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Abstract. This paper presents the multi-objective evolutionary optimization of
three-dimensional geometry represented via constructive solid geometry
(CSG), a binary tree of boolean operations of solid primitives. NSGA-II is ex-
tended for binary tree chromosomes with customized crossover and mutation
operators tailored for the evolution of CSG trees and applied for two-objective
shape optimization of indoor modular space truss joints. The results show suc-
cess in generating a variety of shapes over the Pareto front. A selection of Pa-
reto-optimal shapes are manufactured using a solid freeform fabrication proc-
ess.

1 Introduction

Shape optimization of three-dimensional solid bodies is a challenging task that finds
many applications across a multitude of disciplines such as machine design, struc-
tures, micro electro-mechanical systems, fluid mechanics and aerospace. Automated
shape optimization of three-dimensional geometry often requires the computer repre-
sentation of the solid geometry [1,2], such as i) voxel representation, ii) octree repre-
sentation, iii) constructive solid geometry (CSG) and iv) boundary representation (B-
rep). In voxel representations [1,2], a solid is represented as a collection of small
volumetric cells in uniform sizes. The octree representation [1] is a structured variant
of voxel representation based on a hierarchical subdivision, which allows the shape
representation with locally varying details.

By far, the family of shape optimization methods, which appear in the literature
most often, is known as topology optimization [3,4]. Topology optimization relies
mostly on voxel representation and sometimes on the octree. A possible reason for the
popularity could be the ease of encoding and interpreting the design variables in
terms of material/no material decisions. Many algorithms have been applied for to-
pology optimization, including gradient based, evolutionary, stochastic and hybrid
techniques. However, the fact remains that the final output of topology optimization
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is a rough grid of material/no material decisions. Such output must thus be realized
into a shape that can be manufactured; otherwise the result will not be useful.

Constructive solid geometry (CSG) [1,2] is a rather unique representation of solid
body geometry, in the sense that its building blocks are solid primitives such as a
cube, cylinder or a sphere. Shapes of increasing complexity are constructed from the
primitives via merging or subtracting the primitives or other CSG solids. As such,
most solid bodies represented by CSG are relatively easy to manufacture because all
the surface features have simple geometry. CSG representation has been used for
direct optimization of shape [5] as well as a post processor for realizing the complex
geometry resulted from topology optimization [6].

Boundary representation (B-rep) [1,2,7] represent the solid geometry as the inter-
section of half spaces represented by the surfaces of the solid. B-rep is used as the
internal kernel for most commercial computer aided design (CAD) software as it
offers the best flexibility and speed for interactive user editing of the shape. However,
the boundary information storage system is often too complex to allow for shape
optimization. To the best of the authors’ knowledge, there have been no successful
shape optimization studies via direct manipulation of B-rep.

Although the CSG representation has several advantages in terms of feature sim-
plicity compared to topology optimization, it seems to be less used for shape optimi-
zation in the literature due to the difficulties associated with its tree structure. This
paper presents the multi-objective optimization of CSG trees using an extended
NSGA-II [8,9]. The following sections present the mathematical formulation of the
problem, the details of the extended NSGA-II, and a case study on the shape optimi-
zation of indoor modular space truss joints. The paper concludes with a summary and
a further work.

2 Problem Formulation

2.1 Notations

A solid body is a closed subset S of the three dimensional space (Fig. 1).

A solid primitive is a solid body S, uniquely defined by a few parameters. The solid
primitives considered in this paper are: i) box, ii) cylinder and iii) sphere (Fig. 1).
These solid primitives can be uniquely defined by defined an origin point, axes ori-
entation and one to three sizing dimensions.

A Boolean operation is a mapping from two solid bodies to a solid body (Fig. 2). The
boolean operations considered in this paper are: i) union (Fig. 2-a) represented as
‘+’ and ii) subtraction (Fig. 2-b) represented as ‘-°.

Constructive solid geometry (CSG) tree is a binary tree 7 with solid primitives at
terminal nodes and Boolean operations at non-terminal nodes. While a CSG T can
uniquely represent a solid body S(7), the inverse is not true: for example, a solid
body in Fig. 2-c can be represented by either of the two CGS trees in Fig. 3.

n, denotes the number of primitive solids (leaflet nodes) in the CSG tree.
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n, denotes the number of boolean operations solids (inner nodes) in the CSG tree. It
should be noted that n, =n, —1.

PRSIRE GO

(b) (d)

Fig. 1. (a) a general solid body is a closed subset of the three dimensional space. (b) a box can
be uniquely defined by their origin location, orientation and three sizing dimensions. (c) a
cylinder can be uniquely by its origin location, orientation and two sizing dimensions. (d) a
sphere can be uniquely defined by its origin location and one sizing dimension.

oy
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©

Fig. 2. (a) a box and a cylinder are combined via a union operation to form a padded box. (b) a
box and a cylinder are combined via a subtraction operation to form a box with a hole. (c) Two
solid bodies combine to form a more complex solid

2.2 Decision Variables

The decision variables are the information necessary to uniquely define a CSG tree:
1) number of primitive solids (n,), 2) topology, 3) types of boolean operations at non-
terminal nodes, and 4) types, origins, orientations and dimensions of solid primitives
at terminal nodes.
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(b)

Fig. 3. Two CSG trees that can produce the solid body in Fig. 2-c. (a) the union of two cylin-
ders are subtracted from the union of a box and a cylinder. (b) two cylinders are vertically and
horizontally subtracted from the union of a box and a cylinder.

(a)

2.3 Objective Functions

Depending on the discipline that the shape optimization is intended for, there could be
one or more objective functions. In the general case, the vector of objective functions
can be written as:

f=(f fi — f) (1)

where f;, = PerformanceMeasure ,(S(T)),i=1tor

2.4 Constraints

Most applications require the final shape to be a single solid body. In other words, the
solid represented by the CSG must be a manifold solid:

manifold (S(T)) = true 2)

A manifold solid is a connected set in the three dimensional space. That is, any
point within the solid body can be reached from any other point in the solid body,
through some path that only traverses points within the solid body. Although making
an exact check of the manifold condition for a general solid is a difficult task, there
are algorithms that can quickly perform an approximate check with acceptable accu-
racy [7].

In terms of shape complexity, given the option for unlimited number of nodes in
the CSG tree (combined with the sphere alone as a primitive), it is possible to get a
near-zero representation of any solid shape in the three dimensional space. The proof
to that is rather trivial, considering the limiting case of a sphere of a very small radius,
the sphere approaches becoming a point. Given the option to do the union of unlim-
ited number of points, it is possible to build-up any solid shape.

Practicality issues however, both in terms of computational resources as well as the
manufacturability desire to decrease the geometric complexity (which is one of the
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main drivers to use CSG, rather than other solid body representations), dictate that a
cap should be placed on the maximum number of primitives to be considered in the
CSG tree.

nP S nP,max (3)

The choice of 7, is up to the user and is essentially problem dependent. A large
allowance on n, . would allow more flexibility in exploring more complex shapes.
However excessively n, . is expensive in terms of computational resources and

may have a negative effect of excessively increasing the size of the search space and
thereby making the optimization task more difficult.

Aside from the manifold solid and maximum number of primitives, depending on
the discipline of the problem, generic constraints can be incorporated into the prob-
lem. Generic constraints can have the functional form of:

feasible (S(T')) = true 4

3 Optimization Algorithm

3.1 Overall Flow

The overall flow of the optimization algorithm is similar to NSGA-II [8, 9] and is
given as:

1. Generate Initial Population

2. Loop Until Termination: (Max. Number of Generations)

3. Perform Pareto-Ranking of Current Population

4. Preserve Elitism by passing copies of some top-rank members to

new population

5. Loop until New Population is full
Select Parents for reproduction via binary tournament

7. Perform Crossover and mutation then place the offspring in
New Population

8. When New Population is full, replace Current Population with

the new one and repeat at Step #2.

Selection is performed via a binary tournament, in which two members are randomly
selected from the current population. If one of the selected members has a better Pa-
reto rank [9] than the other, the better member becomes a parent. If both members
have the same rank, then one of them is randomly chosen to become a parent.

Elitism preservation is performed by passing copies of the top-ranked members to
the new population prior to filling out the rest with the new offspring. If the number
of top-ranked members in the current population is less than a threshold, their copies
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are passed to the next generation. If there are more top rank members in the current
population than a threshold, then only some of them are passed to the new population
according to a nitching function that encourages the diversity of the Pareto front.

3.3 Chromosome Encoding and Evaluation

Encoding of the decision variables that define the CSG tree of a solid body in the
linear format that is commonly used in multi-objective genetic algorithms seems
inefficient. This is because the CSG is a variable-sized tree, which means that the
length of the active portions of a linear chromosome are not guaranteed to be the
same in two selected parents, which voids the use of many of the standard crossover
techniques [10] for linearly encoded chromosomes. Furthermore, to adopt tree-
structure crossover from a linearly encoded chromosome would mean continuous
translation and de-translation between the chromosome and its equivalent tree, which
is an unnecessary computational effort.

In this paper, the information of the decision variables is directly encoded as tree
structure chromosome, which represents the CSG tree. This encoding scheme also has
the advantage of allowing the chromosome is allowed to branch out and grow during
the evolution of the CSG tree without a strict cap on the number of nodes or the to-
pology of the tree.

Implementation of the CSG tree structure is performed via the C++ programming
language, and is linked with the ACIS [7] solid modeling kernel, which facilitates
translating the CSG tree into a format recognized by several computer aided design
(CAD) software packages across several disciplines. The CAD packages could then
report back the performance measures (problem specific objectives and constraints)
of the solid shape.

3.4 Handling of Constraints

Keeping in mind that the evaluation of problem specific objectives and constraints
using CAD packages might involve expensive computations such as finite element,
dynamic and fluid mechanics simulations, the constraints first — objectives later ap-
proach [11] is adopted. Constraints are hierarchically listed staring with the manifold
solid constraint (equation 2) then the cap on number of primitives (equation 3). Vio-
lating designs are given a death penalty. That is, any design that is infeasible in the
first constraint will be dominated by any design that is feasible on that constraint, and
so forth for the list of constraints. This approach of handling constraints removes the
need to perform the expensive link with the CAD software for obviously bad designs
as well as protect against CAD software instability, which can often happen if pre-
sented with a non-manifold solid or a solid of extreme complexity (reflected by too
big a CSG tree).
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3.5 Seeding of the Initial Population

Seeding of the initial population is an option, which the algorithm user might elect to
activate. It allows the input of particular design guesses or previously known good
designs into the initial population. When combined with elitism, seeding guarantees
that the final outcome of the search will be no worse than the best of the previously
known seeds. However, seeding might sometimes be inappropriate (especially for
difficult feasibility problems), because it can cause excessive bias of the initial popu-
lation and thereby lead to premature convergence of the search without much explo-
ration beyond the given seeds.

3.6 Crossover and Mutation

Crossover and mutation operators are specially designed and are based on physical
understanding of the problem represented by evolving the shape of a solid body.

— Exchange of sub-trees: This is a well established crossover technique in genetic
programming [12, 13] for tree structures that present computer programs. Apply-
ing it to CSG trees corresponds to two parent solids exchanging geometric fea-
tures. However, when the exchange is too randomly disruptive if it occurs too
close to the root node of the tree, since it roughly corresponds to replacing half the
solid with some other geometry that may not necessarily fit the first half. There-
fore this form of crossover is used with medium overall probability.

— Randomly Flipping a Boolean Operation: This is a heavily disruptive mutation,
which is used with low probability to induce diversity in the population.

— Complete Randomization of a Primitive Solid: This is another disruptive mutation,
which is used with low probability to induce diversity in the population.

— Slight Randomization of Origin/Orientation of a Primitive Solid: This is used as a
means of local adjustment/sampling of the positioning of primitive solids.

— Short Local Search along Origin/Orientation of all Primitive Solids in Tree: The
short runs of local search (not pursued until reaching a local optimum) serve as a
means of improving quality of the population members. However, local search
should not be excessively used because employing it within the GA loop can lead
to premature convergence as presenting extra computational cost.

4 Application Case Study: Indoor Modular Space Truss Joints

4.1 Problem Description

A schematic diagram of modular space trusses is shown in Fig. 4. A main advantage
of space trusses is there efficient and light weight designs, yet a disadvantage is the
extra complexity during manufacturing and erection. Producing space trusses in a
modular form allows for mass production, which significantly reduces the manufac-
turing and erection cost. Large scale outdoor trusses generally have little restrictions
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on the size considerations of the joints, which allows for sophisticated joints made of
welded-plates, which are strong and light weight to be used. The indoor version of the
modular space trusses are designed for quick erection/removal. Their main use is for
hanging banners and other light weight objects. For the indoor version of the modular
trusses, size and manufacturability considerations often dictate the shape of the
modular joints to be simply spherical; a shape which can be challenged.

IS
Z \

/ \
% \ N —
e — —
A

\&

S——

=

Fig. 4. A schematic diagram of a modular space truss (cross diagonal structural members re-
moved from the diagram to allow better visibility)

The first objective is a measure of the strength of the joint. In this preliminary
study, a fast rough calculation is sufficient. This is done by observing the material
cross-section around load paths and using it as a measure of stiffness. The objective is
to maximize the stiffness, but since the implemented algorithm is set for minimiza-
tion, the first objective is given as:

nLoadPathPoints 5
o . . )
Min. f, =- E min(MaterialDepth(S(T)))

1

The second objective is minimization of weight or amount of material in the joint,
which is given as:

Min. f, =volume (S(T)) (6)

Aside from the manifold solid constraint and the cap on geometric complexity
(maximum 20 primitive solids for this problem), the triple symmetry of the joint
allows for reduction of the search space by limiting the search to one octant. The
evolved geometry in the octant is then triple mirrored to produce a tri-symmetric
joint. However to allow for this reduction, the evolved solid shape must be well con-
nected to the three mirroring planes, or else the mirroring could produce a non-
manifold solid. This is represented by the constraints:

IntersectionArea (S(T')) 2 2% of unit square, for XY, YZ and ZX planes @)
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It is important to note that the choice of objectives and constraints is highly appli-
cation dependent. Although weight minimization is a common objective in many
structural design problems, performance measures for strength are usually more diffi-
cult. In this particular study, knowledge about the function of the joint allowed for
prior definition of the load paths. In general cases however, it would be necessary to
link evolving geometry with automated meshing for finite element analysis (FEA)
using CAD packages. For this study, evaluation of objectives typically takes less than
two seconds on a 2.0GHz PC. Incorporating FEA would probably increase the com-
putations ten-fold, thereby increasing typical time to perform one GA run from ap-
proximately one hour (as in this study) to about half a day, which is still quite feasible
and could be pursued in future research.

4.2 Results and Discussion

Several runs of the implemented algorithm are performed for the truss joint. The main
tuning parameters for the GA runs are listed in Table 1. A typical run produced the
quasi-Pareto curve of Fig. 5. The main interest of this case study is observing how the
shape of the joint changes along the trade-off between stiffness and weight. There-
fore, the actual quantities of f, & f, are non-dimensionalized with respect to the

highest and lowest found points. The CSG trees of the points in the Pareto-curve are
exporting as Solid models via the ACIS library [7] and the rendered CAD models are
displayed as small icons in Fig. 5. Furthermore, selections of the CAD models are
input to a rapid freeform manufacturing machine. Photos of the actual manufactured
models are displayed in Fig. 6.

Table 1. Tuning parameters of the GA runs for the indoor modular space truss joints case study

Population Size 100

Number of Generations 30

Threshold for number of elite members 20

Initial Population Seeding 1) 6 Seeds (solid cube, sphere, sphere with
forking cylinders at 2 sizes), ii) Unseeded

Prob. Exchange of sub-trees 0.50

Prob. Flip Boolean Operation 0.20 / Number of nodes

Prob. Complete Randomize Primitive Solid 0.20 / Number of nodes

Prob. Local Positioning Shift 0.50 / Number of nodes

Prob. Short Local Search i) 0.00, ii) 0.05

It is noted that the search space is large (even for the simple considered problem).
A twenty-primitive solid tree would have 19 binary choices for the inner nodes (boo-
lean operations), 20 discrete choices and approximately 20x6 continuous variables for
the terminal nodes (primitive solids). It was observed in most runs however, that most
of the higher fitness designs had few primitive solids providing material cover to the
important zones in the truss joint. This observation permitted the use of relatively
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small population size, while achieving consistent performance in most of the per-
formed runs.

Other than the sample run used for manufacturing of the models, a total of twenty
runs were performed, each five of which using different parameter settings in terms of
population seeding and probability of performing local search as stated in Table 1.
The top rank population members of each of those runs are collectively plotted in
Fig. 7. It is observed in Fig. 7 that none of the runs with unseeded initial populations
was able to reach the highest 10% joint stiffness region of Pareto-front. On the other
hand, most of the seeded runs had several members in that region. This is under-
standably the effect of seeding, since one of the seeds is just a solid cube (filling all
the search shape search space with material), which is obviously the Pareto-point that
has the highest possible stiffness, yet heavy weight. In the low to mid level joint stiff-
ness region however, the unseeded runs seem to be working better. This might indi-
cate that seeding can be causing excessive bias to the higher stiffness region of the
Pareto-front.

Although implementation of local search seems to make intuitive sense since a
good proportion of the design variables are continuous, the effect of local search is
hardly observable in the high and low joint stiffness regions. In fact, in the mid level
region, it seems to have a negative effect. This could probably be attributed to pre-
mature convergence effects.

Overall, most of the runs performed well, which indicates consistency of success
of the algorithm for the considered case study.

< 1 066
000

.
= 0-800
’
"

3
a

Normalized Weight

-

-1.000 -0.800

-0.600 -0.400 -0.200

Fig. 5. Results of a typical run of the implemented algorithm showing the normalized trade-off
between maximizing stiffness and minimizing joint weight. Also shown are CAD models of
the first rank evolved CSG trees
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Fig. 6. Photos of selected quasi-Pareto optimal shapes that were rapidly manufactured using
selective laser sintering

& 4-6666
X Un-Seeded, 0.00 Local Search 6:9606
&, A Seeded, 0.00 Local Search —0:8600—
%0 i O Unseeded, 0.05 Local Search |—0- 7660
g j O Seeded, 0.05 Local Search 0-6000
=
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=
=
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e)
Z
‘ ‘ ‘ ‘ 00000
-1.0000 -0.8000 -0.6000 -0.4000 -0.2000 0.0000
— Normalized Stiffness

Fig. 7. Summary of top rank population members for twenty GA runs

5 Conclusion and Further Work

This paper presented an adaptation of NSGA-II for shape optimization of three di-
mensional solids by evolving CSG trees. The algorithm is set to directly evolve the
tree structure by applying specially tailored crossover and mutation operators to a tree
structure encoded chromosome. A simple case study involving shape optimization of
indoor modular space truss joints is presented to demonstrate the algorithm. Models
of selected quasi-Pareto optimal joint shapes were then manufactured via a rapid solid
freeform fabrication technique.
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Further work would include case studies of more complex components, possibly
across several engineering disciplines. Also, more experimentation with the tuning
parameters of the algorithm to determine the effects on the search efficiency is to be
pursued.
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of the modular truss joints was performed in the Solid Freeform Fabrication Lab as
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