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ABSTRACT INTRODUCTION

Flexible manufacturing systems (FMS) are a class of man-
ufacturing system which can be quickly configured to produce
This paper discusses an extension of our previous multiple types of products (jobs). Recent increase in the use
work (Saitou, 1998) on robustness optimization of flexible man- ©f FMS is driven by the need of agile manufacturing that can
ufacturing systems (FMS) that undergo forecasted production duickly adopt changes in production plans (batch sizes for all
plan variations. The extension is made to a more general classiobs) due to market demand fluctuation. While the increased
of FMS performing “non-linear” or “cyclic” production that al- flexibility of an FMS provides greater productivity under various
lows multiple operation types per one machine type. As in our production scenario, it imposes increased complexity in alloca-
previous work (Saitou, 1998), a configuration of an FMS is mod- tion of given resources to different operations required in making
eled as a colored Petri net and the associated transition firing €ach product, and the scheduling of the sequence of activities to
sequence, and the robustness of FMS is defined as the insensi@ccomplish the best production efficiency (Lee, 1994).
tivity of production performances against variations in produc- In order to quickly adapt fluctuating market demand, the re-
tion plan. The optimization of the robustness of the colored Petri source allocation and scheduling, or configuration in short, of an
net model is formulated as a multi-objective optimization prob- FMS should not simply be optimized for the current production
lem which minimizes production costs under multiple produc- plan. Rather, it should ideally lptimized for robustnesgyainst
tion plans (batch sizes for all jobs), and reconfiguration cost due the variation in production plans, so that the system can deal with
to production plan changes. A genetic algorithm, coupled with the variation with minimal reconfigurationé., reallocation and
a dispatching rule based on shortest imminent operation time rescheduling) while achieving consistently efficient production
(SI0), is used to simultaneously find an semi-optimal resource under all production plans of interest (Saitou, 1998). For this, a
allocation and event-driven schedule of a colored Petri net. The reliable forecast on the future change in production plan must be
resulting Petri nets are then compared with the Petri nets opti- provided, which may or may not be available at a given time.
mized for a particular production plan in order to address the Assuming such forecasts are available, let us consider the
effectiveness of the robustness optimization. The simulation re- scenario where an FMS simultaneously produces two kinds of
sults suggest that the proposed robustness optimization schemeroducts A and B, and the total number of production (sum of the
should be considered when the products are moderately differentnumbers of A's and B'’s to be produced) per unit tineg.@ day)
in their job specifications so that optimizing for a particular pro- is kept constant with production plan variatiare(, only afrac-
duction plan creates inevitably bottlenecks in product flow and/or tion of the two products varies). When A and B are very similar
deadlock under other production plans. in their job specifications, then, it is conjectured that one would
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not need to consider robustness optimization since the configu- algorithms (Chiu, 1997), coupled with discrete-event simulation
ration optimized for the current production plan is robust enough of the operation of the Petri net model.
such that little system reconfigurations are necessary to deal with In general, the quality of the optimal schedule is influenced
production plan change (imagine the extreme of this case wherepy the quality of resource allocation,, the topology of the
A and B are identical). On the other hand, when products under petri net model) for a given job specification. This motivates the
simultaneous production arsoderatelydifferent, slight change  simultaneousptimization of resource allocation and schedul-
in the production plan will heavily impact production efficiency, ing, a generalization of JSSP known as generalized resource-
possibly due to the creation of bottlenecks in product flow. This constrained project scheduling problems (GRCPSP), which is
would necessitate the system reconfiguration in order to achieve 3150 NP-complete (Garey, 1979). GRCPSP is typically formu-
efficient production under the new production plan. lated as discrete programming problems and solved by heuristic
The above conjecture motivated our previous work on Petri- search algorithms (Sprecher, 1994). The solution provides an
net based robustness optimization of FMS under production plan gptimal allocation of a given resourcés(, machines) and time-
variation (Saitou, 1998). The simple production scenarios dis- driven operation schedules. Although event-driven schedules are
cussed in the work validated this conjecture for a class of FMS often preferred for FMS scheduling due to their robustness (Lee,
performing “linear” production that only allows one operation 1994, discrete-event based models such as Petri nets are rarely

type per one machine type. This paper presents an extensionysed for GRCPSP due to the computational time for the model
of this previous work to a more general class of FMS per- simulation.

forming “non-linear” or “cyclic” production that allows multi-
ple operation types per one machine type. As in our previ-

olusdwork (S?'touoi Fl,gf?‘)’ ? cogf[[%uratmn qftag ::Ms.t'.s m?d’ of GRCPSP) optimized for fixedproduction plan, which could
cled as a colored Fetrl net and the associated transition '”ng.potentially be sensitive to a small perturbation in the current pro-
sequence, and the robustness of FMS is defined as the insensigy | ion plan. In continuous mathematical programming, this

t!V|ty ?f proﬁuctlo_n perfprmafn(r:]es agamst varl?tlr(])ns Iln pr(cj)duc-. issue is addressed as sensitivity analyses, where the sensitivity
tionp ag. IT © optlrrluza(t;on oft elrp tgstne_ss of the colore Pebtrl of the optimum to small parameter perturbation is computed, in
:’1et m%'eh IS formu ate aj amu t-o JeCt'Vj opt|n1||;e|1t|on p(;o " most cases, in terms of Lagrange multipliers. Several method
em V\II N Ln|n|hm|;es pfro ulfF'Obn COStZ un erf.mu t'P € pro l:jc' has been proposed to find an optimal (or suboptimal) solution
:I(;)?)rrc))gt?sti(o?SIar?iﬁZn%rez JX gsg,nZ?ic ;elggrri]tlhg;ré::tgijnpfeo dStwituhe of nonlinear programming problems which is less sensitive to

. ) ' LI ’ . : arameter perturbations (d’Entremont, 1988; Parkinson, 1990;
a dlspgtchmg rule.based on shor_test Imminent operation time gundaresarﬁ), 1993). Sinc(e these methods are essentially an ap-
(SIO)’.'S used to .S|multaneously .ﬂnd an semi-optimal resource plication of Taguchi’'s robust parameter design (Taguchi, 1978;
(machr:ne) aIIcl)gat|on and event—drrlwen schedule Ofﬁ cr?lored Petn Taguchi, 1987) to nonlinear programming, they are designed for
net: T eresulting P'etn nets aret en compared with t € petri nEEtscontinuous optimization problems, and hence do not directly ap-
ggggzceodnf_ggifjrtlcular production plan in order to validate the ply to problems involving discrete design parameters, such as the

I : FMS scheduling problems using Petri nets discussed above.

In the above work, the search is directed towards the dis-
covery of the schedule (and the resource allocation in the case

RELATED WORK

Retri ne_ts (Petri, 1962) have _been wid_ely used for_ analysis proBLEM FORMULATION
and simulation of FMS due to their capability of modeling con-
currency, synchronization and sequencing in discrete-event sys-
tems (Dubois, 1983; Narahari, 1985). In addition to such use as  Colored Petri nets (Alla, 1985; David, 1992) are an exten-
an analysis tool, Petri net models are often used for FMS schedul- Sion of ordinary Petri nets where a place can contain multiple to-
ing problems. Given dob specification(operation sequences kens distinguished by a “color” associated with each token. This
needed for each job, the machine types and processing time forextension allows colored Petri nets to model manufacturing sys-
each operation), and the correspondiegpurce allocatior(the tems capable of simultaneous production of multiple products in
number of machines in each type), one can construct a Petri net2 graphically elegant manner by associating types of products
model of an FMS, where event-driven operation schedules of the with colors of tokens. As an ordinary Petri net, a colored Petri
modeled FMS are represented as the transition firing sequencedet is a directed graph consisting of two types of nquaces
of the Petri net. Due to the NP-completeness of the underlying @ndtransitions Two nodes are connected by an directed edge
job-shop scheduling problem (JSSP) (Garey, 1979), an optimal which connects either a place to a transition or a transition to a
schedule is often found via heuristic search algorithms such as Place (see Figures 1-3).
beam search (Shih, 1991), A* algorithm (Lee, 1994) and genetic In a basic form, a colored Petri neis defined as a six-tuple:

Colored Petri net model of manufacturing systems
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R=(PT, pre, post mp,C) 1)
whereP is a set of placesT is a set of transitions an@ is a
set of colors. pre and post are functions of the typ® x T x
C— ZI% andmy : P Z[°l is the initial marking, wheré& is

a set of integers. A placp € P is graphically represented by a
circle, and a transitiohe T is represented by a bar. A place can
contain one or more tokens (with possibly different colors). The
number and colors of tokens at a plare P is calledmarkingof
the place denoted as(p), wherem : P— ZICl, and represented
graphically as colored dots in a ciréleLet placesp, q and a
transitiont are connected by edgép,t) and(t,q). The placep

is called arinput placeof the transitiort, and the placgis called

an output placeof the transitiont. Marking of places change
according to the following rules:

1. For each input placeof a transitiort, if m(p) > pre(p,t,c)
for a color,t is calledenabledwith respect to the colas.

2. If a transitiont is enabled with respect to a color it can

fire.

If a transitiont enabled with respect to a colofires,m(p)

changes tan(p) — pre(p,t,c), and for each output placg

of t, m(g) changes tan(q) + post(q,t,c).

3.

Table 1. example job specifications.

J<a>
1] Ma(2)

J<b>
Mz(1)/M2(1)

ta{<a>,<b>}

Pm1

t1{<a><b>}

Figure 1. colored Petri net which models a production facility with start
buffer ps, two machines pm1 and prp, and goal buffer pg with initial mark-
ings at clock = 0.

In addition to the above basic definition, capacities to places one for both jobs in this example). The numbers in parentheses
and time associated with places are often defined in FMS model- adjacent to machine typés, andM; indicate the process time
ing (timed places with capacities). In this case, an enabled transi- for the corresponding operation (all unity in this example). In
tiont can fire only if an enabling token has been in the input place this colored Petri ne® = {ps, pm, P2, P}, T = {t1,t2,t3,ta},

p longer than or equal to a specified tifnand the total number
of tokens does not exceed the capacity of the output pjasea

C = {<a>,<b>}, mo(ps) = (1,2), andmo(pm) = Mo(Pme) =
mo(pg) = (0,0). Itis assumed thats and pg have infinite capac-

result of marking change. A sequence of marking changes in all ities, andpm and pne have capacities equal to one (machines

places of a colored Petri net is calledolution of marking The
evolution of marking in a colored Petri net from the initial mark-

can process one product at a time). Since no products are either
created or deleted during the operation of FMS, the functiwas

ing represents the sequence of event occurrences in the modele@ndpostare simply expressed in terms of “shorthand” functions

discrete-event system.

Figures 1-3 illustrate the evolution of marking in a sim-
ple colored Petri net that models a production facility consist-
ing of one “start” bufferps, and one machingny of type My,
and one machingnp of type M,. The production facility is to
produce two types of productsa> and <b> which both need
just one operation to finish. The machines of tyfeis capa-
ble of performing this operation on both product types> and
<b> with an unit time, while the machines of typpé, can only
perform the operation on producb> with an unit time. This
job specification is summarized in Table 1, where columns in-
dicate jobs (product types) and rows indicate operations (only

1in most literature, however, a token is represented: s>, wherec is a
symbol representing the color of the token, as they are not normally printed in
color.

2This assumes a “clock” keeping track of the marking changes.

f,g : C+— C defined in Appendix . The colors listed next to
each transition in Figures 1-3 indicatessabling colorsof the
transition, with respect of which the transition can be enabled if
appears in the input place.

At the start of the production cycld.€., clock = 0), the
machines are not working and the unfinished products, one
<a> and two <b>'s, are located in the start buffgps, as
given in the initial markingmo(ps) = (1,2). Sincemp(ps) >
pre(ps,t1,<a>), pre(ps,t1, <b>) andmo(ps) > pre(ps,t2,<b>),
transitiont; is enabled with respect to botta> and<b>, andt;
is enabled with respect tb>. Let us assume fires at the next
clock cycle (clock = 1). Therm(ps) changes fronf1,2) to (1,1)
as pre(ps,tz2,<b>) = <b> = (0,1), and hence one of two token
<b>’s is removed fromps. Also m(pme) changes fron{0,0) to
(0,1) as postpme, t2, <b>) = <b>, and hence the tokerb> re-
moved formps appears inpmp. At this point, transitiongs, to
andt are enabled. Let us assumdires at the next clock cycle
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ty{<a>,<b>} ty{<a>,<b>}

Pm1 Pm1

ti{<a>,<b>} ti{<a>,<b>}

Figure 2. state of the colored Petri net after firing of t, with <b> at clock Figure 3. state of the colored Petri net after firing of t, with <b> at clock
=1, and t; with <a> at clock = 2. = 1, t1 with <a> at clock = 2, t3 with <a> at clock = 3, t; with <b> at clock
=4, and t4 with <b> at clock = 5.

(clock = 2). The transitioty has the choice of firing eithera>

or <b>. Supposd; fires<a>. Proceeding similar to the previ-  Robustness optimization of FMS configurations

ous firing, the tokera> is removed fronps and appears ipm We consider a scenario where an FMS simultaneously pro-
(Figure 2). This represents the system state of the maghine duces multiple types of products which share common resources.
processing the produst> and the machin@np processing the Within this scenario, we define thiebustness of FM&s the in-

product<b>3, sensitivity of production performances against variations in pro-
Although all transitions are enabled at this point, onlpr duction plan, and theobustness optimization of FM&s the op-

t4 can fire since firing; andt, would result in exceeding the ca-  timization of the robustness of FMS as defined above.

pacity of placepm andpme. Let us assumg is fired at the next In the following, it is assumed that th@oduction planof

clock cycle (clock = 3) and this moves> in ppy to pg. This the FMS is given in terms of the batch sizes of all jabss, the

means the maching has now finished processing the product numbers of each types of the products to be produced during a

<a> and send it to the goal buffgry. Then,ty, tp, andts are production cycle. Lenh be the number of types of the products.

enabled but onlyy ort, can fire. The subsequent firingtefwith Then, the production plan can be representgrl@Z". Suppose

<b> at clock = 4 followed by the firing ofs with <b> at clock the total number of production (sum of the numbera pfoduct

= 5 would move<b> in pg to pm, and<b> in pne to pg (Fig- types to be produced) per unit time is kept constant toNsand

ure 3). This represents that the machppg is now processing hence the production plan changes are only due to the changes
the produckb> while machinepyp has finished processing the in thefraction of the product types. Let the fraction bg where
product<b> and send it to the goal buffer. 0<aj<1fori=12,..,nandy{,;a; =1, or collectively be
At the next clock cycle (clock = 6), only can fire, which ann dimensional vectoa. GivenN, therefore, a production plan
would move<b> in pmy to pg. One production cycle completes  can be uniquely specified as a function of the fraction vegtor
at this point sinceng(ps) = m(pg), with the makespan being six ~ which we shall calp(a).
clock cycles. Let p(ap) be the current production plan. We assume
As illustrated above, a sequence of transition firing of a col- the forecasts on production plan changes within the timeframe
ored Petri net can be interpreted as an even-driven schedule ofof interest are available as a sequenceyoproduction plans
the modeled manufacturing systems. Therefore, choosing a tran-p(a1),p(a2),...,p(am)-
sition firing sequence in the above example would result in a dif- Our objective is to optimize the robustness of the current
ferent evolution of markings,e., different schedule, that would  configuration (resource allocation and schedule) of the FMS
yield a different system behavior. In general, topology of a col- against the given variation in production plahamely, we want
ored Petri net model is determined by the job specification (oper- to minimize reconfiguration while achieving consistently efficient
ation sequences needed for each job, the machine types and proproduction under all of m production plans foreclosé@t xg be
cessing time for each operation), and the corresponding resourcethe current configuration of the FMS, arg, xo, ..., Xm be the
allocation (the number of machines in each type).

4The term “robustness optimization” should be distinguished from the similar

3In fact, prp has finished processingp> at this point, but the completedb> term “robust optimization,” which usually refers to the optimization algorithms
has not yet been transferedpig. whose performances are insensitive to variations in parameters of the algorithms.
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future configurations corresponding timproduction plans fore-

casted. Then, the problem can be formulated as the simultaneous

minimization of the following 2n+ 2 functions:

makespafxj,p(aj)) j=0,1,...,m 2
facility-costxo, X1, . . . ,Xm) 3)
reconfig-cosixj,xj+1) j=0,1,....m-1 (4)

where makespafxj,p(a;j)) is the makespan of the FMS
with the configurationx; under the production plap(a;),
facility-costxp, X1, . ..,Xm) is the total facility cost for the con-
figurationsxo, X1, ...,Xm, andreconfig-cosixj,Xj;+1) is the re-
configuration cost from the configuratia to the configuration
Xj+]_.

Given the configuratiox; and the production plap(a;),
makespafx;j,p(a;)) can be evaluated using discrete-event simu-
lations based on a colored Petri net of an FMS. The facility cost
is estimated simply as the total cost of the machines utilized in
them+ 1 configurationg, X1, . . . , Xm:

(5)

facility-costxo, X1, - .., Xm) = ch : mjax{nk(xj )}

wherecy is the cost of the machine of type andn(x) is the
number of the machines of tyfpaused in the configuratioxn
Reconfiguration cost from one configuration to the other is
estimated as the number of rerouting required to accomplish the
new configurationi.e., the number of routings (connection be-
tween two places) in the colored Petri net which need to be

changed due to the change in the resource allocation. The re-
configuration cost associated with the change in schedules is

not considered here since, as discussed in the following sec-
tions, dynamic scheduling with dispatching rules adopted in this
work achieves the schedule change with virtually no expenses.
Namely:

reconfig-cogi;, X;)
= number of routing differences from to x;

(6)

For instance, the reconfiguration cost from the colored Petri
nets in Figure 4 to the one in Figure 5 is 4 since two routings be-
tweenps and pg must be removed and added due to the removal
of one maching.p of the typeM, (which can only processb>),
and the addition of a second machipg of the typeM; (which
can processa> and<b>).

ty{<a>,<b>}

Pm1

ti{<a>,<b>}

Figure 4. colored Petri net before reconfiguration.

ta{<a>,<b>}

ti{<a><b>}

Figure 5. colored Petri net after reconfiguration.

Optimization using a genetic algorithm and dispatch-
ing rules

The robustness optimization of FMS configurations dis-
cussed in the previous section requires simultaneous optimiza-
tion of resource allocation and scheduling. Due to the high com-
plexity of the underlying optimization problem (GRCPSP), a hy-
brid scheme is adopted where a genetic algorithm is used for
resource allocation, and dispatching rules are usedyoamic
schedulingof the colored Petri net models of a FMS. Although
the resulting configuration may not be guaranteed to be optimal,
this hybrid scheme allowsery fast evaluation of large number
of feasible configurations.

Genetic algorithm (GA) is an optimization technique in
which points in design space are analogous to organisms subject
to a process of natural selection, or "survival of the fittest (Hol-
land, 1975; Goldberg. 1989). GAs model reproduction in pop-
ulation of encoded representation of points (typically strings of
bits) in design space — called genetic “chromosomes” — over gen-
erations. In a given generation, the quality of a chromosome,
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i.e.,a bit string representation of a point in design space, is mea- N per one production cycle is set to 20, and the current produc-
sured based in a fitness function, and highly-fit chromosomes tion plans isa = 0.9 (i.e., 18 A's and 2 B’s), and the forecasted
have higher chances to be selected for reproduction. Two “par- production plan isx = 0.1 (i.e.,2 A's and 18 B’s).
ent” chromosomes selected for reproduction are mated through The 2n+ 2 functions as defined in Equations 2—4 writh- 1
genetic crossover, resulting in two offsprings which are likely to is aggregated as a weighted sum:
inherit good “genes” from their parents. Many generations of
such selection and mating will produce a highly-fit population of
chromosomes,e., better designs. f (X0, X1)

Dispatching rules are local rules which specifies priorities
in the dispatching of products to machines while production is = Wm- {malffaspaao,p(ao)) +makespafxs, p(az))}
in progress. Dispatching rules has been traditionally used for +wr - facility-costxo, x1)
scheduling, due to its simplicity and reliability. A number of dis- -+W; - reconfig-cosixo, X1) @)
patching rules such as FIFO (First-In-First-Out), SIO (Shortest
Imminent Operation time) and SRPT (Shortest Remaining Pro- \yherex, andx; are the configurations for the current production
cessing '!'lme) have been successfully applied to FMS schgdul— planp(ao) and the forecasted production plafet1 ), andwin, ws
ing (Choi, 1988). Although the schedules created by off-line  angy, are the weights of makespan, facility cost and reconfigu-
heuristic algorithms often outperform the ones by dispatching yation cost, respectively.
rules, they alloweryfast and dynamic creation of near-optimal In order to study the effectiveness of the robustness opti-
schedules. Also, the schedules created by dispatching rules te”d?'nization, in each example the resulting optimal configuration
to berobustagainstthe sudden change in resource alloca@ ( pair (xz, ;) is compared with two configurations: the one opti-
machine breakdown), since the schedules are dynamically cre-mizedonlyfor the current production plan, and the one optimized
ated during the operation, rather than determined off-line. Inthis oy for the forecasted production plan. We shall refer to these
work, an SIO rule is used for dynamic scheduling of a colored g configurations a% and%;, respectively. The comparison is
Petri net, whose resource allocation (the numbers of machines yone by plotting the values of the following three functions rep-
of each type in the job specifications) is specified by a “chromo- esenting production cost of each configuration, evaluated with
some,” of a genetic algorithm. o varying betweer = 0 (only A produced) andx = 1 (only B

produced):

SIMULATION RESULTS
This section describes case studies of the robustness opti- i % *
mization of FMS as described in the previous section applied to Wim mm{mak'e.spafxo, pia)z, makespatxi.p(a))}
the example production scenario with= 2 andm= 1. In other +wi -facility-costxo, x1) (8)
words, two product typea andB are to be produced, and only Wm - makespaKo, p(a)) + W - ch -Nk(%o) 9)
one forecast on the production plan is available.
Wm - makespafX1, p(a)) + ws - ch “Ni(X1) (10)

Assumptions

We have greatly relaxed the assumptions on machine flexi- We shall refer to this plot as th@oduction cost—alpha plot
bility in our previous work (Saitou, 1998), so that a type of ma- In the production cost—alpha plot shown in the following exam-
chine can possibly perform multiple manufacturing operations ples, the production cost corresponding to the optimal configura-
for multiple product types. This would allow “non-linear” or  tion pair(xg,x;) is denoted as Petri net 3, and the production cost
“cyclic” routing in the colored Petri net models. Accordingly, corresponding t& andX; are denoted as called Petri net 1 and
thejob specificatiorihat characterizes a product type is specified Petri net 2, respectively. Note that Petri net 3 actually consists
as the numbers of operations needed to complete the product, theof two Petri nets defined by andx; — the smaller production
machine types capable of performing each operation, and their cost of these two Petri nets is plotted in the production cost-alpha
process times. In the following examples, the job specifications plot.
of two product types are represented as a table similar to Table 1. The results in the following examples are obtained by a
It is assumed that all machine types have a capacity ofiang, steady-state GA with the population size 100, the number of gen-

a machine can process only one product at a time. erations 50, the probability of crossover 0.9 and the probability
Sincen = 2, the faction vectoa has dimension 2, and hence  of mutation 0.05. The discrete-event simulation code is written
can be expressed using one parameters (a,1 — o), where in C++, and the GALib from the MIT CADLAB with various in-

0<a <1. Inall examples below, the total number of production house enhancements is used as an optimizer. Optimization runs
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Table 2. job specifications for Example 1.

J<a> J<p>
1| M2(9)/M3(3) M1(2)/M2(6) (<b>} {<av}
2 M3(4) M2(7)

{<a>,<b>}

<b>
took at most five minutes with a 300 MHz Sun UltraSPARC 10 =3

Workstation. Pm1

Example 1

The first example is on the production scenario where both
jobsJ<a> andJ.y, require two operations, and there are three
machine typedM;, My, andM3 available, according to the job
specifications shown in Table 2. The job specification indicates
that the machine type 2 is the only resource shared between twoFigure 6. basic Petri net of the job specifications in Table 2. During the
jobs. This can be more clearly seen by observing the topology optimization process, the Petri net corresponding to a particular resource
of the colored Petri net model in the case when there exigts allocation is constructed by adding or removing machines of each type in
onemachine forall machine types, which we shall refer to as the  this basic Petri net.
basic Petri net

Figure 6 shows the basic Petri net of this job specifications, Taple 3. resource allocation result for Example 1. For comparison,
wherepy is a buffer (with an infinite capacity) that stores both  n(%;) = (0,1,3) and n(%;) = (0,3, 1).
product types after the completion of the first operation. During

the optimization process, the Petri net corresponding to a par- w n(xg)  n(xj) | reconfig-cost
ticular resource allocation is constructed by adding or removing w1 (01,3 @21 14
machines of each type in this basic Petri net. It is assumed in

this example that the total number of the machines is bounded to (1,1,3)| (0,22) (1,2,1) 6

four, consisting of no more than three machines per each machine 1,15)| (0,22) (0,2,2) 0

type. During optimization, a penalty is imposed to the objec-
tive function (7) proportional to the amount of violation of these
bound constraints. In addition, the costs of all machine types are

assumed to be one. be close to (in fact equal in this case), axd tends to be close
Table 3 show optimal resource allocations for different to X;. This results in the production cost of Petri net 3 over the

weightsw = (Wm, Wr, W ), wheren(x) = (ny(x), nz2(x), nz(x)) de- range of 0< a < 1 being quite similar to theninimumof the

notes the vector of the numbers of machine typhs M, and ones of Petri net 1 and Petri net 2, as shown in Figures 7.

M3 in the configurationx. For comparisonn(Xo) = (0,1,3) As w; increasesx; andxj are forced to be closer. This re-

andn(X1) = (0,3,1). Since they are quite different each other sults in the solutions whose production costs are not as good as
(reconfig-coso,X1) = 16), the robustness optimization cannot %, and%; ata = 0.9 anda = 0.1, respectively, butonsistently

simply converged ta; = Xo andx; = X1 even withw; = 1, and low (in other wordsrobus) over a wide range ai. This trend is
forced to find a “compromised” solutions, as shown in the sec- clearly shown in the case of; = 3 (Figure 8) andv; = 5 (Fig-
ond row in Table 3. Itis also observed in Table 3 that;) and ure 9). Although converged to one configuration, overall produc-
n(x;) becomes closer ag increases. For; =5 (bottom row in tion cost of Petri net 3 fow; = 5 is higher than the production
Table 3), in factn(xg) andn(xj) converged to an identical value  cost of the one fom, = 3, especially for 6< a < 0.5. In other
(reconfig-cost0), which is quite different from botkg andX;. words, x; = Xj is achieved with the price of higher production
Figures 7, 8 and 9 show the production cost-alpha plot costs.
for the cases corresponding to each rows in Tablee3,w = As seen in the above results, the robustness optimization was
(1,1,1), (1,1,3) and (1,1,5), respectively. The “switch” be- quite effective in this example. It is observed that the limited re-
tweenxg andxj occurs ata = 0.7 anda = 0.5 in Figurers 7 source sharing in the given job specifications catsand Xo
and 8, respectively. Since fag = 1 the optimizer is not strongly quite different. Since they are quite different, production flow
forced to findxg andxj that are close to each othef, tends to bottlenecks are quickly created when runrgvith a < 0.9 or

7 Copyright 0 1999 by ASME
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Figure 7. production cost—alpha plot for Example 1 with w; = 1. Petri net
1: n(Xo) = (0,1,3), Petri net 2: n(Xy) = (0,3, 1), Petri net 3: N(xg) =
(0,1,3) and n(x}) = (1,2,1).
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Figure 8. production cost—alpha plot for Example 1 with wy = 3. Petri net
1: n(Xo) = (0,1,3), Petri net 2: n(Xy) = (0,3, 1), Petri net 3: N(xg) =
(0,2,2) and n(x}) = (1,2,1).

runningX; with a > 0.1, which causes the significant increase
in makespan. This is more evident in Petri net 1 that has to rely
on only oneM; to processlcps, Which is quite slow. In such
cases, the robustness optimization seems effectively find a con-
figuration pair that exhibit the robust performances over a range
of a.

Example 2
The second example is taken from Example 2 of (Lee, 1993).
This example is similar to Example 1 with more extensive re-
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Figure 9. production cost-alpha plot for Example 1 with w; = 5. Petri net
1: n(Xo) = (0,1,3), Petri net 2: n(Xy) = (0,3,1), Petri net 3: N(xg) =
(0,2,2) and n(xj) = (0,2,2).

Table 4. job specifications for Example 1.
J<a> J<p>

1| M2(17)/M3(11)  M1(10)/M2(14)

2 | M1(10)/M3(18) M2(20)/Ms(10)

source sharing among jobs. The job specification shown in Ta-
ble 4 indicates that all machine typkls, M2 andMg are shared
between two jobS<a> andJ|,>. This extensive resource shar-
ing creates complex routings among machines and a buffer, as
illustrated in the basic Petri net shown in Figure 10. In the figure,
pp is a buffer (with an infinite capacity) that stores both product
types after the completion of the first operation. As in Exam-
ple 1, the total number of the machines is bounded to four, and
no more than three machines are allowed for each machine type.
The costs of all machine types are assumed to be one.

Table 5 shows optimal resource allocations for differ-
ent weightsw = (wm,Ws,W;). For comparison,n(Xo) =
(0,1,3) and n(X1) = (0,3,1). Since they are fairly close,
(reconfig-cosio, X1) = 8), the robustness optimization can con-
verge toxy = Xo andxj = X1 with wy = 1. Forw, = 3, bothxj
andx; converged tX.

Figure 11 show the production cost—alpha plot for the cases
corresponding to the second row in Tablei.B,, w = (1,1,1).
Sincex§ = Xo andxj = X1, the production cost of Petri net 3 over
the range of < a < 1 is exactly to the minimum of the ones
of Petri net 1 and Petri net 2 where the “switch” betwegand
X7 occurs atr = 0.8. Since Petri net 2 exhibits consistently low
production cost without robustness optimization, increasing

Copyright 0 1999 by ASME
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Figure 10. basic Petri net of the job specifications in Table 4.

Figure 11. production cost-alpha plot for Example 2 with wy = 1. Petri
net 1: n(Xo) = (1,0, 3), Petri net 2: n(X1) = (2,0, 2), Petri net 3: n(x3) =

Table 5. resource allocation result for Example 2. For comparison,
(1,0,3) and n(xj) = (2,0,2).

n(%) = (1,0,3) and n(X1) = (2,0,2).

W n(XB) n(xi) reconfig-cost Table 6. job specifications for Example 3.
(11111) (11053) (21012) 8 J<a> J<b>
(1.13)] 202) (02 0 1 | My(10)R(3)/M(12)R(3) M1(7)
2 Ms(5) M2(5)R(2)/M3(10)
3 M1(5)R(3)/M2(8 Ms(12
further just forces Petri net 3 to be identical to Petri net 2, as seen 15)R(3)/M2(8) 312

in the bottom row of Table 5.

The robustness optimization is not at all effective in this ex- ) ) ] ] o
ample. Due to the extensive resource sharing in this job specifi- __Figure 12 shows the basic Petri net of the job specifications
cations,X;, an optimal configuration foat = 0.1 also performs N Table 6. In the figurepy; andpy; are buffers (with an infinite
quite well fora = 0.9. In such cases, the robustness optimiza- capacity) that store both product types after the completion of the

tions seems not to find a configuration pair which are any better first and the second operations, respectively. Close examination
thanXo or X1. of the basic Petri net reveals that there are potential of deadlock

situation among th&®, M1 andM,, depending on the sequence

of transition firing. The total number of the machines in this
Example 3 example is bounded to ten, and no more than three machines are

The third example is the production scenario involving three allowed for each machine typeln order to discourage the use

machines and one robot that conduct three operations of two of many machines, the costs of all machine types are assumed to
jobs, as shown in Table 6. Although all all resourdég Mo, be twenty. _ . _
M3, andR are shared between two joBga> andJ.p,>, some Table 7 shows optimal resource allocations for different
operations can only be performed by one machine type. In the Weightsw = (Wm, s, w). For comparisonn(Xo) = (1,1,3,1)
job specification table 6, the entry of the tylde(t1)R(t;) means ~ andn(Xa) = (2,1,2,2). Since they areery different each other
that the corresponding operations is done by the following se- (reconfig-cogio,X1) = 17), the robustness optimization cannot

quence: simply converged ta = Xo andxj = X1 even withw; = 10, and
forced to find a “compromised” solutions, as shown in the sec-
1. arobot of typeR carries the product to a machine of tyide ond row in Table 7. Fow: = 30, bothx, andx; converged to
(this taked,) one configuration, which is quite different from bdthandXs.

2. amachine of typ#; performs the operation (this takg$
3. arobot of typeR takes the product away from a machine of
typeM; (this takedy). 5For the purpose of resource allocation, the robots are treated as a type of
machines.

9 Copyright 0 1999 by ASME
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Figure 12. basic Petri net of the job specifications in Table 6. . . . .
Figure 13. production cost—alpha plot for Example 3 with wy = 10. Petri

net 1: n(Xo) = (1,1,3,1), Petri net 2: n(X1) = (2,1,2,2)), Petri net 3:
Table 7. resource allocation result for Example 3. For comparison, n(xy) =(1,1,3,2)) and n(xj) = (2,1,3,2)).
n(Xo) = (1,1,3,1) and n(X1) = (2,1,2,2).

w n(xg) n(xj) | reconfig-cost 500
(1,1,10)| (1,1,3,2) (2,1,3,2 10 Ada
500
1,1,30)| (3,3,3,1) (3,3,3,1 0
(1130)| 3331 ( e \
§ mEa \"N o |®Petiinet 1
S 300 —|- Petri net 2
Figures 13 and 14 show the production cost-alpha plot for 3 —A—Petri net 3
the cases corresponding to each row in Table5w = (1,1, 10) g 200
and(1,1,30). The missing points in these figures indicate pro-
duction cost is infinity due to deadlock occurred during the sim- 100
ulation. In the case o = 10 shown in Figures 13, Petri net 1 o

and Petri net 2 experience deadlock at almost any values of
except for the small neighborhood of the values they are opti-
mized for. Petri net 3, on the other hand, exhibits consistently alpha
low production costs over € a < 1, although outperformed by
F_)em net,l and Petri net 2 ”ef’r: 0'9, anda = 0.1, respec- Figure 14. production cost—alpha plot for Example 3 with w; = 60. Petri
tively. Smge the same S.IO d|spatch|ng rules are }Jsed for all net 1: n(Xo) = (1,1,3,1), Petri net 2: n(%y) = (2,1,2,2), Petri net 3:
cases, this indicates Petri net 3 avoids deadlock simply by re- _ ... o
. e g n(xg)) = (3,3,3,1) and n(xj) = (3,3,3,1).

source allocation and “switching” betwe&p andxj, which in
this case occurs at = 0.2 anda = 0.8. In the case o, = 30
shown in Figures 14, however, the optimizer forces the solution o
to be an identical configuration. The resulting configurations are rénce of deadlock) in this example.
identical, but the performances became very low with deadlock
occurring almost everywhere.

This example has degree of resource sharing between Ex-DISCUSSION AND FUTURE WORK
ample 1 and Example 2, with additional complexity of the po- This paper presented an extension of our previous
tential deadlock. The robustness optimization seems to perform work (Saitou, 1998) on robustness optimization of flexible man-
effectively in achieving the consistently low production cost by ufacturing systems (FMS) that undergo forecasted product plan

Q N YD > © A ® 9 %
Q" QO O O O O O o o

avoiding deadlock situation. However, forcimg = xj by high variations. The extension is made to a more general class of
WR value degrades the quality of the solution. This is observed to FMS performing “non-linear” or “cyclic” production that allows
some extent in Example 1, but it showed in extreire (0ccur- multiple operation types per one machine type. As in our pre-
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vious work (Saitou, 1998), a configuration of an FMS is mod-
eled as a colored Petri net and the associated transition firing

sequence, and the robustness of FMS is defined as the insensi-

tivity of production performances against variations in produc-
tion plan. The optimization of the robustness of the colored Petri
net model is formulated as a multi-objective optimization prob-
lem which minimizes production costs under multiple produc-
tion plans (batch sizes for all jobs), and reconfiguration cost due
to production plan changes. A genetic algorithm, coupled with
a dispatching rule based on shortest imminent operation time
(SI0), is used to simultaneously find an semi-optimal resource

pOSt Pre, t2,<b>) = g(<b>) = <b>=(0,1)
post(pg,t3,<a>) = g(<a>) = <a> = (1,0)
post(pg,ts, <b>) = g(<b>) = <b>= (0,1)
post(pg, ta, <b>) = g(<b>) = <b>=(0,1)

For other pointgp,t,c) not defined abovepre(p,t,c) and

post(p,t,c) are undefined.

allocation and event-driven schedule of a colored Petri net. The REFERENCES

resulting Petri nets are then compared with the Petri nets opti-
mized for a particular production plan in order to address the
effectiveness of the robustness optimization.

The simulation results suggest that the proposed robustness
optimization scheme should be considered when the products are
moderately different in their job specifications so that optimizing
for a particular production plan creates inevitably bottlenecks in
product flow and/or deadlock under other production plans. As
a next step, we plant to investigate the classes of job specifica-
tions to which this type of robustness optimization scheme is ef-
fective or non-effective. Definition of such classes would be an
very useful tool for design for manufacturing (DFM) of products
families. Since they are naturally manufactured in the situation
similar to the one considered in this paper, designing product
families, not only for functional variety but also for manufactur-
ing agility, would have high economical impact.
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Appendix A
The pre and postfunctions of the example colored Petri net
in Figures 1-3 are defined as follows:

pre(ps,ty,<a>) = f(<a>) = <a>=(1,0)
pre(ps,t1,<b>) = f(<b>) = <b>=(0,1)
pre(ps,tz, <b>) = f(<b>) = <b>=(0,1)
pre(pm, ts, <a>) = f(<a>) = <a>=(1,0)
pre(pme,t3,<b>) = f(<b>) = <b>=(0,1)
pre(pne,ts,<b>) = f(<b>) = <b>=(0,1)
post(pmi,t1,<a>) = g(<a>) = <a> = (1,0)
POSt Pa, 1, <b>) = g(<b>) = <b> = (0,1)
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