexible manufacturing systems (FMS’s) are a class of man- 

ufacturing system which can be rapidly configured to produce 
multiple types of products. Recent increase in the use of FMS’s 
has been driven by the need of agile manufacturing systems 
which can quickly adopt changes in production plans due to mar- 
ket demand fluctuation. While the increased flexibility of an FMS 
provides greater productivity under various production scenario, 
it imposes increased complexity in allocation of given resources 
to different processes required in making each product, and the 
scheduling of the sequence of activities to accomplish the best 
production efficiency (Lee, 1994). In order to quickly adapt fluc- 
tuating market demand, the resource allocation and scheduling, 
or configuration in short, of an FMS should not simply be opti- 
mized for the current production plan. Rather, it should ideally 
be optimized for robustness against the variation in production 
plans, so that the system can deal with the variation with minimal 
reconfiguration (i.e. reallocation and rescheduling) while achiev- 
ing consistently efficient production under all production plans of 
interest. For this, a reliable forecast on the future change in pro- 
duction plan must be provided, which may or may not be avail- 
able at a given time. 

Assuming such forecasts are available, let us consider the 
scenario where the FMS simultaneously produces two kinds of 
products A and B, and the total number of production (sum of 
the numbers of A’s and B’s to be produced) per unit time (eg. a 
day) is kept constant with production plan variation (i.e. only a 
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fraction of the two products varies). When A and B are very sim- 
ilar’, then, it is conjectured that one would not need to consider 
robustness optimization since the configuration optimized for the 
current production plan is robust enough such that little system re- 
configurations are necessary to deal with production plan change 
(imagine the extreme of this case where A and B are identical). 
On the other hand, when products under simultaneous production 
are different (but not too different to impair the justification for si- 
multaneous production), slight change in the production plan will 
heavily impact production efficiency, hence necessitating the sys- 
tem reconfiguration in order to achieve efficient production under 
the new production plan. 

The above conjecture motivated us to develop a methodol- 
ogy for robustness optimization of FMS configuration which un- 
dergoes given product plan variations, and to study the effective- 
ness of the methodology for simultaneous production of prod- 
ucts with different similarities. A configuration of an FMS is 
modeled by a colored Petri net and the associated transition fir- 
ing sequence. The robustness optimization of the colored Petri 
net model is formulated as an multi-objective optimization prob- 
lem which minimizes production costs under multiple production 
plans, and reconfiguration cost due to production plan changes. 
As an initial attempt, machines with limited flexibility are con- 
sidered, and a genetic algorithm, coupled with a simple FIFO dis- 
patching rule, is used to simultaneously find an semi-optimal re- 
source (machine) allocation and event-driven schedule on a col- 
ored Petri net. The resulting Petri nets are then compared with 
the Petri nets optimized for a particular production plan in order 
to validate the above conjecture. 

RELATED WORK 
Petri nets (Petri, 1962) have been widely used for analysis 

and simulation of FMS due to their capability of modeling con- 
currency, synchronization and sequencing in discrete-event sys- 
tems (Dubois, 1983; Narahari, 1985). Among the most recent is 
the work by Dhumal, Dhawan, Kona and Soni (Dhumal, 1996), 
where a Petri net model of a flexible forging cell was used to ana- 
lyze the production performances under different production sce- 
narios. 

In addition to such use as an analysis tool, Petri net models 
are often used for FMS scheduling problems. Given a job specifi- 
cation (the amount of production and the sequence of operations 
needed for each job), and the corresponding resource allocation 
(the type and number of machines for each operation, and the pro- 
cessing time), one can construct a Petri net model of an FMS, 
where event-driven operation schedules of the modeled FMS are 
represented as the transition firing sequences of the Petri net. Due 
to the NP-completeness of the underlying job-shop scheduling 

*In which sense is left undefined here. This issue will be revisited in the dis- 
cussion section. 
2 
problem(JSSP) (Garey, 1979), an optimal schedule is often found 
via heuristic search algorithms such as beam search (Shih, 1991), 
A* algorithm (Lee, 1994) and genetic algorithms (Chiu, 1997), 
coupled with discrete-event simulation of the operation of the 
Petri net model. 

In general, the quality of the optimal schedule is influenced 
the quality of resource allocation (i.e. the topology of the Petri 
net model) for a given job specifications. This motivates the 
simultaneous optimization of resource allocation and schedul- 
ing, a generalization of JSSP known as generalized resource- 
constrained project scheduling problems (GRCPSP), which is 
also NP-complete (Garey, 1979). GRCPSP is typically for- 
mulated as mathematical programming problems and solved by 
heuristic search algorithms (Sprecher, 1994). The solution pro- 
vides an optimal allocation of a given resources and time-driven 
operation schedules. Although event-driven schedules are often 
preferred for FMS scheduling due to their robustness (Lee, 1994), 
discrete-event based models such as Petri nets are rarely used for 
GRCPSP due to the computational time for the model simulation. 

In the above work, the search is directed towards the discov- 
ery of the schedule (and the resource allocation in the case of GR- 
CPSP) optimized for afied production plan, which could poten- 
tially be sensitive to a small perturbation in the current produc- 
tion plan. In continuous mathematical programming, this issue 
is addressed as sensitivity analyses, where the sensitivity of the 
optimum to small parameter perturbation is computed, in most 
cases, in terms of Lagrange multipliers. Several method has been 
proposed to find an optimal (or suboptimal) solution of nonlin- 
ear programming problems which is less sensitive to parame- 
ter perturbations (d’Entremont, 1988; Parkinson, 1990; Sundare- 
san, 1993). Since these methods are essentially an application 
of Taguchi’s robust parameter design (Taguchi, 1978; Taguchi, 
1987) to nonlinear programming, they are designed for contin- 
uous optimization problems, and hence do not directly apply to 
problems involving discrete design parameters, such as the FMS 
scheduling problems using Petri nets discussed above. 

PROBLEM FORMULATION 
Colored Petri net model of manufacturing systems 

Colored Petri nets (Alla, 1985; David, 1992) are an exten- 
sion of ordinary Petri nets where a place can contain multiple to- 
kens distinguished by a “color” associated with each token. This 
extension allows colored Petri nets to model manufacturing sys- 
tems capable of simultaneous production of multiple products in a 
graphically elegant manner by associating types of products with 
colors of tokens. As an ordinary Petri net, a colored Petri net is a 
directed graph consisting of two types of node, places and tran- 
sitions. Two nodes are connected by an directed edge which con- 
nects either a place to a transition or a transition to a place (see 
Figures l-3). 

Formally, a colored Petri net R is a six-tuple: 
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? 
R= (P,T,Pre,Post,Mo,C) (1) 

where P is a set of places, T is a set of transitions and C is a 
set of colors. Pre and Post are functions of the type P x T x 

CkZbmdMo: PoZlcl’ h 1s t e initial marking, where Z is a set 
of integers. A place p E P is graphically represented by a circle, 
and a transition t E T is represented by a bar. A place can contain 
one or more tokens (with possibly different colors). The number 
and colors of tokens at a place p E P is called mm-king of the place 
denoted as M(p), where M : P ++ Zlcl, and represented graphi- 
cally as colored dots in a circle2. Let places p, 4 and a transition 
t are connected by edges (p, t) and (t , q) . The place p is called an 
inputplace of the transition t, and the place q is called an output 
place of the transition t. Marking of places change according to 
the following rules: 

1. For each input place p of a transition t, if M(p) > Pre(p, t, c) 
for a color, t is called enabled with respect to the color c. 

2. If a transition t is enabled with respect to a color c, it cmflre. 
3. If a transition t enabled with respect to a color c fires, M(p) 

changes to M(p) - Pre(p, t, c), and for each output place q of 
t, M(q) changes to M(q) + Post(q, t, c). 

In addition, capacities to places are often imposed in FMS 
modeling, represented by a capacity function Cap : P w Z+ and 
marking change occurs only if the total number of tokens of the 
resulting marking does not exceed the capacity of the place. A 
sequence of marking changes in all places of a colored Petri net 
is called evolution of marking. The evolution of marking in a col- 
ored Petri net from the initial marking represents the sequence of 
event occurrences in the modeled discrete-event system. 

Figures l-3 illustrate the evolution of marking in a simple 
colored Petri net which models a production facility consisting 
of one buffer p1 and two machines p2 and p3. The production 
facility is to produce two types of products < a > and < b > 
which both need just one operation to finish. The machine p2 
is capable of performing this operation on both products < a > 
and < b >, while the machine p3 can only perform the operation 
on product < b >. In this colored Petri net, P = { ~1, ~2, p3}, 
T = {tl,tz,t3,t4}, C = {< a >,< b >}, Mo(pl> = (I,% and 
M(p2) = M(p3) = (0,O). It is assumed that Cap(pl) is infinity 
(unlimited capacity buffer), and Cap(p2) = Cap(p3) = 1 (ma- 
chines can process one product at a time). The functions Pre and 
Post are defined in terms of “shorthand” function f ,g : C I+ C 
such that 

Pre(pl,tl,<a>) = f(<a>)=<a>=(l,O) 

%I most literature, however, a token is represented as < c >, where c is a sym- 
bol representing the color of the token, as they are not normally printed in color. 
Figure 1. colored Petri net which models a production facility with one 
buffer p1 and two machines p2 and ~3, with initial marking. 

Pre(pl,tl,<b>) = f(<b>)=<b>=(O,l) 

Pre(p1, t2, < b >) = f (< b >) =< b >= (0,l) 

Pre(p2,t3,<a>) = f(<a>)=<a>=(l,O) 

Pre(p2, t3, < b >) = f (< b >) =< b >= (0,l) 

Pre(p3, t4, < b >) = f (< b >) =< b >= (0,l) 

Post(pl,t3,<a>)=g(<a>)=<a>=(1,0) 

Post(p1, t3, < b >) = g(< b >) =< b >= (0,l) 

Post(p1, t4, < b >) = g(< b >) =< b >= (0,l) 

Post(p2,tl,<a>)=g(<a>)=<a>=(1,0) 

Post(p2, tl, < b >) = g(< b >) =< b >= (0,l) 

Post(p3, t2, < b >) = g(< b >) =< b >= (0,l) 

For other points (p, t, c) not defined above, Pre(p, t, c) and 
Post(p, t, c) are undefined. The colors listed next to each transi- 
tion is $ring colors of the transition, with respect of which the 
transition can be enabled if appears in the input place. 

At the start of the production cycle, the machines are not 
working and the unfinished products, one < a > and two < 
b >‘s, are located in the buffer ~1, which is given as the ini- 
tial marking Mo(p1) = (1,2). Since Mo(p1) > Pre(pl , tl, < a > 
),Pre(pl,tl,< b >) and MO > Pre(pl,t2,< b >), transition tl 
is enabled with respect to both < a > and < b >, and t2 is en- 
abled with respect to < b >. Let us assume t2 fires at the next 
step. Then, M(pl) changes from (1,2) to (1,l) as Pre(pl, t2, < 
b >) =< b >= (0, l), and hence one of two token < b >‘s is 
removed from pl. Also M(p3) changes from (0,O) to (0,l) as 
Post(p3, t2, < b >) =< b >, and hence the token < b > removed 
form p1 appears in p3. At this point, transitions tl, t2 and t4 are 
enabled. Let us assume tl fires at the next step. The transition tl 
has the choice of firing either < a > or < b >. Suppose tl fires 
< a >. Proceeding similar to the previous firing, the token < a > 
is removed from p1 and appears in p2 (Figure 2). This represents 
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t4{<b>} 

Figure 2. stab of the colored Petri net after firing of t2 with < b > and tl 
with<a>. 

Figure 3. state of the colored Petri net after firing of t2 with < b >, tl with 
<a>,tlwith<a>,tl with<b>andt4with<b>. 

the system state of the machine p2 processing the product < a > 
and the machine p3 processing the product < b >. 

Although all transitions are enabled at this point, only 9 or t4 
can fire since firing tl and t2 would result in exceeding the capac- 
ity of places p2 and p3. Let us assume t3 is fired and this moves 
< a > in p2 back to pl. This means the machine p2 has now fin- 
ished processing the product < a > and send it back to the buffer 
~1. Then, tl, t2, and t4 are enabled but only tl or t4 can fire. The 
subsequent firing of tl with < b > followed by the firing of t4 with 
< b > would move < b > in p1 to ~2, and < b > in p3 to p1 (Fig- 
ure 3). This represents that the machine p2 is now processing the 
product < b > while machine p3 has finished processing the prod- 
uct < b > and send it back to buffer. 

As illustrated above, a sequence of transition firing of a col- 
ored Petri net can be interpreted as an even-driven schedule of 
the modeled manufacturing systems. Therefore, choosing a tran- 
sition firing sequence in the above example would result in a dif- 
4 
ferent evolution of markings, i.e. different schedule would yield a 
different system behavior. In general, topology of a colored Petri 
net model is determined by a job specifications (the amount of 
production and the sequence of operations needed for each job), 
and the corresponding resource allocation (the type and number 
of machines for each operation, and the processing time). In the 
above example, the job specification was one < a > and two 
< b >‘s per cycle and one operation for both < a > and < b >, 
and the resource allocation was one machine for both < a > and 
< b >, one machine for < b >, and one buffer for < a > and 
< b >, all with zero processing time. A different job specifi- 
cations and resource allocation would yield a colored Petri net 
model with different topology from the above example. 

Robustness optimization of FMS configurations 
We consider a scenario where an FMS simultaneously pro- 

duces multiple types of products which share common manufac- 
turing operations. It is assumed that the production plan of the 
FMS given in terms of the numbers of each types of the prod- 
ucts to be produced during a given period of time. Let IZ be the 
number of types of the products. Then, the production plan can 
be represented as p E Zn. Suppose the total number of produc- 
tion (sum of the numbers of IZ product types to be produced) per 
unit time is kept constant to, say N, and hence the production plan 
changes are only due to the changes in the fraction of the product 
types. Let the fraction be ai, where 0 5 ai < 1 for i = 1,2, . . . . rz 
and Cy=“=, ai = 1, or collectively be an it dimensional vector a. 
Given N, therefore, a production plan can be uniquely specified 
as a function of the fraction vector a, which we shall call p(a). 

Let p(q) be the current production plan. We assume 
the forecasts on production plan changes within the timeframe 
of interest are available as a sequence of m production plans 
P(ad,P(a2), . . ., p(a,). Our objective is to optimize the robust- 
ness of the current configuration (resource allocation and sched- 
ule) of the FMS against the given variation in production plans. 
Namely, we want to minimize reconfiguration while achieving 
consistently efficient production under all of m production plans 
foreclosed. Let ~0 be the current configuration of the FMS, and 
x1,x2, . . . ,x, be the future configurations corresponding the m 
production plans forecasted. Then, the problem can be formu- 
lated as the simultaneous minimization of the following 2m + 1 
functions: 

PdUCtiOTZ-COSt(Xj, p(aj)) j = 0, 1, . . . , m (2) 
R?CO$ig-COSt(Xj,Xj+l) j = 0, 1, . . . , m - 1 (3) 

where production-@xi, p(aj)) is the production cost of the 
FMS with the configuration xj under the production plan p(aj), 
and reconfg-cost(xjmxj+1) is the reconfiguration cost from the 
configuration xj to the configuration xj+ 1. 
Copyright 0 1998 by ASME 



t3{ca>,<b>} t4{<b>) 

Figure 4. colored Petri net before reconfiguration. 

Given the configuration xj and the production plan p( aj), the 
production cost can be evaluated using discrete-event simulations 
based on a colored Petri net of an FMS. The production cost is 
estimated as the combination of cost of the production time and 
facility: 

production-c&xi, p(aj)) = r(xj, p(aj)) x 
( 1 

CckMk(xj) 
k 

(4) 
where r(xj, p(aj)) is the number of rounds to accomplish the pro- 
duction plan p(aj)), and ck and h’fk(xj) are the running cost and 
number of the machine type k, respectively. Reconfiguration cost 
from one configuration to the other is estimated as the number of 
rerouting required to accomplish the new configuration, i.e. the 
number of routings (connection between two places) in the col- 
ored Petri net which need to be changed due to the change in 
the resource allocation. The reconfiguration cost associated with 
the change in schedules is not considered here since dynamic 
scheduling with dispatching rules is used as discussed in the fol- 
lowing section3. Namely: 

R?COn$g-COSt(Xi, Xj) 

= number of routings differences from xi to xj (5) 

For instance, the change from the colored Petri nets in Fig- 
ure 4 to the one in Figure 5 is 2 since two routings between pl and 
p3 must change since the machine type of p3 changed from a spe- 
cialized machine only capable of producing product < b >, to a 
flexible machine capable of producing product < a > and product 
<b>. 

31ncorporation of differences in schedule should be a part of future work. 
5 
Figure 5. colored Petri net after reconfiguration. 

In the following sections, we discuss simple case studies for 
n = 2 and m = 1, namely when two types of products A and B, are 
to be produced, and only one forecast on the production plan is 
available. We have, therefore, the fraction vector with dimension 
2, and 3 functions to be minimized. In this case, the fraction vec- 
tor can be expressed as using one parameter a as (cKN, ( I- a)N), 
whereO<a< 1. 

Optimization using a genetic algorithm and dispatch- 
ing rules 

The robustness optimization of FMS configurations dis- 
cussed in the previous section requires simultaneous optimization 
of resource allocation and scheduling. Due to the high complex- 
ity of the underlying optimization problem (GRCPSP), a hybrid 
scheme is adopted where a genetic algorithm is used for resource 
allocation, and dispatching rules are used for dynamic scheduling 
of the colored Petri net models of a FMS. Although the resulting 
configuration may not be guaranteed to be optimal, this hybrid 
scheme allows very fast evaluation of large number of feasible 
configurations. 

Genetic algorithm (GA) is an optimization technique in 
which points in design space are analogous to organisms subject 
to a process of natural selection, or “survival of the fittest (Hol- 
land, 1975; Goldberg. 1989). GAS model reproduction in pop- 
ulation of encoded representation of points (typically strings of 
bits) in design space - called genetic “chromosomes” -over gen- 
erations. In a given generation, the quality of a chromosome, 
i.e. a bit string representation of a point in design space, is mea- 
sured based in a fitness function, and highly-fit chromosomes 
have higher chances to be selected for reproduction. Two “par- 
ent” chromosomes selected for reproduction are mated through 
genetic crossover, resulting in two offsprings which are likely to 
inherit good “genes” from their parents. Many generations of 
such selection and mating will produce a highly-fit population of 
chromosomes, i.e. better designs. 
Copyright 0 1998 by ASME 



Dispatching rules are local rules which specifies priorities 
in the dispatching of products to machines while production is 
in progress. Dispatching rules has been traditionally used for 
scheduling, due to its simplicity and reliability. A number of dis- 
patching rules such as FIFO (First-In-First-Out), SIO (Shortest 
Imminent Operation time) and SRPT (Shortest Remaining Pro- 
cessing Time) have been successfully applied to FMS schedul- 
ing (Choi, 1988). Although the schedules created by off-line 
heuristic algorithms often outperform the ones by dispatching 
rules, they allow very fast and dynamic creation of near-optimal 
schedules of FMS which do not exhibit very high nonlinearity in 
routing. Also, the schedules created by dispatching rules tends to 
be robust against the sudden change in resource allocation (e.g. 
machine breakdown), since the schedules are dynamically cre- 
ated during the operation, rather than determined off-line. Al- 
though in practice a combination of several dispatching rules are 
used, a simple FIFO rule is selected in the following examples 
for the purpose of a initial demonstration. Namely, a FIFO rule 
is used for dynamic scheduling of a colored Petri net whose re- 
source allocation is specified by a parameter, or a “chromosome,” 
of a genetic algorithm. 

We assume a limited flexibility of machines in which one 
type of machines can perform only one type of manufacturing op- 
eration, possibly for different product types. This assumption is 
made to reduce the need of cyclic routing in a colored Petri net, in 
order to increase a chance that the schedules obtained by a FIFO 
dispatching rule are near-optimal. Based on the above assump- 
tion, each machine for each operation is marked by a number indi- 
cating which product type the machine can process, with 0 being 
the both product types A and B, 1 being only the product type A, 2 
being only the product type B, and 3 being no product type, i.e. the 
machine is turned off. This corresponds to two bits in binary 
number per machine is assigned on a genetic chromosome. In 
the following examples, the maximum of three machines per ma- 
chine type are assumed to be available. Therefore, the total num- 
ber of bits to specify a resource allocation of a colored Petri net is 
3(bitsper machine) x 3(machinesper machine type) x 1, where 
1 is the number of machine type needed to produce all product 
types. Since m + 1 configurations must be specified for robust- 
ness optimization, the length of chromosomes is 18 * 1, in the case 
ofm= 1. 

SIMULATION RESULTS 

This section describes simple case studies of the robustness 
optimization of FMS as described in the previous section applied 
to the example production scenario with n = 2 and m = 1. In other 
words, two product types A and B are to be produced, and only 
one forecast on the production plan is available. 
6 
Assumptions 
It is assumed that both product types require three manufac- 

turing operations with the same sequence, and a product type is 
characterized by its job list, a list of the processing time needed 
for each operation. For instance, if the product type require 
milling, turning, and drilling in this order, the job list (10,15,5) 
indicates the product type takes 10 unit time for milling, 15 unit 
time for turning, and 5 unit time for drilling in order to be finished. 
Since one type of machines can perform only one type of manu- 
facturing operation, the number of machine types I is 3. There- 
fore, the length of chromosomes for robustness optimization is 
36. A production plan is represented by the fraction of product 
A out of the total number of production N per unit time, which is 
set to 20 for all examples. In addition, running cost of all machine 
types are assumed to be the same. 

The actual objective function (to be minimized) for robust- 
ness optimization is a multiplication of recojig-cost with adjust- 
ments and production-cost : 

f(xo,xl) = {reconjig-cost(xo,x1)/10+ 1) 

x{~(~o,~(~6))~M(xo)+r(xl,~(al)).M(xl)} (6) 

where x0 and x1 are the configurations for the current produc- 
tion plan p(m) and the forecasted production plan P(Q), respec- 
tively. M(xo) and M(xl) are the total numbers of machines in the 
configurations x0 and x1, respectively. Unless otherwise speci- 
fied, the current production plans is (18,2), i.e. alpha = 0.9, and 
the forecasted production plan is (2,18), i.e. a = 0.1. Rather sur- 
prisingly, it is observed that reconjig-cost(xo,xl) becomes zero, 
i.e. ~0 = x1 as a result of robustness optimization in all of the fol- 
lowing example. In other words, the robustness optimization al- 
ways resulted in one configuration which can efficiently produce 
A and B under both current and forecasted production plan. In 
order to study the effectiveness of the robustness optimization, in 
each example this resulting configuration is compared with two 
configurations: the one optimized only for the current production 
plan, and the one optimized only for the forecasted production 
plan. The comparison is done by plotting the production cost of 
each configurations under the production plans in the range from 
a = 0 (only A produced) to a = 1 (only B produced). We will 
refer to this plot as the production cost-alpha plot. 

The simulation modules were written in C++ with the op- 
timize being the GALib developed at the MIT CADLAB. The 
simulations were run on a Sun Ultraspark Workstation, which in 
some cases took two hours to complete. For all results presented 
below, the population size is 100, the number of generations is 50, 
the probability of crossover is 0.7 and the probability of mutation 
is 0.08. 
Copyright 0 1998 by ASME 
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Figure 6. production cost-alpha plot for A : (5,15,10) and B : (15,15,5). 

Preliminary examples 
There are three preliminary examples where the job lists of 

A and B are different (Example l), very different (Example 2), 
and totally different (Example 3). These examples are studied to 
investigate the effect of product similarities on the results of the 
robustness optimization. 

Example 1 i The product type A has a job list of 
(5,15,10)andtheproducttypeBhasajoblist(15,15,5).These 
two job lists share identical process time of the second operation, 
and the processing times for the first and the third operation are 
not too different. Figure 6 shows the production cost-alpha plot of 
this case. In Figure 6, the colored Petri net optimized for robust- 
ness (“dual plan” configuration) was called Petri net 3, and the 
colored Petri nets optimized only for current production plan, and 
only for forecasted production plan (“single plan” configurations) 
are called Petri net 1 and Petri net 2 in Figure 6, respectively. In 
the range 01 E (0.4,0.75), Petri net 3 gives lower production cost 
compared to Petri net 1 and Petri net 2. For other values of a, Petri 
net 1 and Petri net 2 give the better results than Petri net 3. Petri 
net 1 and Petri net 2, however, have a tendency to reach high lev- 
els of production cost as a varies from the original value to which 
they are optimized, possibly by the creation of production bottle- 
neck. This is observed clearly in the case of Petri net 2 around 
a = 0.4. Overall, Petri net 3, optimized for robustness, is in fact 
robust in that it exhibits consistently low production cost over the 
range of a between 0 and 1. 

Figures 7,8 and 9 show Petri net 1, Petri net 2 and Petri net 3, 
respectively. As seen in these figures, the resulting colored Petri 
nets are quite different. The differences between these colored 
Petri nets (PND: Petri Net Difference) can be measured same 
way as reconjig-cost defined earlier, which gives PND( 1,2) = 10, 
PND( 1,3) = 8 and PND(2,3) = 10. 
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Figure 7. colored Petri net optimized for current production plan (Petri 
net 1). po: buffer (unlimited capacity), ~1: flexible milling machine, p2,p3: 
turning machine for A, ~4: flexible turning machine, ~5: drilling machine 
for A, p6: flexible drilling machine. 

I I 
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Figure 6. colored Petri net optimized for forecasted production plan (Petri 
net 2). po: buffer (unlimited capacity), p1,p2: flexible milling machine, ~3: 
milling machine for B, ~4: flexible turning machine, p5,prj: turning ma- 
chine for B, ~7: flexible drilling machine, ~8: drilling machine for B. 
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Figure 9. colored Petri net 3 optimized for robustness (Petri net 3). po: 
buffer (unlimited capacity), pr: flexible milling machine, ~2: milling ma- 
chine for B, p3,p4: flexible turning machine, ~5: turning machine for B, 
P6, ~7: drilling machine for A, ps: drilling machine for B. 

Example 2 In this case product A has a job list (10,5,1) 
and product B has a job list ( 1,5,10). Similar to Example 1, these 
job lists share the same process time for the second operation. 
Also, the total process time of all three operations are identical. 
However, the fraction of the second process time to the total pro- 
cess time is much smaller than the job lists in Example 1, reduc- 
ing the “sameness” of the two job lists. Also, the first and the third 
process time are very different. Compared with Example 1, there- 
fore,.the two products are more different. Although the produc- 
tion cost-alpha plot in Figure 10 shows general trends similar to 
Figure 6 three curves in Figure 10 are shows more rapid increase
in productioncost per unit change in a, i.e. the curves are steeper. 
In particular, Petri net 3, optimized for robustness, is less robust 
in this case in that it does not indicate the consistent production 
cost as shown in the previous example. 

The difference in the Petri nets are of less interest in this ex- 
ample because the places with the highest degree of utilization 
are different for each product and therefore harder to compare:
PND( 1,2) = 10, PND( 1,3) = 8, PND(2,3) = 8. 

Example 3 The job list of product A is (lO,O, 0) and the 
job list of product B is (0,5,5). These two products are so dif- 
ferent that they share no common operation. In this case, the ro- 
bustness optimization seems to have very few value as shown in 
the curve of Petri net 3 in Figure 11. Although the production 
cost of net 3 is consistent, the overall production cost is no better 
8

1200 

z 
8 1000 
t 
g 600 

$ 600 

400 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
alpha 

-a- Petri net 1 I I--+- Petri net 2 

+- Petri net 3 

Figure 10. production cost-alpha plot for A : ( 10,&l) and B : ( 1,5,10). 
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Figure 11. production cost-alpha plot for A : ( 10, 0,O) and B : (0,5,5). 

than Petri net 1 and Petri net 2 for almost entire range of a. This 
implies that the proposed method robustness optimization is less 
valid in the cases where the products to be produced are totally 
different. 

In this example, the differences in the Pert nets where 
PND( 1) 2) = 12, PND( 1,3) = 8, PND(2,3) = 10. These num- 
bers clearly indicate Pert nets optimized for products not sharing 
any operations must be very different. Observing PND( 1,3) = 8, 
it is expected that the performance of these nets would be quite 
different. Figure 11, however, indicates that this is not the case, 
and adds to the case that the differences in the Petri nets is of 
less importance to the performance of the system than the dif- 
ference of the nets around the places with the highest degree of 
utilization. Around the places with highest degree of utilization 
PND( 1,2) = 4, PND( 1,3) = 2 and PND(2,3) = 4 which could 
help to explain both the relative similarity of Petri net 1 and 3 and 
their common dissimilarity with Petri net 2. 
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Forging Cell Examples 
The above procedures are applied to more realistic examples 

of forging cell operation adopted from (Dhumal, 1996). The forg- 
ing cell consists of shearing machines, furnaces, forging press and 
material handling systems (buffers and robot arms), which can 
be configured to produce two product types. The both product 
types require shearing, heating and forging in this sequence and 
these operations are done only by shearing machines, furnaces 
and forging press, respectively. The reconfiguration time of flex- 
ible machines (machines that can process both product types) are 
set to 100, about 50% of the total production time for one product. 

The production plans of two product types in Case 4 (a = 
0.3) and Case 1 (a = 0.65) of Configuration II, as appeared 
in (Dhumal, 1996), are used as the current and forecasted produc- 
tion plan, respectively. The job list of product A is (12,140,16) 
and the job list of B is (16,195,22). The both job list have the 
process time of the second operation nearly ten times larger than 
the process times of the first and the third processes, which domi- 
nates the total process time. Also, all operations of the product B 
take longer than the ones of the Product A. Therefore, a produc- 
tion facility which can produce B optimally could also produce 
A fairly efficiently. Such a facility, however, is not necessarily 
optimal for producing A, in which case there exists a “robust” 
facility which can produce both types of products with consis- 
tent efficiency over the wide range of cr. This was clearly shown 
in the production cost-alpha plot in Figure 12. Petri net 2 (op- 
timizes for 01 = 0.3, i.e. 30% A and 70% B), performs worse 
than Petri net 3 (optimized for both a = 0.65 and 01= 0.3) in the 
range a E (0.5,l). Although outperformed by Petri net 2 around 
01= 0.3, Petri net 3 shows very robust performance over all range 
of a. 

The difference in the Petri nets were PND( 1,2) = 
PND( 1,3) = PND(2,3) = 2. Although the overall differ- 
ences in these Petri nets are small, all the differences are situated 
around the places with the highest utilization, where even a small 
difference have severe impact on the overall performance. 

DISCUSSION AND FUTURE WORK 
This paper presented a method for robustness optimization 

of flexible manufacturing systems which undergoes forecasted 
product plan variations. A configuration of an FMS is mod- 
eled by a colored Petri net and the associated transition firing 
sequence. The robustness optimization of the colored Petri net 
model is then formulated as an multi-objectiveoptimization prob- 
lem which minimizes production costs under multiple production 
plans forecasted, and reconfiguration cost due to production plan 
changes. As a first attempt, machines with limited flexibility are 
considered, and a genetic algorithm, coupled with a simple FIFO 
dispatching rule, is used to simultaneously find an semi-optimal 
resource allocation and event-driven schedule of a colored Petri 
net. The resulting Petri net is then compared with the Petri nets 
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Figure 12. production cost-alpha plot for A : (12,140,16) and B : 
(16,195,22). Current and forecasted production plans are a = 0.65 and 
a = 0.3, respectively. 

optimized for a current production plan, and for a forecasted pro- 
duction plan, in order to address the effectiveness of the robust- 
ness optimization for simultaneous production of products with 
different similarities. The simulation results suggest that the ro- 
bustness optimization should be considered when the products 
are moderately different in their manufacturing processes. 

There are number of assumptions made in this paper which 
prohibits the over generalization of the above interpretation of 
the simulation results. They include the assumption of one ma- 
chine type for one operation, the assumption of identical running 
costs for all machine in a type, the assumption of the same pro- 
cess sequences for all product types, the assumption of the same 
process time for all machine types. Relaxation of some or all of 
these assumptions would results in colored Petri net model with 
much higher routing nonlinearity, and would require the adoption 
of more sophisticated dispatching rules, or off-line scheduling al- 
gorithm, to guarantee the quality of optimization. Addressing the 
effect of product similarity on the robustness optimization with 
such generalization is part of the future work. It is also of great 
interests to compare the various “product similarity indicator” in 
terms of their impact on the robustness optimization. 

In addition, current formulation of the robustness optimiza- 
tion is based on existence of perfectly reliable forecast of produc- 
tion plans. Although acceptable for this initial attempt, this as- 
sumption must be relaxed to incorporate uncertainty in the fore- 
cast. One way to do it would be to associate probabilities to 
each of discrete forecast, and model the transition among the 
forested production plans as finiteMarkov process. Incorporation 
of stochastic nature of forecast, without much increase in compu- 
tational expenses, would be an important extension. 
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