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Abstract This chapter discusses an application of multi-objective genetic algorithm for de-
signing products with a built-in disassembly means that can be triggered by the
removal of one or a few fasteners at the end of the product lives. Given compo-
nent geometries, the method simultaneously determines the spatial configuration
of components, locators and fasteners, and the end-of-life (EOL) treatments of
components and subassemblies, such that the product can be disassembled for the
maxim profit and minimum environmental impact through recycling and reuse
via domino-like “self-disassembly” process. A multi-objective genetic algorithm
is utilized to search for Pareto optimal designs in terms of 1) satisfaction of the
distance specification among components, 2) efficient use of locators on compo-
nents, 3) profit of EOL scenario, and 4) environmental impact of EOL scenario.
The method is applied to a simplified model of the Power Mac G4 cube® for
demonstration.

Keywords:  Design for disassembly, environmentally-conscious design, design optimization,
multi-objective genetic algorithm

1. INTRODUCTION

Increased regulatory pressures (e.g., EU’s WEEE directive) and voluntary
initiatives have placed manufacturers more responsible for end-of-life (EOL)
treatments such as material recycling and component reuse. Since both recy-
cling and reuse typically require disassembly, design for disassembly (DFD) has
become a key design issue in almost any mass-produced product. DFD is par-
ticularly critical in consumer electronic products due to the large amount of pro-
duction and short cycle time for technological obsolescence. Also, components
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in these products are typically required to fit into a tight enclosing space, which
makes disassembly even more challenging.

Economic feasibility of an end-of-life (EOL) scenario of a product is de-
termined by the interaction among disassembly cost, revenue from the EOL
treatments of the disassembled components, and the regulatory requirements
on products, components and materials. While meeting regulatory requirements
is obligatory regardless of economic feasibility, EOL decision making is often
governed by economical considerations (Chen et al., 1993). Even if a compo-
nent has high recycling/reuse value or high environmental impact, for instance,
it may not be economically justifiable to retrieve it if doing so requires exces-
sive disassembly cost. Since the cost of manual disassembly depends largely
on the number of fasteners to be removed and of components to be reached,
grabbed, and handled during disassembly, it is highly desirable to locate such
high-valued or high-impact components within a product enclosure, such that
they can be retrieved by removing less fasteners and components.

The above thoughts motivated us to develop a concept of product-embedded
disassembly, where the relative motions of components are constrained by lo-
cator features (such as catches and lugs) integral to components, in such a
way that the optimal disassembly sequence is realized via a domino-like “self-
disassembly” process triggered by the removal of one or a few fasteners.

landfill

reuse reuse recycle

] 3 2]~

(b)

recycle

Figure 2-1. (a) Conventional assembly (b) assembly with embedded disassembly.

Fig. 2-1 illustrates the concept of product-embedded disassembly as com-
pare to the conventional disassembly. In the conventional assembly (Fig. 2-1a),
components A, B and C are fixed with three fasteners. With high labor cost for re-
moving fasteners (as often the case in developed countries), only
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A may be economically disassembled and reused, with the remainder sent to
a landfill. This end-of-life (EOL) scenario (i.e., disassemble and reuse A, and
landfill the remainder) is obviously not ideal from either economical or envi-
ronmental viewpoints. In the assembly with embedded disassembly (Fig. 2-1b),
on the other hand, the motions of B and C are constrained by the locators on
components. As such, the removal of the fastener to A (called a trigger fas-
tener) activates the domino-like self-disassembly pathway A — B — C. Since
no additional fasteners need to be removed, B and C can also be disassembled,
allowing the recycle/reuse of all components and the case. This EOL scenario
(i.e., disassemble all components, reuse A and B, and recycle C and the case) is
economically and environmentally far better than the one for the conventional
assembly.

(a)

Figure 2-2.  Example products suited for product-embedded disassembly, (a) desktop computer
(b) DVD player.

The concept of product-embedded disassembly can be applied to a wide
variety of products, since it requires no special tools, materials, or actua-
tors to implement. It is particularly well suited for electrical products
assembled of functionally modularized components, whose spatial configu-
rations within the enclosure have some flexibility. Fig. 2-2 shows examples
of such products. A desktop computer in Fig. 2-2a is assembled of function-
ally distinct components such as a motherboard, a hard drive, and a power
unit, arranged to fit within a tight enclosure. The components are, however,
not completely packed due to the need of the air passage for cooling and the
accessibility for upgrade and repair. Thanks to this extra space and electri-
cal connections among components, the spatial configurations of the compo-
nents have a certain degree of flexibility. A DVD player in Fig. 2-2b shows
even roomier component arrangements, due to the consumers’ tendency to
prefer large sizes in home theater appliances. Since designing products
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with a single “disassembly button” may cause safety concerns, the method
will, in practice, be best utilized as an inspiration to the designer during the
early stage configuration design and critical components can be independently
fastened with a secure, conventional means.

The concept, however, may be unsuitable to the products that allow very little
freedom in component arrangements. Examples include mobile IT products
such as cell phones, laptop computers, and MP3 players, due to their extremely
tight packaging requirements and mostly layer-by-layer assembly.

This chapter discusses an application of a multi-objective genetic algorithm
for designing products that optimally embody the above concept of product-
embedded disassembly (Takeuchi and Saitou, 2005; Takeuchi and Saitou, 2006).
Given component geometries, the method simultaneously determines the spa-
tial configuration of components, locators and fasteners, and the end-of-life
(EOL) treatments of components and subassemblies, such that the product can
be disassembled for the maximum profit and minimum environmental impact
through recycling and reuse via a domino-like “self-disassembly” process. A
multi-objective genetic algorithm (Fonseca and Fleming, 1993; Deb et al., 2002)
is utilized to search for Pareto optimal designs in terms of 1) satisfaction of
the distance specification among components, 2) efficient use of locators on
components, 3) profit of EOL scenario, and 4) environmental impact of EOL
scenario. The method is applied to a simplified model of Power Mac G4 cube®
for demonstration.

2. RELATED WORK

2.1 Design for Disassembly

Design for disassembly (DFD) is a class of design methods and guidelines
to enhance the ease of disassembly for product maintenance and/or EOL treat-
ments (Boothroyd and Alting, 1992). Kroll et al. (1996) utilized disassembly
evaluation charts to facilitate the improvements of product design. Das et al.
(2000) introduced the Disassembly Effort Index (DEI) score to evaluate the
ease of disassembly. Reap and Bras (2002) reported DFD guidelines for robotic
semi-destructive disassembly, where detachable or breakable snap fits are pre-
ferred to screws due to their ease of disengagement. O’Shea et al. (1999) focused
on tool selection during disassembly where the optimal tool selection path, in
terms of the ease of disassembly, is produced via dynamic programming. Re-
cently, Desai and Mital (2003) developed a scoring system, where factors asso-
ciated with disassembly time such as disassembly force, tool requirements, and
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accessibility of fasteners are considered. Sodhi et al. (2004) focused on the
impact of unfastening actions on disassembly cost and constructed U-effort
model that helps designers to select fasteners for easy disassembly. Matsui
et al. (1999) proposed the concept of Product Embedded Disassembly Process,
where a means of part separation that can be activated upon disassembly is
embedded within a product. As an example, they developed cathode-ray tube
(CRT) with a Nichrome wire embedded along the desired separation line, which
can induce thermal stress to crack the glass of the CRT tube upon the application
of current.

While these works suggest locally redesigning an existing assembly for im-
proving the ease of its disassembly, they do not address the simultaneous deci-
sions of the spatial configuration of components and joints for improving the
entire disassembly processes.

2.2 Disassembly Sequence Planning

Disassembly Sequence Planning (DSP) aims at generating feasible disas-
sembly sequences for a given assembly, where the feasibility of a disassembly
sequence is checked by the existence of collision-free motions to disassemble
each component or subassembly in the sequence. Since the disassembly se-
quence generation problem is NP-complete, the past research has focused on
efficient heuristic algorithms to approximately solve the problem. Based on a
number of important research results on assembly sequence planning (Homem
dé Mello and Sanderson, 1990; De Fazio and Whitney, 1987; Lee and Shin,
1990; Homem dé Mello and Sanderson,. 1991; Baldwin, et al., 1992), several
automated disassembly sequence generation approaches for 2/2.5D components
have been developed (Woo and Dutta, 1991; Dutta and Woo, 1995; Chen et al.,
1997, Srinivasan and Gadh, 2000; Kaufman et al., 1996). More recent work is
geared towards DSP with special attention to reuse, recycling, remanufacturing,
and maintenance. Lambert (1999) built a linear programming model to obtain
the optimal EOL disassembly. Li et al. (2002) used Genetic Algorithm (GA)
combined with Tabu search (Glover, 1974; Glover 1986) to find the optimal
disassembly sequence for maintenance.

This previous work, however, only addresses the generation and optimization
of disassembly sequences for an assembly with a pre-specified spatial config-
uration of components. Since the feasibility of disassembly sequences largely
depends on the spatial configuration of components, this would seriously limit
the opportunities for optimizing an entire assembly. In addition, these works
do not address the design of joint configurations, which also have a profound
impact on the feasibility and quality of a disassembly sequence.
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23 Configuration Design Problem

While rarely discussed in the context of disassembly, the design of the spa-
tial configuration of given shapes have been an active research area by itself.
Among the most popular flavors is the bin packing problem (BPP), where the
total volume (or area for 2D problems) a configuration occupies is to be min-
imized. Since this problem is also NP-complete, heuristic methods are com-
monly used. Fujita et al. (1996) proposed hybrid approaches for a 2D plant
layout problem, where the topological neighboring relationships of a layout
are determined by Simulated Annealing (SA), whereas the generalized reduced
gradient (GRG) method determines the geometry. Kolli et al. (1996) used SA
for packing 3D components with arbitrary geometry. GA is also widely used
for the configuration design problem. Corcoran and Wainwright (1992) solved
a 3D packing problem with GA using multiple crossover methods. Jain and Gea
(1998) adopted discrete representation as an object expression and proposed a
geometry-based crossover operation for a 2D packing problem. Grignon and
Fadel (1999) proposed a configuration design optimization method by using
multi-objective GA, where static and dynamic balances and maintainability are
considered in addition to configuration volume.

These works, however, do not address the integration with DSP.

24 Life Cycle Assessment

Life Cycle Assessment (LCA) has been widely used as a tool to estimate the
environmental impact of an EOL scenario of various products (Caudill et al.,
2002; Rose and Stevels, 2001) including computers (Williams and Sasaki, 2003;
Aanstoos et al., 1998; Kuehr and Williams, 2003). Since the optimal EOL sce-
nario should be economically feasible as well as environmentally sound, LCA
is often integrated with cost analysis. Goggin and Browne (2000) constructed
a model for determining the recovery of a product, components and materials,
where EOL scenarios are evaluated from economical and environmental per-
spectives. Kuo and Hsin-Hung (2005) integrated LCA into Quality Function
Development (QFD) to achieve the best balance between customer satisfac-
tion and environmental impact. In our previous work (Hula et al., 2003), we
compared the optimal EOL scenarios of a coffee maker in Aachen, Germany
and in Ann Arbor, MI, and concluded the optimal EOL scenario varied greatly
depending on the local recycling/reuse infrastructures and regulatory require-
ments.

This work, however, merely addressed the evaluation and optimization of
the environmental impact of a given product, and did not address the design of
component, locator, and fastener configuration as addressed in this paper.
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3. METHOD

The method can be summarized as the following optimization problem:

o Given: geometries, weights, materials, and recycle and reuse values of each
component, contact and distance specifications among components, locator
library, and possible EOL treatments and associated scenarios.

e Find: spatial configuration of components and locators, EOL treatments of
disassembled components and subassemblies.

e Subject to: no overlap among components, no unfixed components prior to
disassembly, satisfaction of contact specifications, assemble-ability of com-
ponents.

e Minimizing: violation of distance specification, redundant use of locators,
and environmental impact of EOL scenario.

e Maximizing: profit of EOL scenario.

Since the optimization problem has four objectives, a multi-objective genetic
algorithm (MOGA) (Fonseca and Fleming, 1993; Deb et al., 2002) is utilized
to obtain Pareto optimal solutions.

3.1 Inputs
There are four (4) categories of inputs for the problem as listed below:

e Component information: This includes the geometries, weights, materials
and reuse values of components. Due to the efficiency in checking contacts
and the simplicity in modifying geometries (Beasley and Martin, 1993; Mi-
nami et al., 1995; Sung et al., 2001), the component geometries are repre-
sented by voxels. CAD inputs are first voxelized using ACIS® solid modeling
kernel.

o Contact and distance specifications: The adjacencies and distances among
components are often constrained by their functional relationships. For exam-
ple, a heat sink and CPU in a computer should be in contact, and a cooling
fan and CPU should be nearby. The contact specification specifies the re-
quired adjacencies among the component, such as CPU and a heat sink in a
computer. Since the distances between some pairs of components are more
important than the others, the distance specification is defined as a set of
the weights of importance for the distances between pairs of components
(measured between two designated voxels) that need to be minimized. If the
weight between two components is not defined, their distance is considered
unimportant and can be arbitrarily chosen. Fig. 2-3 shows an example.
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e Locator library: Since the types of feasible locators depend on manufactur-
ing and assembly processes, they are pre-specified by a designer as a locator
library. It is a set of locators for a specific application domain, which can
be potentially added on each component to constrain its motion. Fig. 2-4
shows schematics of locators commonly found on sheet metal or injection-
molded components in computer assemblies (Bonenberger, 2000), which
are also used in the following case study. Note that screws are regarded
as a special type of locators, and a slot can only be used with two circuit
boards. Locator constraints (LC) shown in the third column of Fig. 2-4 il-
lustrates the set of directions locators are constrained to when they are ori-
ented as shown in the second column, formally represented as a subset of
{ —Z, +£L', -Y, +ya —Z, +Z}

o Possible EOL treatments and scenarios: An EOL scenario is a sequence of
events, such as disassembly, cleaning, and refurbishing, before a component
receives an EOL treatment such as recycle and reuse. The EOL treatments
available to each component and the associated scenarios leading to each
treatment must be given as input. Fig. 2-5 shows an example of EOL treat-
ments (reuse, recycle, or landfill) and the associated EOL scenarios repre-
sented as a flow chart.

100

Figure 2-3.  Example of contact specification (thick line) and distance specification (thin lines).
Labels on thin lines indicate relative importance of minimizing distances.
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Type Schematic

(a) Catch

(b) Lug

(c) Track

(d) Boss

(e) Screw

(f) Slot
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Figure 2-4.  Graphical representation of typical locators for sheet metal or injection-molded
components (Bonenberger, 2000).
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Figure 2-5. Flow chart of example EOL scenario.
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3.2 Design Variables

There are three (3) design variables for the problem. The first design vari-
able, configuration vector, represents the spatial configuration and dimensional
change of each component:

x= (2o, T1, .0y Tp—1) (D

zi = (ti,rid;,); i =0,1,...n—1 2)
t; € {0, ¢, £2¢, 3¢, ... }® (3)

r; € {—90°,0°,90°,180°}3 4)

d; € {0, +c, +2¢,+3c, ...} (5)

where 7 is the number of components in the assembly, ¢; and r; are the vectors
of the translational and rotational motions of component ¢ with respect to the
global reference frame, and d; is a vector of the offset values of the f faces
of component 7 in their normal directions, and c is the length of the sides of a
voxel. Note that d; is considered only for the components whose dimensions
can be adjusted to allow the addition of certain locator features. For example,
the components designed and manufactured in-house can have some flexibility
in their dimensions, whereas off-the-shelf components cannot.

The second design variable, locator vector, represents the spatial configura-
tion of the locators on each component:

y:(yOvyla--‘vymfl) (6)

¥;=(CDj,p;); i=0,...,m—1 7)

where m = n(n — 1)/2 is the number of pairs of components in the assembly,
and CD; C { — z,+x,—y,+y, —z,+2z} is a set of directions in which the
motion of component ¢y in the i-th pair (cp, ¢1) is to be constrained, and p; is
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a sequence of locators indicating their priority during the construction of the
locator configuration.

The choice of locator for the i-th component pair is indirectly represented
by C'D; and p;, since the direct representation of the locator id in the library
would result in a large number of infeasible choices. The construction of locator
configurations from a given y, is not trivial since 1) multiple locator types can
constrain the motion of ¢g as specified by C'D;, and 2) among such locator types,
geometrically feasible locators depend on the relative locations of components
co and c;. Fig. 2-6 shows an example. In order to constrain the motion of ¢y in
+z direction, a catch can be added to c; if cg is “below” c; as shown in Fig. 2-6a.
However, a catch cannot be used if ¢ is “above” c¢; as shown in Figs. 2-6b and
6¢, in which case boss (Fig. 2-6b) or track (Fig. 2-6¢) needs to be used. Thus,
the locator configuration of a component is dynamically constructed by testing
locator types in the sequence of p;.

@ (b)

Figure 2-6. Construction of locator configuration.

Given y; = (CD;, p;), the locator configuration of the i-th pair of com-
ponents ¢y and c¢; is constructed by testing locator types, in sequence p;, for
constraining each direction in C'D; as follows:

1. For each d € CD;, remove d from C D; if the motion of ¢y ind € CD is
constrained by other components or locators. This step is necessary to reduce
the redundant use of locator features.

2. Remove locator type ¢ at the beginning of p;. If p; is empty, return FALSE.

Select direction d € CD.

4. Find an orientation of o of locator type ¢ whose locator constraint LC (after

re-orientation) contains d. If several orientations are found, select an orien-

tation with maximum |LC N CD;|. If none is found, go to step 2.

Add t to ¢y or ¢ in o.

6. CD; — CD;\LC.1f CD = @, return TRUE. Otherwise, go to step 3.

b

e
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The above procedure returns TRUE if a locator configuration constraining
all directions in C'D; is found by using the locator types in p;, and FALSE
otherwise. During optimization, the value of y; returning FALSE is considered
as infeasible.

Fig. 2-7 shows an example construction of locator configuration of com-
ponents ¢y and ¢; according to the above procedure with CD = {+z} and
p = <Catch, Screw, Lug, Track, Boss>:

e Step 1: Since component c; does not constrain the motion of ¢y in +=2
(Fig. 2-7a), +2z remains in CD

e Step 2: Remove Catch from p. Since p = <Screw, Lug, Track, Boss> is
non-empty, proceed.

e Step 3: Select +z from CD.

e Step 4: Systematically examine the possible orientations of Catch on ¢y and
c1 to find the orientations that constraint +z (og through o7 in Fig. 2-7b and
7c). Note, however, that the orientations other than og and o5 in Fig. 2-7d are
infeasible due to the lack of an adjacent component. Since both oy and o5
has |LC N CD;| = [{+z} N{+z}| = [{+z}| = 1, 0 is chosen.

e Step 5: Catch in orientation o is added to ¢; (Fig. 2-7e).
e Step 6: Since CD;\LC = {+2z}\{+z} = 0, CD; = @. Return TRUE.

Fig. 2-8 illustrates how two different values of priority sequence p with
the same CD can result in the different locator configurations. For the two
components in Fig. 2-8a with CD = {—x, +z, 4z}, sequence p = <Track,
Boss, Screw, Catch, Lug> results in the locators in Fig. 2-8b, whereas sequence
p = <Catch, Lug, Screw, Track, Boss> results in the locators in Fig. 2-8c.
In Fig. 2-8c, two locator types, Catch and Lugs are used since Catch (top
priority) cannot be oriented to constrain ¢y in +z direction while Lug (second
priority) can.

While indirect, constraint direction CD and priority sequence p realizes a
compact representation of a locator configuration of a pair of components.
Compared to the direct representation in (Takeuchi and Saitou, 2005) that spec-
ifies the existence of a locator type in an orientation at a potential location on a
component, it can generate far fewer infeasible locator configurations during the
“generate and test” process of genetic algorithms. As a result, the computational
efficiency is dramatically improved. Instead of treating the priority sequence
as a design variable, one might imagine checking for locator types always in
the (fixed) ascending sequence of their manufacturing costs is sufficient. How-
ever, such costs are difficult to determine a priori, since the actual geometry
(and hence the cost) of a locator heavily dependents on the configuration of the
surrounding components.
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Figure 2-7. An example construction of locator configuration: (a) two components, (b) and
(c) possible orientations of Catch, (d) two feasible orientations, and (e) final locator configuration.

Figure 2-8. Influence of priority sequence p in locator configurations: (a) two components with
CD = {—z,+z,+z}, (b) locators constructed with p = <Track, Boss, Screw, Catch, Lug>,
and (c) locators constructed with p = <Catch, Lug, Screw, Track, Boss>.

The third design variable, EOL vector, represents the EOL treatments of
components:

2= (20,21, 2n-1); % € E; (8)
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where E; is a set of feasible EOL treatments of component :. In the following
case study, E; = {recycle, reuse, landfill} for all components.

33 Constraints

There are four (4) constraints for the problem:

1. No overlap among components.

2. Satisfaction of contact specification.

3. No unfixed components prior to disassembly.
4. Assemble-ability of components.

Since the constraints are all geometric in nature, the voxel representation of
component geometry facilitates their efficient evaluation. Constraints 1-3 are
checked solely based on the information in x, since the locator configurations
constructed from y generate no overlaps. For constraint 3, immobility of all
possible subassemblies is examined. Constraint 4 is necessary to ensure all
components, whether or not to be disassembled, can be assembled when the
product is first put together. It requires the information from both x and y. Since
checking this constraint requires simulation of assembly motions (assumed as
the reverse of disassembly motions), it is done as a part of the evaluation of
disassembly cost needed for one of the objective functions.

34 Objective Functions

There are four (4) objective functions for the problem. The first objective
function (to be minimized) is for the satisfaction of the distance specification,
given as:

filey) =) wid; )

where wj is the weight of the importance of distance d; between two designated
voxels.

The second objective function (to be minimized) is for the efficient use of
locators, given as:

fa(x,y) =D me; (10)
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where mc; is the manufacturing difficulty of the i-th locator in the assembly,
which represents the increased difficulty in manufacturing components due to
the addition of the i-th locator.

The third objective function (to be maximized) is the profit of the EOL
scenario of the assembly specified by x and y, given as:

n—1
f3(x,3,2) =Y pilz) — ¢ (x,,2) (11)
=0

In Eq. 11, p;(z;) is the profit of the i-th component from EOL treatment z;,
calculated by the EOL model described in the next section. Also in Eq. 11,
c*(x, y, z) is the minimum disassembly cost the assembly under the EOL sce-
nario required by z:

¢'(x,y,2) = min (s) (12)
where S, is the set of the partial and total disassembly sequences of the
assembly specified by x and y, for retrieving the components with z; = reuse
or recycle and the components with regulatory requirement, and ¢(s) is the
cost of disassembly sequence s. Since an assembly specified by x and y can
be disassembled in multiple sequences, Eq. 12 computes the minimum cost
over Sy, which contains all disassembly sequences feasible to x, y, and z,
and their subsequences. Set Sy, . is represented as AND/OR graph (Homem
dé Mello and Sanderson, 1990) computed based on the 2-disassemblability
criterion (Woo and Dutta, 1991; Beasley and Martin, 1993) (i.e. the component
can be removed by up to two successive motions) as follows:

1. Push the assembly to stack ) and the AND/OR graph.

2. Pop a subassembly sa from Q.

3. If sa does not contains component with z; = reuse or recycle and compo-
nents with regulatory retrieval requirements, go to step 5.

4. For each subassembly sb C sa that does not contain any fixed components,
check the 2-disassemblability of sb from sa. If sb is 2-disassemblable, add
sb and sc = sa\sb to the AND/OR graph. If sb and/or sc are composed of
multiple components, push them to Q).

5. If Q = O, return. Otherwise go to step 2.

where the 2-disassembleability of two subassemblies sb from sa is checked as
follows. For efficiency, only translational motions are considered:
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1. For each mating surfaces between sb and sc = sa\ sb (including the ones of
the locators), obtain a set of constrained directions as a subset of six possible
translational directions D = {—x, +z, —y, +y, —z, +2}.

2. Compute constrained directions C'Dy. between sb and sb as a union of all

constrained directions obtained in step 1.

If D\C Dy, = O, return FALSE.

4. If there exist a direction in D\ C Dy, along which sb can be moved infinitely
without a collision, return TRUE (sb is 1-disassembleable).

5. Select a direction d in D\ C Dy, If all have been selected, return infeasible.
Otherwise, go to the next step.

6. Move sb by unit length along d. If sb collides with other components, go to
step 5.

7. If sb is 1-disassembleable at the current location, return TRUE (sb is
2-disassembleable). Otherwise, go to step 6.

98]

Assuming manual handling, insertion and fastening as timed in (Boothroyd
etal., 1994), c(s) is estimated based on the motions of the components and the
numbers and accessibilities of the removed screws at each disassembly step.
The cost of the i-th disassembly step is given by:

¢ = wpo - deg+wi - dep + wso - deg (13)

where dcg and dc; are the number of orientation changes and the sum of the
moved distances, respectively, of the disassembled component at the ¢-th disas-
sembly step, dcs is the sum of accessibilities a, of the removed screws, and w;
is the weights. The accessibility as of a removed screw is given as (Takeuchi
and Saitou, 2005):

as = 1.0 + w,/(aa + 0.01) (14)

where w, is weight and aa is the area of the mounting face of the screw accessible
from the outside of the product in its normal direction.

The forth objective function (to be minimized) is the environmental impact
of the EOL scenario:

falz) = ei(z) (15)

%

where ¢;(z;) is the environmental impact of i-th component according to the
EOL scenario for treatment z;. The value of e;(z;) is estimated by the EOL
model described in the next section.
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3.5 EOL Model

The EOL model adopted in the following case study assumes the EOL sce-
narios in Fig. 2-5 for all components (reuse only for some components), and
uses energy consumption as the indicator for environmental impact (Hula et al.,
003). Accordingly, profit p;(z;) in Eq. 11 is defined as:

b .
preuse _ clrans _ czef P if z; = reuse
I .
pi(zi) = § 7l “YIE — clrans cehred if z; = recycle (16)
landfill :
—cfrans _ clandfi if z; = landfill
! :
where r7¢%5¢ and r ““Y““ are the revenues from reuse and recycle, respectively,
b landfill .
and cirans - (refurt - pshred gng a4l gre the cost for transportation, refur-

bishment, shredding, and landfill, respectively. Similarly, energy consumption
ei(z;) in Eq. 15 is defined as:

refurb
reuse + egrans + ei f

e; if z; = reuse
recycle t hred —
ei(zi) = L e P Fefr s 4 efhetif z; = recycle (17)
6§andlel + ezitrans if 2 = landfill
where efeuse | elrans, efecyde, e;ef urb, eshred and eé‘mdf ! are the energy con-

sumptions of reuse, transportation, recycle, refurbishment, shredding, and land-
fill, respectively.

Revenue from reuse ;"¢
such markets exist. Energy consumption of reuse e
energy recovered from reusing component %:

is the current market value of component ¢, if
Teuse is the negative of the

i
reuse intens
e; =— E me; My (18)
J

where meé-”tem is the energy intensity of material j and m;; is the weight of

material j in component ¢. Reuse, if available, is usually the best EOL treat-
ment for a component because of its high revenue and high energy recovery.
The availability of the reuse option for a component, however, is infrastructure
dependent, and even if available, the revenue from reuse can greatly fluctuate
in the market and hence difficult to estimate a priori.

Revenue from recycle r;ecyde and energy consumption of recycle e

are also calculated based on the material composition of a component:

recycle
[
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recycle recycle
T; = E mr; © My (19)
J
recycle recover
e; = — g me; My (20)
J
1 .
where mr“Y and mef;*“*"*" are the material value and recovered energy of

material j, respectively.
Since little data is available for the refurbishment of components, the cost
for refurbishment is simply assumed as:
C:efurb —05- ,},,Z‘reuse (21)
Based on the data on desktop computers (Aanstoos et al., 1998), energy

consumption for refurbishment /"

i is estimated as:

el — 1106 - m; (22)

7

where m; is the weight of the i-th component.

Cost and energy consumption of transportation c!/""$ and e{"®"* are esti-
mated as (Hula et al., 2003):

Clg'rans —_ Acgrans . D’L oy (22)

6?(1”8 — Aeiifrans . Dz -m; (23)

where Acl™ = 2.07e — 4 [$/kg - km], Ael™" =1.17e — 3 [MJ/kg - km],
and D; is the travel distance. Similarly, costs and energy consumptions for
shredding and landfill ¢ghred, (ondill - gshred gnq glandfill gre calculated as
(Hula et al., 2003):

thred — Acfhred -m; (24)
efhred — Aefhred -my; (25)
Céandlel — A cﬁ.“"df”l - m; (26)

eéandf@'ll — A eéandfill My 27
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where Acshred = 0.12 [$/kg-km], Aeshred = 1.0 [MJ /kg-km], Ad* ¥ —
0.02 [$/kg - km] and Ae'™ ¥ — 20000 [M.J /kg - km].

3.6 Optimization Algorithm

Since the problem is essentially a “double loop” of two NP-complete prob-
lems (i.e. disassembly sequence planning within a 3D layout problem), it should
be solved by a heuristic algorithm. Since design variables x, y, z are discrete
(x is a discrete variable since geometry is represented as voxels) and there are
four objectives, a multi-objective genetic algorithm (Fonseca and Flemming,
1993; Deb et al., 2002) is utilized to obtain Pareto optimal design alterna-
tives. A multi-objective genetic algorithm is an extension of the conventional
(single-objective) genetic algorithms that do not require multiple objectives to
be aggregated to one value, for example, as a weighted sum. Instead of static
aggregates such as a weighted sum, it dynamically determines an aggregate of
multiple objective values of a solution based on its relative quality in the current
population, typically as the degree to which the solution dominates others in
the current population.

A chromosome, a representation of design variables in genetic algorithms,
is a simple list of the 3 design variables:

c=(x,y,2) (28)

Since the information in x, y, and z are linked to the geometry of a candidate
design, the conventional one point or multiple point crossover for linear chromo-
somes are ineffective in preserving high-quality building blocks. Accordingly, a
geometry-based crossover operation based on (Jain and Gea, 1998) is adopted:

1. Randomly select a point in the bounding box of the assembly.

2. Cut two parent designs p; and py with the three planes parallel to x, y, 2
axes, and passing through the point selected in step 1, into eight pieces each
(Fig. 2-9a).

3. Assemble two child designs c; and cg by alternately swapping the pieces of
p1 and po (Fig. 2-9b).

4. Repair ¢; and ¢ by moving each component C' to the child containing the
larger volume (of the sliced piece) of C. If ¢; and co contain the same vol-
ume, C' is placed in the same way as the parent with the higher rank.

5. Add locators to ¢ and c2 by checking which parent each pair of component
is inherited from. If a child contains both components of a pair, the cor-
responding locator is added to the child. Otherwise, a locator is randomly
added to either child.
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Figure 2-9. Geometry-based crossover operator. (a) two parents p; (left) and p» (right), (b) two
children c; (left) and ¢z (right) after crossover, and (c) two children c¢; (left) and c2 (right) after
repair.

4. CASE STUDY
4.1 Problem

The method is applied to a model of Power Mac G4 Cube® manufactured by
Apple Computer, Inc. (Fig. 2-10). Ten (10) major components are chosen based
on the expected contribution to profit and environmental impact. Fig. 2-11a
shows the ten components and their primary liaisons, and Fig. 2-11b shows the
voxel representation of their simplified geometry and the contact (thick lines)
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and distance (thin lines with weights) specifications. The contacts between
component B (heat sink) and C' (CPU), and C' (circuit board) and G' (memory)
are required due to their importance to the product function. Component A (case)
is considered as fixed in the global reference frame. Component J (battery)
needs to be retrieved due to regulatory requirements. The locator library in
Fig. 2-4 is assumed for all components. The relative manufacturing difficulty
of locators in the library is listed in Table 2-1.

Figure 2-10. Assembly of Power Mac G4 Cube®.

Table 2-2 shows the material composition m;; of components A—J in
Fig. 2-11b. For components C'-F', the material composition data in (Goosey
and Kellner, 2003) is utilized. Table 2-3 shows energy intensity me;-”tms , Te-

) ! .
covered energy me}°“"®, and material values mr’ V¢ (Kuehr and Williams,

2003; Hula, 2003). Considering Apple Computer’s Electronic Recycling Pro-
gram in United States and Canada (www.apple.com/environment), the EOL
Power Mac G4 Cubes® are assumed to be transported to one of two facil-
ities in United States (Worcester, MA and Gilroy, CA) for reuse, recycle,
and landfill. The average distance between the collection point and the fa-
cility is estimated as D; = 1000 km for all components. It is assumed that
40 ton tracks are used for transportation. Based on this assumption, Table 2-4
shows the revenues, costs and energy consumptions of components A—J cal-
culated using Eqs. 18-27. Revenue from reuse r;““*® reflects current val-
ues in the PC reuse markets in the United States (www.dvwarehouse.com
and store.yahoo.com/hardcoremac/hardware.htm). Note that reuse option is not
available to components A (frame) and B (heat sink).
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()

(b)

Figure 2-11. (a) Ten major components and their primary liaisons, and (b) contact and distance

specifications.

Table 2-1. Relative manufacturing difficulty of the locators in the locator library in Fig. 2-4

Locator

Lug | Track | Catch

Boss

Screw

Slot

Mfg. difficulty

20

30 10

70

20

20

Table 2-2. Material composition [kg] of components A-J in Fig. 2-11.

Component Aluminum | Steel | Cupper | Gold | Silver
A (frame) 1.2 0 0 0 0
B (heat sink) 0.6 0 0 0 0
C (circuit board) 1.5e-2 0 4.8e-2 7.5e-5 | 3.0e-4
D (circuit board) 1.0e-2 0 32e-2 | 5.0e-5| 2.0e-4
FE (circuit board) 4.0e-3 0 1.3e-2 | 2.0e-5 | 8.0e-5
F’ (circuit board) 5.0e-3 0 1.6e-2 | 2.5¢-5 | 1.0e-4
G (memory) 2.0e-3 0 6.4e-3 2.0e-5 | 4.0e-5
H (CD drive) 0.25 0.25 0 0 0

I (HD drive) 0.10 0.36 6.4e-3 1.0e-5 | 4.0e-5
J (battery) 8.0e-5 0 1.4e-3 0 0
Component Tin Lead Cobalt | Lithium | Total
A (frame) 0 0 0 0 1.2
B (heat sink) 0 0 0 0 0.60
C (circuit board) | 9.0e-3 | 6.0e-3 0 0 0.30
D (circuit board) | 6.0e-3 | 4.0e-3 0 0 0.20
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E (circuit board) 2.4e-3 1.6e-3 0 0 8.0e-2
F (circuit board) 3.0e-3 2.0e-3 0 0 0.10
G (memory) 1.2e-3 8.0e-4 0 0 4.0e-2
H (CD drive) 0 0 0 0 0.50
I (HD drive) 1.2e-3 8.0e-4 0 0 0.50
J (battery) 0 0 3.3e-3 | 4.0e-3 2.0e-3

Table 2-3. Material information (Kuehr and Williams, 2003; Hula et al., 2003). Underlined
values are estimations due to the lack of published data.

Material me;,”te”“” [MJ/kg] | me]* [MJ/kg] mr;ecyde [$/kg]
Aluminum 2.1e2 1.4e2 0.98

Steel 59 19 0.22
Cupper 94 85 1.2

Gold 8.4e4 7.5¢4 1.7¢4
Silver 1.6e3 1.4e3 2.7e2

Tin 2.3e2 2.0e2 6.2

Lead 54 48 1.0
Cobalt 8.0e4 6.0e4 38
Lithium 1.5e3 1.0e3 7.5

Table 2-4. revenue (r [$]), cost (¢ [$]) and energy consumption (e [MJ]) of the major

components A—J.

A B C D E
preuse N/A N/A | 3.3e2 80 1.3e2
precyele 1.2 0.60 1.5 1.0 0.39
clrans 0.25 0.12 | 62¢2| 4le2| 1.7e2
el N/A N/A 1.8¢2 40 65
cshred 0.14 72e2 | 3.6e2| 24e2| 9.6e-3
AT 2462 | 1.2e-2 | 6.0e-3 | 4.0e-3 | 1.6e-3
e | _26e2 | —1.3¢2 | —17 | —12 | —45
elrans 1.4 0.70 035 | 023 | 94e2
erelurt 2.7 1.3 066 | 044 | 0.18
e Vel —170 —84 —14 | —95 | -38
eshred 1.2 0.60 030 | 020 | 8.0e-2
el ) 4e4 12e4 | 6.0e3 | 4.0e3 | 1.6e3

F G H 1] J
preuse 39 57 40 60 5.0
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vl 0.49 0.36 0.30 0.37 0.12

ctrans 2.1e2 | 83e3| 0.10 0.10 4.1e-3
el 20 29 20 30 25

cshred 12e2 | 48e3]| 60e2 | 60e2 | 24e3
ciandfﬂl 2.0e-3 8.0e-4 1.0e-2 1.0e-2 4.0e-4
e;’euse —56 —-3.1 —68 —45 —2.6e2
elrans 0.12 | 47e2| 0.59 0.59 2.3e-2
e | 022 | 88e2| Ll L1 [ 44e2
e;’ecycle —4.8 —97 —40 —923 —2.0e2
esfired 0.10 | 4.0e2| 050 0.50 2.0e-2
T 90e3 | 802 | 104 | 1.0e4 | 4.0e2

4.2 Results

After running the multi-objective genetic algorithm for approximately 240
hours (10 days) on a desktop PC with a 3.2 GHz CUP and a 2 GB RAM (num-
ber of population and generation are 100 and 300), thirty seven (37) Pareto
optimal designs were obtained as design alternatives. Since the number of ob-
jective functions is four, the resulting 4-dimensional space is projected on to
six 2-dimensional spaces in Fig. 2-12a—f. Fig. 2-13 shows five representative
designs R1, Ro, R3, R4 and Rs. Their objective function values are listed in
Table 2-5 and also plotted on a bar chart in Fig. 2-14. As seen in Fig. 2-12,
designs R1, Ra, R3, and R4 are the best results only considering an objective
function f1, fo, fs and fy regardless of the other objective function values,
whereas Ry is a balanced result in all four objectives.

The spatial configurations of R3 and Rs5 are quite similar, with noticeable
differences in the EOL treatments. Figs. 2-15 and 2-16 show one of the optimal
disassembly sequences of R3 and R with the EOL treatments of components,
respectively. Design 3 (design biased for profit) uses three screws, one of
which is used between components A and B. Since components A and B have
no reuse options, and recycling them is less economical than land-filling due
to high labor cost for removing screws; they are not disassembled and simply
discarded altogether for higher profit. On the other hand, components A and
B are disassembled and recycled in Rj5 (balanced design for all objectives) to
reduce environmental impact at the expense of higher disassembly cost (lower
profit).
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Figure 2-12. Distribution of Pareto optimal designs in six 2-dimensional spaces (a)—(f).

Table 2-5. Objective function values of Ry, R2, R3, R4 and Rs

F'; (dist. spec.) | f5 (mfg. diff.) | f5 (profit) | f, (env. impact)
R, 6175 1170 —19.30 35627
R 38496 650 —19.34 —642
Rs 38227 800 374.72 35593
Ry 6884 1210 —130.79 —741
Rs 38299 840 373.24 —647

As stated in the previous section, reuse, if available, is usually the best EOL
treatment for a component because of its high revenue and high energy recov-
ery. For the components without reuse option, the choice between recycle and
landfill depends on the ease of disassembly, as seen in these results. If the disas-
sembly cost is low enough that recycling the component is more profitable than
land-filling it, recycle becomes the most profitable EOL treatment. Otherwise,
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there is a trade-off between the profit and the environmental impact, which is
found in the Pareto optimal designs.

Oftentimes such trade-off among alternative designs can hint at opportu-
nities for further design improvements. For example, the examination of the
differences between R3 and R5 suggests the possibility of replacing the screws
between A and B by slot-like locators (which are not available for A and B in
the locator library) for higher profit and lower environmental impact.

Figure 2-13. Representative Pareto designs: (a) R1, (b) Rz, (c) R3, (d) R4 and (e) Rs.

S. SUMMARY AND FUTURE WORKS

This paper presented an extension of our previous work on a computational
method for product-embedded disassembly, which newly incorporates EOL
treatments of disassembled components and subassemblies as additional deci-
sion variables, and LCA focusing on EOL treatments as a means to evaluate
environmental impacts. The method was successfully applied to a realistic ex-
ample of a desktop computer assembly, and a set of Pareto optimal solutions is
obtained as design alternatives.

Future work includes the adoption of more detailed LCA covering entire
product life including the production and use phases, the development of
more efficient optimization algorithm, the study on the effect of embedded
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disassembly on assembly, and the derivation of the generalizable design rules
through the comparison of the optimization results with the existing designs of
other product types.

f
mh2
R3 DfS

f.
R4 m

{ -

-0.4 0 0.4 0.8 1.2

Figure 2-14.  Objective function values of R1, R2, R3, R4 and RS5 (scaled as f1 : 1/40000, {2 :
1/1300, £3 : 1/400, f4 : 1/36000).
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F

Figure 2-15. Optimal disassembly sequence of R3 with the optimal EOL treatments of com-
ponents.
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Figure 2-16. Optimal disassembly sequence of Rs with the optimal EOL treatments of
components.
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